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SUMMARY

A common practice in predictive medicine is to use current study data to construct a
stratification procedure, which groups subjects according to baseline information and forms
stratum-specific prevention or intervention strategies. A desirable stratification scheme would
not only have small intra-stratum variation but also have a clinically meaningful discriminatory
capability. We show how to obtain optimal stratification rules with such desirable properties from
fitting a set of regression models relating the outcome to baseline covariates and creating scoring
systems for predicting potential outcomes. We propose that all available optimal stratifications be
evaluated with an independent dataset to select a final stratification. Lastly, we obtain inferential
results for this selected stratification scheme with a holdout dataset. When only one study of mod-
erate size is available, we combine the first two steps via crossvalidation. Extensive simulation
studies are used to compare the proposed stratification strategy with alternatives. We illustrate
the new proposal using an AIDS clinical trial for binary outcomes and a cardiovascular clinical
study for censored event time outcomes.

Some key words: Cox regression model; Crossvalidation; Dynamic programming; Prediction score; Stratified medicine.

1. INTRODUCTION

One important aspect of stratified medicine development is the ability to predict the response
probability for individual subjects. To construct a prediction procedure for a future subject’s
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outcome via his or her baseline information, at the first step it is common practice to fit a para-
metric or semiparametric regression model in order to relate a subject’s outcome to his or her
covariates. If the model is a reasonable approximation to the true one, the resulting predicted
value for an individual would be close to his or her outcome value. Such predicted values create a
scoring system for all future subjects, which can have systematic bias when the regression model
is misspecified. To eliminate the bias, one may further calibrate the scoring system nonparamet-
rically (Tian et al., 2014). However, the calibrated prediction for subjects with a given score can
be quite unstable due to sparseness of the observations. Consequently, the resulting fine-level
prediction procedure may perform poorly. Common practice is to group the scores into several
strata and use the average observed outcome in each stratum to predict outcomes of new subjects
classified into that stratum. However, the choice of strata is often ad hoc in practice. In this paper,
we present a stratification procedure based on baseline covariates which provides a clinically
meaningful grouping strategy.

To illustrate current practice, we use data from a clinical study on treating HIV diseases
(Hammer et al., 1997). This trial, a randomized, double-blind, placebo-controlled clinical study
conducted by the AIDS Clinical Trials Group, demonstrated the overall efficacy of a combination
of two nucleoside regimen with a protease inhibitor Indinavir for treating HIV-infected patients.
The combination treatment concept has since been adopted for HIV patient management, but the
combination therapy may be a poor choice for patients who do not have a reasonable chance of
responding to the treatment. To identify these patients, we show a conventional, ad hoc procedure
to construct a stratification scheme using baseline variables. For this study, there were 537 patients
treated by the three-drug combination who had complete baseline information. One endpoint was
a binary outcome Y , indicating whether or not the patient’s HIV-RNA viral level was under an
assay-detectable level, 500 copies/mL, at week 24. A nonresponder to the treatment was defined
by the RNA level being above 500 copies/mL at week 24 or any dropout before week 24. The
observed overall response rate was 45%. To build a predictive scoring system, consider an additive
logistic regression model for Y with four baseline covariates: age; gender; CD4 count, denoted by
CD40; and log10-transformed HIV-RNA values, denoted by log10 RNA0. For RNA values below
500, log10 RNA0 is replaced by 0·5 log10(500) = 1·35 in our analysis. We fit the model to the
entire dataset, giving the individual predicted response rate

ψ(−0·508 + 0·044 × age − 0·493 × female + 0·004 × CD40 − 0·346 × log10 RNA0), (1)

where ψ(s) = {1 + exp(−s)}−1 is the expit function. The 537 predicted response rates range
from 0·09 to 0·93. If the model is reasonably good, a future subject with a high score tends to
respond to the treatment. A conventional way to group those patients is to stratify them into, for
instance, four categories with roughly equal sizes by using the quartiles of the predicted scores,
and this yields empirical average response rates of 31%, 42%, 38%, and 67%. Unfortunately
this stratification scheme does not have good discriminatory capability across all the strata. The
average response rates are not monotonically increasing over the ordered strata, perhaps due to
the prediction model (1) being inadequate or an improper grouping of the prediction scores.

In this article, we present an optimal stratification strategy incorporating model selection from a
collection of candidates that satisfy certain criteria. Specifically, we show how to obtain an optimal
grouping scheme for each candidate scoring system created from a regression model. For example,
with the predicted response rates (1), we consider all possible discretization schemes with stratum
sizes at least 10% of the study sample size and any monotonically increasing stratum-specific
average response rates with an incremental value of at least 0·2 between consecutive strata. We
then choose the final stratification to be the one that minimizes a certain overall prediction error
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among all such stratification schemes. Dynamic programming techniques are used to solve this
optimization problem (Taha, 2003). With the data from the HIV example and model (1), our
proposal results in three categories with stratum-specific average response rates of 11%, 42%
and 69% and stratum sizes of 65, 343 and 129, respectively. If model (1) is appropriate, future
patients classified to the first stratum may not benefit much from this rather costly three-drug
combination therapy. We also describe how to evaluate competing models to select the final
stratification scheme. Finally, we generalize the new proposal to handle censored event time
outcomes and illustrate the procedure using data from a cardiovascular study (Braunwald et al.,
2004).

2. OPTIMAL STRATIFICATION FOR A SPECIFIC SCORING SYSTEM

Let Y be the outcome variable and V a vector of baseline covariates.Assume that the conditional
mean μ(V ) = E(Y | V ) is the parameter of interest for future prediction. To estimate μ(V )when
V is not a scalar, we generally use a working model which relates Y to Z , a vector transformation of
V including components such as quadratic and interaction terms. Letμ(V ) = g(βTZ), where g(·)
is a given smooth monotone function. Let the data consist of n independent copies {(Yi, Vi, Zi), i =
1, . . . , n} of (Y , V , Z). An estimate β̂ for β can be obtained via a regularized estimation procedure
such as the lasso (Tibshirani, 1996), especially when the dimension of Z is large. If the regression
model is a reasonable approximation to the true one, the resulting estimator μ̂(V ) = g(β̂TZ)
would be close to μ(V ), and a large μ̂(·) indicates that the subject is expected to have a large
outcome value Y . As an example, for the binary outcome Y in the HIV study discussed in § 1,
one may use a logistic model with lasso or ridge regularization to obtain μ̂(·). The score (1) in § 1
gives the individual predicted response rate based on a simple additive logistic regression with
four baseline covariates.

Suppose that we group the n subjects into K consecutive strata S1, . . . , SK based on the score
μ̂(·). With a slight abuse of notation, we use K to denote the number of strata, a random quantity
dictated by the working model and data. Let Ȳk be the empirical mean outcomes in the kth stratum
(k = 1, . . . , K). For a future subject who is classified to the kth stratum, we predict the individual
outcome by the corresponding stratum-specific mean Ȳk . The performance of this stratification
can be evaluated via a loss function

1

n

K∑
k=1

∑
i∈Sk

|Yi − Ȳk |, (2)

which quantifies the average within-stratum variation. When all the scores are distinct, an optimal
stratification that minimizes (2) would result in n strata each with only one member and zero
observed prediction error. However, the prediction error for future observations with such a sparse
stratification would be unacceptably high. To increase prediction precision while ensuring stable
subgroups, one may group the subjects under the condition of a minimal stratum size of at least
a certain fraction p0 of n. To ensure that the stratification scheme yields meaningful differences
in group-specific average outcomes between subgroups, we further impose a constraint on all
candidate stratification schemes such that

Ȳk − Ȳk−1 � d0 (k = 2, . . . , K),

where d0 > 0 represents a minimum clinically meaningful increment.
Minimizing the loss function (2) over all qualifying stratification schemes is a challenging prob-

lem. In the Supplementary Material, we show how to identify the boundary values {ĉ0, . . . , ĉK̂ } of
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the strata. We use (2) to evaluate the prediction error. The asymptotic optimality of the resulting
stratification scheme is guaranteed by Lemma 1, whose justification is given in the Supplemen-
tary Material. This large-sample property of the optimal stratification scheme is also essential to
ensure its stability under the crossvalidation setting discussed in § 3.

LEMMA 1. Suppose that the following hold.

(i) The regularized estimator β̂ of the working regression model converges to a constant vector
β0 within a compact parameter space in probability.

(ii) The score estimate μ̂(v) converges uniformly to a deterministic function μ̃(v) in probability
on the support of V .

(iii) The score μ̃(V ) is a continuous random variable with bounded support and the joint density
function of the continuous components of the random vector (Y , V T)T is continuously
differentiable.

(iv) The outcome Y has bounded support.

Then pr
{
L(ĉ) � L(c0)+ ε

} → 0 as n → ∞ for any given ε > 0, where ĉ = (ĉ1, . . . , ĉK̂ )
T

represents the estimated cut-off values by solving the constrained optimization problem based on
observed data, and c0 = (c1, . . . , cK )

T is the minimizer of

L(c) = E
{∣∣Y − f (V | c)

∣∣} subject to

{
pr

{
ck−1 < μ̃(V ) � ck

}
� p0,

μk − μk−1 � d0,

with f (V | c) = ∑K
k=1 I {ck−1 < μ̃(V ) � ck}μk , μk = E{Y | ck−1 < μ̃(V ) � ck} and I (·)

being the indicator function.

3. SELECTING AN OPTIMAL STRATIFICATION SCHEME

One can obtain the optimal stratified prediction procedure for a prediction score system created
by a given working regression model as presented in § 2. To make inferences about the resulting
stratified prediction procedure, one may use an independent dataset. When only a single study
is available, we may split its data into two separate parts, say, I and II. Using Part I data, we
obtain the optimal stratification scheme. Then we use Part II data for inference. Moreover, if
there is a collection of competing stratified score systems considered as potential candidates, we
may further split the Part I data into two parts, say, Ia and Ib. The data from Part Ia are used for
obtaining the optimal stratification schemes for each candidate scoring system as in § 2, whereas
Part Ib data are used to evaluate all candidates and to select the best stratification scheme. This
multi-stage procedure is similar to that proposed in Li et al. (2016).

Suppose that there are several optimal stratification schemes available with the data from Part
Ia. In this section, we show how to evaluate them and choose the best one. Let the data from Part Ib
be denoted by n∗ independent identically distributed observations {(Y ∗

i , V ∗
i , Z∗

i ), i = 1, . . . , n∗},
where a generic variable A∗ is defined as A in § 2. For each candidate scoring system, we obtain
its optimal stratified counterpart from the data of Part Ia with boundary points {ĉ0, . . . , ĉK̂ } and
the stratum-specific predictions {Ȳk , k = 1, . . . , K̂}. To evaluate the predictive performance of
such a scheme with the data from Part Ib, we consider the loss function

L∗ = 1

n∗
K̂∑

k=1

∑
μ̂(V ∗

i )∈(ĉk−1,ĉk ]
|Y ∗

i − Ȳk | (3)
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where μ̂(V ∗
i ) = g(β̂TZ∗

i ). An optimal stratification scheme minimizes (3) among all candidates
under consideration. On the other hand, we bear in mind that a parsimonious model may be
appealing in practice if the associated L∗ is comparable to the minimum value derived from a
more complex model.

Since Parts Ia and Ib may be small, one may use Monte Carlo crossvalidation (Xu & Liang,
2001; Yong et al., 2013) to obtain a more stable (3). Specifically, we randomly split the Part I
dataset into Ia and Ib, say, N times. For the jth split, we repeat the above model building and
evaluation procedure for each candidate model and obtain L∗

j from (3). We then compute the
average, L̄∗ = N−1 ∑N

j=1 L∗
j . For each candidate model, we refit the entire Part I data and denote

the final realized stratification rule by M∗. The pair (L̄∗, M∗) reflects the magnitude of the
estimated within-stratum variation and the complexity of each candidate model. The selection
of an optimal stratification rule would be based on such pairs. With the data from Part II, we
then construct confidence intervals for the stratum-specific mean values of the outcome variables
for the selected final stratification scheme. Although crossvalidation may not choose the best
stratification based on the Part I data, it identifies the procedure with the best average performance
in constructing the stratification. Thus it is reasonable to expect that the stratification rule from
the selected procedure will be highly competitive if not optimal.

We now use the data from the HIV study to illustrate our proposal. For this study, other
than the four baseline variables discussed in § 1, there are seven additional baseline covariates
and two short-term marker values at week 4, including CD4 count, denoted by CD44, and
log10 RNA, denoted by log10 RNA4. The additional baseline covariates are race, injection-drug
use, haemophilia, CD8 count, weight, Karnofsky performance score, and months of prior zidovu-
dine therapy. Patients with missing covariate values account for 4% of the data. Any missing
covariates are replaced by the corresponding sample averages.

We first randomly split the entire dataset of 537 patients into Part I and Part II, with sample
sizes 268 and 269. In the Monte Carlo crossvalidation, we take N=200 and the sizes of Part Ia and
Ib to be equal for each crossvalidation. For illustration, we consider four working models: three
logistic regression models with lasso regularization methods and tuning parameters selected
via a 20-fold crossvalidation procedure (Friedman et al., 2010), and a null model using the
overall mean response proportion in Part Ia to predict future outcomes. Table 1 summarizes the
composition of each model. We also present L̄∗, obtained by averaging the 200 L∗

j values; and
for the corresponding M∗, we report the numbers of informative baseline covariates needed to
compute the score μ̂(V ) and nonzero regression coefficients in β̂ estimated based on the entire
Part I data to summarize its complexity. In constructing all candidate stratification schemes, we
use d0 = 0·2 and p0 = 0·1.

From Table 1, Models 1 and 3 have almost the same L̄∗ values, but the M∗ of Model 1 has
fewer baseline covariates. The resulting predicted response rate is

ψ(− 0·23 − 0·075 × log10 RNA0 − 0·46 × log10 RNA4 + 0·00036 × CD40

+ 0·0028 × CD44 + 0·029 × age).

This final selected stratification scheme M∗ has three strata with cut-offs ĉ1 = 0·25 and ĉ2 =
0·45. The stratum-specific means are 0·06, 0·36, and 0·62; and the corresponding stratum sizes
are 51, 107, and 110, based on the Part I data. These stratum-outcome-average estimates may be
biased due to the extensive model building, evaluation and selection. To obtain valid inferences
for this final stratification rule, we use the boundary values ĉ1 and ĉ2 to group subjects from Part
II data. The resulting point estimates and 0·95 confidence intervals for the three stratum-average
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Table 1. Regression model candidates for HIV data, prediction accuracy L̄∗, complexity of M∗,
and ‖β̂‖0, the number of nonzero components of β̂

Model Candidate independent variables dim(Z) L̄∗ M∗

# covariates ‖β̂‖0

1 age, sex, CD4 count and log10RNA at baseline and week 4 6 0·42 5 5
2 all baseline covariates plus their first-order interaction terms 78 0·47 12 14
3 all baseline covariates and CD4 and log10RNA at week 4 105 0·41 13 20

plus their first-order interaction terms
4 none 0 0·48 0 0

Table 2. Response probabilities (%) of nine subgroups in simulation settings 3 and 4
Setting 3 Setting 4

Baseline RNA (×105) Baseline RNA (×105)

[0, 0·56] (0·56, 2·04] (2·04, ∞) [0, 0·56] (0·56, 2·04] (2·04, ∞)

Week 4 [0, 0·22] 61 64 64 74 78 78
RNA (×103) (0·22, 3·02] 47 48 44 47 48 40

(3·02, ∞) 15 19 27 3 6 14

response rates are 0·17 (0·06, 0·28), 0·41 (0·31, 0·51) and 0·65 (0·57, 0·73), with stratum sizes
47, 91, and 131; see the Supplementary Material.

4. A SIMULATION STUDY

To compare our stratification method with alternatives, we conducted a simulation study where
data were generated mimicking the AIDS Clinical Trials Group trial described in § 1. Throughout
the simulation, we used the observed baseline RNA and week 4 RNA levels as the covariates.
In the first setting we simulated the binary response according to a logistic regression model with
log10-transformed baseline RNA, log10 RNA0, and week 4 RNA, log10 RNA4, and their product
as the independent variables. The regression coefficients of the logistic regression model were
set as the maximum likelihood estimators based on the original data. In the second setting, we
doubled all the regression coefficients in the logistic regression model, and adjusted the intercept
term to maintain the same overall prevalence rate. In the third setting, the binary response was
simulated with different probabilities in nine subgroups summarized in Table 2, where the cut-
off values (0·56, 2·04) × 105 and (0·22, 3·02) × 103 are tertiles of baseline and week 4 RNA
levels, respectively. The response probability was chosen to be the observed response rate of
the corresponding subgroup in the AIDS Clinical Trials Group 320 trial. In the last setting,
the response probabilities of the aforementioned nine subgroups were modified to increase the
between-group differences, as shown in Table 2.

For each simulated training dataset of 537 observations, a misspecified simple logistic model

logit{pr(Y = 1 | RNA0, RNA4)} = β0 + β1 log10 RNA0 + β2 log10 RNA4

was used to generate a scoring system. Then various stratification methods were used to form
strata. In addition to our method, we also selected the cut-off values simply as the median, tertiles
and quartiles. In our proposal, we let p0 = 0·1 and d0 = 0·2. We also employed classification and
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regression trees to build the stratification system (Breiman et al., 1984), with minimum node size
0·1n and the tree pruned back based on crossvalidation. Lastly, we also calibrated the continuous
score by the nonparametrically estimated conditional expectation of Y given the score.

For each setting, the mean square errors for predicting future observations were estimated for
various stratification rules and the calibrated continuous score. As references, the mean square
errors were also computed for the null and true models, using the mean response rate in the training
set and the true individual response rate as the risk prediction, respectively. For each stratification,
the number of strata and the differences between neighbouring strata were recorded.

The results based on 1000 simulations are reported in Table 3. The mean square errors across
different methods lie between those of the null and true models, as expected. Compared with
other stratification methods, our method usually yields the smallest prediction error at a level
comparable to that of the continuous score in all settings, in spite of the fact that the latter is
asymptotically optimal. The stratification from classification and regression trees is competitive
and tends to yield fewer strata. The strata constructed by the new proposal guarantee that a
high proportion of between-strata differences is greater than the prespecified threshold and the
violation is mild when that occurred. Not all the differences satisfy the constraint, due to the
randomness of Ȳk − Ȳk−1 in the training set.

5. EVENT TIME AS THE OUTCOME VARIABLE

If the outcome T is the time to a specific event, it may be censored and its mean or median may
be badly estimated. A common summary parameter is the event rate at a specific time-point τ , but
this does not include information about the event occurrence profile. The restricted mean survival
time has been argued to be a clinically meaningful summary for such a distribution (Royston,
2006; Royston & Parmar, 2011; Zhao et al., 2013). Specifically, let Y = TI (T � τ)+τ I (T > τ)

and μ(V ) = E(Y | V ) = ∫ τ
0 S(t | V ) dt as defined in § 2, where S(t | V ) = pr(T > t | V ). Here,

μ(V ) is the average event-free time for all subjects with covariate V , which would be followed up
to time-point τ . The definition of restricted mean survival time and subsequent results depend on
the choice of τ , which is often set to be close to the maximum study follow-up time. In practice, T
may be right-censored by an independent random variable C. However, one can always observe
(X , V ,�), where X = min(T , C) and � = I (T � C). Therefore, the observed data consist
of n independent copies {(Xi, Vi,�i), i = 1, . . . , n} of (X , V ,�). When �i = 1 or Xi � τ ,
Yi = min(Ti, τ) is observed.

Inferences about μ(V ) have been extensively studied (Zucker, 1998; Tian et al., 2014). For
example, the area under the Kaplan–Meier curve is a consistent estimator of the restricted mean
survival time for a single group. To create a scoring system forμ(V ), one may use the Cox (1972)
regression model

log{− log S(t | V )} = log{− log S0(t)} + βTZ ,

where S0(·) is an unknown baseline survival function and β is the regression coefficient vector.
A regularized estimate β̂ of β can be obtained by minimizing a penalized log partial likelihood
function. The baseline survival function S0(t) can then be estimated by exp{−�̂0(t)}, where
�̂0(t) is the cumulative hazard function estimator of Breslow (1972). It follows that the restricted
mean survival time for subjects with covariate V can be estimated as

μ̂(V ) =
∫ τ

0
exp

{
−�̂0(t)e

β̂TZ
}

dt.



824 F. H. YONG, L. TIAN, S. YU, T. CAI AND L. J. WEI

Table 3. Mean square prediction errors, MSE, and proportions of between-strata differences (%)
satisfying the constraint for the different methods based on 1000 simulations. The percentage

within the parenthesis reflects the empirical distribution of K
Setting Stratification MSE Proportion of between-strata differences satisfying the constraint

method (×100) K = 2 K = 3 K = 4 K = 5 K = 6

1 New 22·1 100 53·0 27·4
(13·1) (81·3) (5·6)

Median 22·5 100
Tertile 22·1 50·0
Quartile 22·2 0·0
CART 22·2 100 50 33·7 29·4 10

(50·4) (39·0) (8·7) (1·7) (0·2)
Continuous 22·1
Null model 24·7
True model 21·5

2 New 16·6 100 99·8 54·2 28·1
(0·1) (52·6) (46·5) (0·8)

Median 18·2 100
Tertile 17·2 100·0
Quartile 17·3 52·4
CART 16·8 100 98·8 50·3 46·7

(9·3) (76·4) (12·8) (1·5)
Continuous 21·8
Null model 24·9
True model 16·0

3 New 22·6 100 43·7 33·3
(33·4) (66·3) (0·3)

Median 22·9 100
Tertile 22·3 47·2
Quartile 22·6 0
CART 22·6 100 45·9 22·9 16·7 25

(59·7) (27·9) (9·6) (1·8) (0·4)
Continuous 22·6
Null model 24·7
True model 21·8

4 New 17·6 100 99·9 63·6 50·0
(0·1) (75·5) (24·1) (0·3)

Median 19·3 100
Tertile 17·7 100·0
Quartile 18·4 66·7
CART 17·6 100 99·8 66·7 50·0

(6·3) (78·3) (13·6) (1·8)
Continuous 22·0
Null model 24·6
True model 17·0

New, the proposed method; Median, median-based stratification; Tertile, Tertile-based stratification; Quartile, Quartile-
based stratification; CART, classification and regression tree; Continuous, calibrated continuous score.

For any scoring system, we can then use the technique described in § 3 to obtain an optimal
stratification. Specifically, in the limit, we are interested in minimizing L(c). If the censoring time
is independent of the survival time T and covariates V , the prediction error L(c) can be estimated
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as

n−1
K∑

k=1

∑
i∈Sk

wi|Yi − Ȳk |,

where wi = {�i + (1 −�i)I (Xi � τ)}/Ĝ(Yi) and Ĝ(·) is the Kaplan–Meier estimator for the cen-
soring distribution using the entire dataset. Here, Ȳk is a consistent estimator for the kth stratum-
specific restricted mean survival time, which is the weighted average

∑
i∈Sk

wiYi/
∑

i∈Sk
wi. With

the same constraints as those described in § 2, an optimal stratification can be obtained via the
dynamic programming technique given in the Supplementary Material. If the obtained scoring
system for restricted mean survival time converges to a deterministic limit as the sample size
increases, the finite-sample stratified scheme would have the same asymptotic property as that
for the noncensored case.

To select the best scoring model from the competing scoring systems, one can use the procedure
in § 3 with the weighted version of (3) to evaluate the candidate stratification schemes.

6. EXAMPLE WITH CENSORED EVENT TIME OUTCOMES

We use the data from a cardiovascular clinical trial, Prevention of Events withAngiotensin Con-
verting Enzyme Inhibition, to illustrate the proposal with an event time outcome variable. The trial
is a double-blind, placebo-controlled study (Braunwald et al., 2004) of 8290 patients enrolled to
investigate whether the addition to the conventional therapy of an angiotensin-converting-enzyme
inhibitor would provide benefit with respect to, for example, the patient’s specific cardiovascular
event-free survival. The inhibitor is trandolpril at a target dose of 4 mg/day. The outcome is
assumed to be the time to death, nonfatal myocardial infarction or coronary revascularization,
whichever occurred first. There are 2110 patients who experienced this composite event, with a
median follow-up time of 54 months. A 0·95 confidence interval for the hazard ratio is (0·86,
1·02). Since there was no statistically significant treatment effect, we combined the data from the
two treatment groups. The overall observed event times in months range between 0·1 and 81·5
with quartiles 12·8 and 42·4. If we let τ = 72 months, the estimated restricted mean event time
for the entire group is 60·4 months. This suggests that for future patients in this study population,
one expects to have an average of 60·4 months event-free with a follow-up time of 72 months.

Based on the results of Solomon et al. (2006), we considered the following baseline covariates
for prediction: the study treatment indicator, age, gender, left ventricular ejection fraction, history
of myocardial infarction, history of hypertension, history of diabetes, and estimated glomerular
filtration rate as a four-category discretized version represented by three indicator variables with
cut-points of 45, 60, and 75. Left ventricular ejection fraction is missing for 412 patients and
other covariate information is almost complete, with no more than 11 missing values each. We
imputed the missing covariate values with the averages for continuous variables and the most
frequently observed category for binary variables. We then randomly split the data into Parts I and
II, each consisting of 4145 patients, and split Part I randomly for crossvalidation with N = 200.
Several candidate models are listed in Table 4. Model 2 is built upon the observation that there is
potential treatment and estimated glomerular filtration rate interaction (Solomon et al., 2006).

For each regression candidate model, d0 = 3 months and p0 = 0·05 in the Part Ia training data.
Table 4 summarizes L̄∗ for the optimal stratification based on each regression working model
and the numbers of informative baseline covariates used in computing the estimated scores and
nonzero regression coefficients of β̂ for M∗. Model 2 has the smallest L̄∗ and yields three strata
with ĉ1 = 56·5 and ĉ2 = 60·5 months. The range of the estimated restricted mean survival time in
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Table 4. Regression model candidates for cardiovascular data, prediction accuracy L̄∗,
complexity of M∗, and ‖β̂‖0, the number of nonzero components of β̂

Model Candidate independent variables dim(Z) L̄∗ M∗

# covariates ‖β̂‖0

1 age, gender, left ventricular ejection fraction, history of 10 16·92 6 7
myocardial infarction, history of hypertension,
history of diabetes, estimated glomerular filtration rate,
ACE inhibitor treatment

2 variables in Model 1 plus three treatment and 13 16·90 6 9
estimated glomerular filtration rate interaction terms

3 variables in Model 1 plus their first-order interaction terms 55 16·97 6 9
4 none 0 18·65 0 0

0 12 24 36 48 60 72

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
v
en

t−
fr

ee
 p

ro
b
ab

il
it

y

Months

Fig. 1. Stratum-specific Kaplan–Meier estimates obtained from Part II data of the cardiovascular study with ĉ1 = 56·5
and ĉ2 = 60·5. The restricted mean survival time estimators and corresponding 95% confidence intervals for the 245
subjects in the first stratum (solid), 1350 subjects in the second stratum (dashes), and 2550 subjects in the third stratum

(dot-dash) are 54 (51, 57) months, 59 (58, 60) months, and 62 (61, 63) months, respectively.

the Part I data is from 51·0 to 63·8 months. The corresponding estimated restricted mean survival
times of the strata are 54·5, 58·7 and 62·3 months. To make inferences about the prediction
of this selected final stratification scheme, we apply it to the Part II data. The corresponding
Kaplan–Meier curves for three strata are given in Fig. 1. Based on the restricted area under
the Kaplan–Meier curves derived from 1000 bootstrap samples, the point estimates and 0·95
confidence intervals for the stratum-specific restricted mean survival times are 54·3 (51·0, 57·2),
58·9 (57·7, 60·0) and 62·0 (61·2, 62·8) months for the three strata, with n = 245, 1350, and 2550
respectively.

Since this set of results depends on the choice of τ used in the restricted mean survival time,
we also conducted extensive sensitivity analyses with τ from 60 to 80 months. The resulting
stratification scheme is quite stable when τ � 77 months. When τ � 78 months, the stratification
rule starts to deviate substantially, perhaps due to the presence of extreme weights at low values
of the censoring survival estimator Ĝ(·).
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7. DISCUSSION

A common practice in predictive medicine is to create an ordered category system to classify
future subjects according to their baseline information. A desirable quantitative stratification
procedure would have both a small overall prediction error and a reasonable discriminatory
capability across the strata. In this article, we provide a systematic approach to constructing
such a stratification rule. The user can determine important components including the loss
function, the minimum stratum size and the desired clinically meaningful difference between
strata. Our method uses a heuristically interpretable metric, a loss function based on the L1-norm,
for quantifying the prediction error, but it could be replaced by, for example, mean squared error,
integrated Brier score and other metrics for prediction performance (Graf et al., 1999; Choodari-
Oskooei et al., 2012a,b).As a possible modification, one may also introduce a weight function w(·)
in the modified loss n−1 ∑

k
∑

i∈Sk
|Yi − Ȳk |w(Vi) to encourage finer or coarser stratification for

high- or low-risk patients. The proposed stratification requires a minimum stratum size to avoid
unstable small strata. The choice of this size depends on the amount of information in the training
set Part Ia, which is usually quantified by the sample size or the observed event rate. In choosing
its value, one also needs to consider the objective of the analysis. For example, if one wants
to identify a small subgroup of high-risk individuals, the minimum stratum size needs to be
smaller than the anticipated proportion of the high-risk stratum. To enhance the discriminatory
ability of the scheme, we set a minimum incremental value between two consecutive stratum-
specific predicted values. The choice of this value depends on clinical inputs. For example, for
the cardiovascular study, the range of the restricted mean survival time scores is from 51·0 to 63·8
months based on the Part I training data, which is relatively narrow. A choice of an incremental
value of three months for illustration in § 6 seems appropriate.

An obvious extension of the new proposal is to construct an optimal stratification procedure for
treatment selections based on data either from randomized clinical trials or from observational
studies. In such a case, one needs to predict the treatment effect measured by the difference
of potential clinical outcomes of the patient under different treatments rather than the outcome
itself. Unfortunately, the L1 loss function utilized in this article cannot be generalized to deal
with this important problem. Further research on the choice of a clinically meaningful metric for
quantifying the prediction error for treatment selections is warranted.
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