
Published online 20 September 2018 Nucleic Acids Research, 2019, Vol. 47, No. 1 e3
doi: 10.1093/nar/gky837

ProGeM: a framework for the prioritization of
candidate causal genes at molecular quantitative trait
loci
David Stacey 1,*, Eric B. Fauman2, Daniel Ziemek3, Benjamin B. Sun1, Eric L. Harshfield1,4,
Angela M. Wood1, Adam S. Butterworth1, Karsten Suhre5 and Dirk S. Paul 1,*

1MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of
Cambridge, Cambridge CB1 8RN, UK, 2Pfizer Worldwide Research & Development, Genome Sciences &
Technologies, Cambridge, MA 02142, USA, 3Pfizer Worldwide Research & Development, Inflammation &
Immunology, 14167 Berlin, Germany, 4Department of Clinical Neurosciences, University of Cambridge, Cambridge
CB2 0QQ, UK and 5Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, PO 24144, Doha, Qatar

Received December 06, 2017; Revised August 31, 2018; Editorial Decision September 06, 2018; Accepted September 11, 2018

ABSTRACT

Quantitative trait locus (QTL) mapping of molecu-
lar phenotypes such as metabolites, lipids and pro-
teins through genome-wide association studies rep-
resents a powerful means of highlighting molecu-
lar mechanisms relevant to human diseases. How-
ever, a major challenge of this approach is to iden-
tify the causal gene(s) at the observed QTLs. Here,
we present a framework for the ‘Prioritization of can-
didate causal Genes at Molecular QTLs’ (ProGeM),
which incorporates biological domain-specific anno-
tation data alongside genome annotation data from
multiple repositories. We assessed the performance
of ProGeM using a reference set of 227 previously
reported and extensively curated metabolite QTLs.
For 98% of these loci, the expert-curated gene was
one of the candidate causal genes prioritized by Pro-
GeM. Benchmarking analyses revealed that 69% of
the causal candidates were nearest to the sentinel
variant at the investigated molecular QTLs, indicat-
ing that genomic proximity is the most reliable in-
dicator of ‘true positive’ causal genes. In contrast,
cis-gene expression QTL data led to three false pos-
itive candidate causal gene assignments for every
one true positive assignment. We provide evidence
that these conclusions also apply to other molecu-
lar phenotypes, suggesting that ProGeM is a power-
ful and versatile tool for annotating molecular QTLs.
ProGeM is freely available via GitHub.

INTRODUCTION

With the continued application of genome-wide association
studies (GWAS) to human disease aetiology (1–4), the rapid
discovery rate of susceptibility loci is far outstripping the
rate at which we are able to elucidate the biological mech-
anisms underlying the identified loci. This represents a ma-
jor bottleneck to translational progress. Quantitative trait
locus (QTL) mapping of molecular, intermediate pheno-
types provides a powerful means to functionally annotate
and characterize GWAS signals for complex traits in a high-
throughput manner. This approach has been pioneered with
the use of transcriptomic data to identify gene expression
QTLs (eQTLs) (5–9). Recent technological advances have
enabled the application of this approach to methylomic
(10,11), proteomic (12–14), lipidomic (15) and metabolomic
(16–18) data. This catalogue of molecular QTLs, cutting
across multiple ‘omic modalities, can be readily queried to
elucidate the functional impact of disease-associated vari-
ants on the abundance of not only transcripts, but also epi-
genetic marks, proteins, lipids and metabolites.

A key challenge with these data relates to the identifi-
cation of specific causal genes at the observed molecular
QTLs. Accurate molecular QTL–gene assignments are crit-
ical for the meaningful interpretation of the biology un-
derlying GWAS signals and the subsequent design of ap-
propriate experimental follow-up work. There are several
web tools available that facilitate the identification of genes
most likely to be impacted functionally by either the sen-
tinel or proxy variants tagging a molecular QTL. For ex-
ample, tools such as the Single Nucleotide Polymorphisms
Annotator (SNiPA) and the Functional Mapping and An-
notation of GWAS tool (FUMA) integrate various posi-
tional, regulatory and cis-eQTL datasets, enabling the iden-
tification of candidate causal genes using a data-driven ap-
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proach (19,20). Nevertheless, the sensitivity of these tools,
or the extent to which they are able to highlight ‘true posi-
tive’ causal genes, has not yet been rigorously assessed. This
is largely due to the time-consuming and resource-intensive
experimental follow-up that is required to assign candidate
causal genes at each individual association locus, resulting
in a limited number of trait- or disease-associated variants
that have so far been unequivocally assigned to established
causal genes. Thus, ‘reference’ causal gene sets for a par-
ticular trait of interest, which could be used to benchmark
causal gene prioritization tools, are either unavailable or
likely to be unrepresentative.

However, metabolite QTL (mQTL) data represent a
unique case in that there is an abundance of published
biochemical mechanistic research pre-dating findings from
GWAS that have identified and characterized many of the
enzymes, transporters and other proteins that regulate spe-
cific metabolites (21–23). In addition, this experimental re-
search has been complemented by the study of numerous
rare inborn errors of metabolism, thereby further elucidat-
ing the substrates and functions of metabolic gene prod-
ucts (24–26). Thus, by cross-referencing mQTLs identified
by GWAS with this pre-existing body of biochemical and
genetic research, it becomes possible to generate a large,
high-confidence, mQTL-specific reference causal gene set,
which can be used for the validation of both current and
future causal gene prioritization tools.

Another major limitation of these tools is that they are
hampered by low specificity, in that they will typically high-
light several candidate causal genes at most association loci.
This necessitates the application of further downstream pri-
oritization methods or literature review. Therefore, causal
gene prioritization tools that are able to facilitate this pro-
cess in an automated fashion will prove instrumental in
refining the overall search space. As an example, the ma-
jority of current tools are not geared towards any spe-
cific trait or phenotype, relying solely on positional, reg-
ulatory and/or cis-eQTL data to prioritize causal genes
based on the likelihood that they are functionally affected
by polymorphisms at a QTL or GWAS locus. Conversely,
by designing a tool that is focused on a specific trait (e.g.
metabolites) or trait class (e.g. molecular intermediates),
relevant annotation data from publicly available databases
(e.g. KEGG and GO) can be leveraged to directly prioritize
those candidates that have been shown to regulate metabo-
lites or other biomolecules.

Here, we present an analysis framework and accompa-
nying R script (https://github.com/ds763/ProGeM) for the
Prioritization of candidate causal Genes at Molecular QTLs
(ProGeM). Consistent with existing tools, ProGeM lever-
ages positional and cis-eQTL data to prioritize genes most
likely to be impacted functionally by variants tagging the
molecular QTL. In addition, ProGeM integrates informa-
tion from biological domain-specific annotation data from
multiple repositories to prioritize genes involved in the bio-
logical mechanisms that regulate the molecular phenotype
in question. In this way, ProGeM is able to harness both
literature- and experimental-derived information in a quick
and efficient manner. Crucially, and in contrast to existing
tools, we have also determined the sensitivity and specificity
of ProGeM using two molecular QTL datasets, comprising

227 mQTLs and 562 cis-pQTLs, for which each QTL has
been assigned a high-confidence causal gene. Informed by
these datasets, we make recommendations as to which an-
notation criteria may be most informative for the identifi-
cation of candidate causal genes at molecular QTLs.

MATERIALS AND METHODS

Reference causal gene sets for molecular QTL data

mQTL dataset. Between 2007 and 2016, 109 papers re-
ported results of a GWAS of metabolite levels. Suitable
traits were identified largely through a manual review of
all entries from the GWAS catalogue tagged with the Ex-
perimental Factor Ontology (EFO) term ‘measurement’
(EFO 0001444) or any descendants of the term. This anal-
ysis focused on small molecules, ions, metabolites, vita-
mins and other biomolecules not directly encoded by genes
such as mRNA or proteins. The source tissue was most of-
ten plasma or serum although studies of urine and cere-
brospinal fluid have also been included. Where available,
full summary statistics for the identified studies were down-
loaded and peak-pruned to identify sentinel SNPs at least
1 megabase (Mb) apart. Before clustering, there were 2808
sentinel SNPs (P ≤ 5 × 10−8) covering 250 distinct metabo-
lites from these 109 studies. These variants were clustered
into 497 loci by collapsing variants closer than 500 kilo-
bases (kb) unless there was a compelling biochemical rea-
son to separate the associated metabolites. For example,
nine sentinel SNPs for branched chain amino acids and
related metabolites near PPM1K were clustered together,
and 21 sentinel SNPs for urate, uric acid and urea near
ABCG2 were clustered. However, these two groups were not
clustered further, even though they are only 150 kb apart
because the metabolites are not tightly linked biochemi-
cally and each cluster has its own very credible causal gene.
Within each cluster, the variant with the smallest P-value
(across all related metabolites) was retained.

For each of the 497 locus–metabolite pairs, all protein-
coding genes within 1 Mb of the sentinel variant were con-
sidered. This generated a median of 20 genes per locus
(range 4–92). The final selection of the likely causal gene
was performed manually following an expert review of the
literature, which was guided by both text-mining and an-
notation data from the Kyoto Encyclopedia of Genes and
Genomes (KEGG). Many metabolites are so distinct that
only a small number of genes have ever been discussed in re-
lation to them. Examples include 5-oxoproline, here linked
to the OPLAH gene that encodes 5-oxoprolinase (27) and
manganese, here linked to the SLC30A10 gene that encodes
a manganese transporter (28).

For each of the 497 gene–metabolite pairs, we attempted
to identify the earliest publication conclusively linking the
gene product to the exact metabolite reported or a biochem-
ically similar metabolite. Preference was given to evidence
for the human gene, to non-genetic data and to experimen-
tal work conducted before the publication of the GWAS.
The publications reporting the experimental validation for
the causal genes are presented in Supplementary Table S1,
listed under ‘Evidence Source (PMID)’.

https://github.com/ds763/ProGeM


PAGE 3 OF 13 Nucleic Acids Research, 2019, Vol. 47, No. 1 e3

cis-pQTL dataset. This dataset was derived from our re-
cent large-scale pQTL study (14). Briefly, the dataset con-
sisted of 3301 healthy individuals of European descent, who
had been randomly selected from a pool of ∼50 000 partic-
ipants of the INTERVAL study (29). Plasma protein levels
were measured using the SOMAscan platform (SomaLogic,
Inc., Boulder, Colorado, USA) comprising 4034 distinct
aptamers (SOMAmers) covering 3623 proteins (or pro-
tein complexes). Genotyping was performed using the UK
Biobank Axiom genotyping array (Affymetrix, Inc., Santa
Clara, California, USA), assaying ∼830 000 variants. Vari-
ants were imputed using a combined 1000 Genomes Phase
3-UK10K reference panel, which yielded a total of ∼10.5
million variants for pQTL analyses after stringent QC filter-
ing. Overall, we found a total of 1927 significant (P < 1.5 ×
10−11) genetic variant–protein associations involving 1478
proteins and 764 unique genomic loci (14). Of these 1927
associations, 555 were cis-associations (i.e. sentinel variant
within 1 Mb of the gene encoding the corresponding pro-
tein) and the remaining 1373 were trans-associations.

For cross-validation analyses, we utilized only the cis-
pQTL data, for which we hypothesized that the causal gene
at a given cis-pQTL ought to be the gene that encodes the
associated protein. To convert the 555 cis-pQTLs into a
high-confidence set of sentinel variant–causal gene assign-
ments, we first decomposed the cis-pQTLs into 589 sen-
tinel variant–SOMAmer cis-associations. We then removed
nine sentinel variants with associations originating from
SOMAmers known to target more than a single protein due
to paralogous sequences. We also removed 16 associations
with SOMAmers that led to duplicate (or more) protein as-
sociations for the same sentinel variant. Finally, we removed
two additional associations for which the same sentinel vari-
ants were associated with distinct protein isoforms encoded
by single genes. Thus, we used a set of 562 high-confidence
sentinel variant–causal gene assignments (Supplementary
Table S2) for the purposes of validating the bottom-up com-
ponent of ProGeM.

Proxy variant selection

We selected proxies for each sentinel variant based on an
LD threshold of r2 ≥ 0.8. For the mQTL dataset, proxies
were extracted from the 1000 Genomes Project (EUR Super
Population) data using PhenoScanner, which is a curated
database of publically available results from large-scale ge-
netic association studies (30). For the cis-pQTL dataset,
proxies were derived directly from the genotype data of the
participants, as previously described (14).

Annotation of sentinel and proxy variants

All sentinel and proxy variants were annotated using the
Ensembl Variant Effect Predictor (VEP) (v83) on GEN-
CODE transcripts (v19) for GRCh37 (31). Annotations
were generated using the ‘per gene’ option, which consid-
ers variant annotations across all genes and transcripts, and
selects the most severe consequence per gene with an ar-
bitrary selection of the corresponding transcript. In par-
ticular, we made use of the IMPACT rating provided by
VEP, which assigns input variants to one of four overar-
ching functional categories as follows: (i) high impact: ‘the

variant is assumed to have high (disruptive) impact on the
protein, probably causing protein truncation, loss of func-
tion or triggering nonsense-mediated decay’ (i.e. frameshift
variant, start-lost variant); (ii) moderate impact: ‘a non-
disruptive variant that might change protein effectiveness’
(i.e. missense variant, inframe deletion); (iii) low impact:
‘assumed to be mostly harmless or unlikely to change pro-
tein behaviour’ (i.e. synonymous variant, 3′-untranslated re-
gion variant) and (iv) modifier impact: ‘usually non-coding
variants or variants affecting non-coding genes, where pre-
dictions are difficult or there is no evidence of impact’ (i.e.
intergenic variant and intronic variant).

Identification of candidate causal genes

Bottom-up component. We used the GenomicRanges suite
of R packages (32) to extract (i) the three nearest protein-
coding genes to each sentinel variant and (ii) any LD
range-overlapping genes from a GRCh37 gene model based
on a GTF file (‘Homo sapiens.GRCh37.82.gtf’) retrieved
from Ensembl (33). LD ranges for each sentinel variant
were defined as the range between the genomic coordi-
nates (GRCh37) of the left- and right-most proxy vari-
ants (±5 kb). In cases where the sentinel had no proxies,
the coordinates of the sentinel variant (±5 kb) were taken
as the LD range. We also extracted significant cis-eQTL
target genes of sentinel and proxy variants from the cis-
eQTL data prepared by the Genotype-Tissue Expression
(GTEx) project (5) (v7), across all tissues assayed (n = 48).
Significant cis-eQTLs were defined by beta distribution-
adjusted empirical P-values using a false discovery rate
(FDR) threshold of 0.05 (see http://www.gtexportal.org/
home/documentationPage for details).

Top-down component. mQTL sentinel variant-flanking
genes (i.e. transcription start site (TSS) within ±500 kb of
a sentinel) were identified using GenomicRanges (32) and
the same Ensembl GTF file as above. Top-down candidates
were then identified by cross-referencing the resultant list
of sentinel-flanking genes against a list of known metabolic-
related genes derived from five open-source databases (Sup-
plementary Table S3).

Comparative analysis with SNiPA

In order to compare the output of ProGeM with that of
SNiPA, we extracted all candidate causal genes using the
SNiPA web server (data accessed: 7 June 2018) (https://
snipa.helmholtz-muenchen.de/snipa3/) (19). We serially en-
tered all 227 sentinel variants into the ‘block annotation’
tool with the LD threshold set to r2 = 0.8. This and
all other settings used were in accordance with ProGeM;
Genome assembly: GRCh37, Variant set: 1000 Genomes
(Phase 3 v5), Population: European, Genome annotation:
Ensembl 87. Then, for each sentinel variant, we down-
loaded the corresponding ‘Results file’ under the ‘Report’
tab and used all genes listed under the columns named
‘GENES’, ‘REGGENES’ or ‘EQTLGENES’ as candidate
causal genes according to SNiPA.

http://www.gtexportal.org/home/documentationPage
https://snipa.helmholtz-muenchen.de/snipa3/
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Statistical analyses

Sensitivity and specificity. Sensitivity was calculated and
expressed as a percentage of the total number of molecular
QTLs in question, as follows:

Sensi tivi ty = (100 ÷ n) × T P

[n: total number of molecular QTLs, TP: true positives]
We calculated the overall specificity of ProGeM as:

Speci f ici ty = TN ÷ (TN + F P)

[TN: true negatives, FP: false positives] whereby maximal
specificity is indicated by specificity = 1 and where TN was
comprised of:

TN = �LG − (T P + F P) − F N

[LG: local protein-coding genes residing ±500 kb from a
sentinel variant, TP: true positives, FN: false negatives]

To compare the specificity of the bottom-up and top-
down components, as well as the concurrent candidate gene
sets, TN was comprised of:

TN = �PG − (T P + F P) − F N

[PG: ProGeM candidates for each sentinel variant]

Enrichment analyses. Enrichment analyses were per-
formed using Fisher’s exact tests, with the relevant back-
ground gene sets consisting of all remaining candidate
causal genes across either the mQTL or cis-pQTL dataset as
appropriate. Uncorrected P-values are reported in the text,
with Bonferroni-corrected P-values shown in figures.

Software for analyses

All analyses described in this study were performed using R
v3.3.2 and Bioconductor v3.3.

RESULTS

Conceptual framework of ProGeM

The framework of ProGeM is based on the assumption that
in order for a gene to be causal for a molecular QTL, or in-
deed any other phenotype, it must fulfil two requirements:
(i) the gene product must exhibit altered structure, abun-
dance or function as a result of the sentinel or proxy vari-
ants at the QTL and (ii) the gene must be involved in the
molecular mechanism that influences the trait in question.
Accordingly, ProGeM is comprised of a ‘bottom-up’ and
a ‘top-down’ component that prioritizes candidate causal
genes from the perspective of the genetic variant and the
molecular phenotype, respectively (Figure 1).

Bottom-up component. For the bottom-up component, we
utilize three complementary methods to identify plausible
candidate causal genes based on (i) their proximity to the
LD range (‘Materials and Methods’ section); (ii) their prox-
imity to the sentinel variant; (iii) whether their mRNA ex-
pression levels are impacted by either the GWAS sentinel
or any corresponding proxy variants (Figure 1). The former
two methods are designed to capture candidate causal genes

that are proximal to the association signal, whereas the lat-
ter enables inclusion of more distal candidate genes. Any
gene that meets at least one of these criteria is included in the
list of bottom-up candidate genes. In addition, those can-
didate causal genes that contain either a sentinel or proxy
variant of high or moderate impact on gene function (‘Ma-
terials and Methods’ section) are annotated as such.

Top-down component. For the top-down component, we
first identify all genes that reside within a pre-defined ge-
nomic window either side of the sentinel variant. Various
open-source databases are then referenced to determine
whether any of these genes have previously been implicated
in the regulation of the molecular phenotype in question,
thereby constituting the top-down candidates (Figure 1).
The type of databases referenced, and the way in which
they are queried (Supplementary Table S3), depends on
the nature of the molecular phenotype (e.g. the abundance
of proteins, metabolites, lipids etc.). For the purposes of
this study, we extracted a list of metabolic-related genes
from five databases: (i) Gene Ontology (GO), (ii) KEGG,
(iii) Mouse Genome Informatics (MGI), (iv) Orphanet and
(v) Reactome (Figure 1 and Supplementary Table S3). We
have made this list available at GitHub (https://github.com/
ds763/ProGeM). Lastly, the top-down candidate genes are
assigned an informal score ranging between 1 and 5 to re-
flect the number of times they are reported in the databases.

Framework integration. The lists of bottom-up and top-
down candidate genes for each identified QTL are inte-
grated by ProGeM to determine whether any genes are iden-
tified by both independent approaches. Any concurrent can-
didate genes are then designated the most likely causal genes
given that they fulfil both of the aforementioned require-
ments for a candidate causal gene.

Generation of a high-confidence metabolite QTL reference
causal gene set

In order to empirically assess the performance of Pro-
GeM, we curated a reference dataset comprising 227
literature-derived mQTLs, each of which we assigned a
high-confidence causal gene. A full description on how this
reference gene set was generated can be found in the ‘Mate-
rials and Methods’ section.

In brief, this reference set exploits the wealth of biochem-
ical experimental research that predates GWAS discoveries,
such as the identification and characterization of proteins
that regulate specific metabolic processes, as well as the ex-
tensive clinical characterization of genes underlying rare in-
born errors of metabolism. The candidate causal genes we
assigned to these mQTLs affect the corresponding metabo-
lites in a variety of ways; for example, many encode enzymes
that act directly on the metabolite, others encode trans-
porters or carriers for the metabolite, whilst others code for
transcription factors known to impact the transcription of
metabolic genes or processes. Full details including relevant
enzyme commission (EC) codes and references (PubMed
IDs) can be found in Supplementary Table S1. A summary
and representative examples are shown in Table 1.

https://github.com/ds763/ProGeM
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Extract the 3 protein-coding genes nearest to 
the lead variant

Extract all protein-coding genes that overlap 
with the range between the le�-most and 

right-most proxy variant (+/-5kb)

Extract all cis-eQTL genes for the lead variant 
and any proxies

Iden�fy all protein-coding genes that reside 
within +/-500kb from the lead variant 

GO? KEGG? MGI? Orph? Reac?

If YES: extract them as candidates
*** Top-down candidate genes ***

If YES: priori�se these candidate 
genes above all others

*** Primary candidate genes ***

Do candidate 
genes co-

occur?

*** Bo�om-up candidate genes ***

Top-down Bo�om-up

Have any of them previously been implicated 
in e.g., a metabolic-related phenotype by any 

of the following databases:

Integra�on

Rank top-down candidate 
genes according to the 

number of corrobora�ng 
databases; i.e., score 

between 1 and 5

*** Ranked top-down *** 
candidate genes

*** Priori�sed bo�om-up *** 
candidate genes

Priori�se bo�om-up 
candidate genes if any of the 
following condi�ons are met: 

The lead variant 
affects protein 

sequence: 
e.g., NS

The candidate 
gene is the nearest 

gene to the lead 
variant

START

END

Figure 1. ProGeM: a framework for identifying and prioritizing candidate causal genes at molecular QTLs. A proxy is defined as those variants with r2 ≥
0.8 with the sentinel variant (1000 Genomes Project, EUR Super Population). GTEx v7 data were used as a source for identifying cis-eQTLs. GO; Gene
Ontology, KEGG, MGI; Mouse Genome Informatics, Orph; Orphanet, Reac; Reactome, NS; non-synonymous.

ProGeM implementation and parameter selection

ProGeM is implemented in the R statistical environment as
a configurable .R script, which is freely available at GitHub
along with a .readme file describing the necessary input and
resultant output files (https://github.com/ds763/ProGeM).

The parameters used by ProGeM can be adjusted based
on the type of molecular QTL data and the research ques-
tion provided by the user. Specifically, these parameters in-
clude (i) the number of nearest genes to each sentinel variant
that ProGeM should consider to be candidate causal genes
(‘number of nearest genes’; default = 3); (ii) the size of the
genomic window around each sentinel variant from which
candidate genes are reported (‘distance’; default = 500 kb);
(iii) the threshold ProGeM should use to select proxies
from a user-supplied file (‘r2 threshold’; default ≥0.8) and

(iv) the threshold ProGeM should use to select cis-eQTL
target genes as candidate causal genes (‘cis-eQTL P-value
threshold’ = default: beta distribution-adjusted empirical
P-values using an FDR threshold of 0.05, see http://www.
gtexportal.org/home/documentationPage for details).

In order to determine how the ProGeM output is affected
by changing various parameters, we applied ProGeM to the
above-mentioned mQTL reference causal gene set (‘Materi-
als and Methods’ section and Supplementary Table S1). We
ran an additional iteration of ProGeM after each parameter
change (while leaving all others in the default setting), and
then determined both sensitivity and specificity. A high sen-
sitivity is achieved if the identified sets of candidate causal
genes include the ‘true positive’ causal genes at the molecu-
lar QTLs, and a high specificity is obtained if the number of
identified genes that do not match the ‘true positive’ causal

https://github.com/ds763/ProGeM
http://www.gtexportal.org/home/documentationPage
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Table 1. Summary of the biological relationships between expert-curated causal genes at 227 mQTLs and the corresponding metabolites

mQTL example

Number of
curated causal

genes Curated causal gene

Functional relationship
(curated causal gene:
metabolite) Count %

Sentinel
variant Metabolite

HGNC
symbol Gene name

Enzyme impacting
metabolite

Directly 66 29.07 rs532545 Uridine CDA Cytidine deaminase
rs4738684 Glycine GLDC Glycine dehydrogenase

Indirectly 46 20.26 rs1801133 Homocysteine MTHFR Methylenetetrahydrofolate
reductase

rs12785878 Vitamin D DHCR7 7-Dehydrocholesterol
reductase

Transporter or carrier for
metabolite

38 16.74 rs1776029 Manganese SLC30A10 Solute carrier family 30,
member 10

rs10455872 Total cholesterol LPA Lipoprotein, Lp(a)
Receptor or binding partner
for metabolite

10 4.41 rs2366858 HDL cholesterol CD36 CD36 molecule
(thrombospondin receptor)

rs12150660 Testosterone SHBG Sex hormone-binding
globulin

Affects transcription of
related metabolic gene

13 5.73 rs6048216
rs603424

Fasting glucose
Thyroid hormone levels
(FT4)

FOXA2
LHX3

Forkhead box A2
LIM homeobox 3

Acts on molecule / pathway
known to impact metabolite

21 9.25 rs2954022
rs1801725

Triglycerides
Calcium

TRIB1
CASR

Tribbles pseudokinase 1
Calcium-sensing receptor

Acts on related metabolite 29 12.78 rs646776 LDL cholesterol SORT1 Sortilin 1
rs3738934 X-13431-non-

anoylcarnitine
ACADL Acyl-CoA dehydrogenase,

long chain
Other 4 1.76 rs5030062 Bradykinin, des-arg(9) KNG1 Kininogen 1

rs38855 Triglycerides CAV1 Caveolin 1
Total 227 100%

A selection of example mQTLs is included for illustrative purposes.

genes is low. Overall, we found that there was very little vari-
ation in either of these two metrics (Supplementary Figure
S1), indicating that the general performance of ProGeM is
robust to parameter changes.

Using the default parameters, we applied ProGeM to
the set of 227 mQTLs for the purposes of performance
benchmarking (see below). This analysis took ∼15 min us-
ing a Windows 7 desktop equipped with an Intel Core i3-
3240 (3.4 GHz) processor and 4 GB RAM. The bottom-up,
top-down and concurrent ProGeM outputs for this set of
mQTLs can be found in Supplementary Tables S4, S5 and
S6, respectively.

Application and benchmarking of ProGeM

Local benchmarking. To illustrate specific characteristics
of the ProGeM output in more detail, we arbitrarily selected
three sentinel variants (rs1801133, rs1005390 and rs766420)
from the full list of 227 mQTLs (Supplementary Table S1).
Table 2 summarizes the ProGeM output for each of these
three sentinel variants.

Example 1: rs1801133 has been previously identified
to associate with plasma homocysteine levels by two
large-scale GWAS at genome-wide significance (34,35).
rs1801133 is a missense variant (Ala222Val) affecting the
MTHFR gene, which encodes an enzyme known to be
involved in folate and homocysteine metabolism (36).
MTHFR was assigned to this mQTL as the high-confidence

causal gene (Table 2). ProGeM identified MTHFR as the
sole concurrent candidate causal gene at this mQTL, high-
lighting the expert-curated gene as the most likely causal
gene.

Example 2: In a GWAS investigating 529 blood metabo-
lites, rs1005390 was found to be significantly associ-
ated with circulating X-03056–N-[3-(2-Oxopyrrolidin-1-
yl)propyl]acetamide levels (17). This variant is intronic to
the high-confidence causal gene AOC1 (Table 2), which en-
codes an enzyme that catalyses the deamination of N1-
acetylspermidine to produce the above-mentioned metabo-
lite (37). As was the case in Example 1, AOC1 was high-
lighted by ProGeM as the sole concurrent causal candidate
gene.

Example 3: In a GWAS investigating the genetic deter-
minants of circulating levels of bilirubin, which is a by-
product of the breakdown of haemoglobin in red blood
cells, the authors reported a significant association with
rs766420 (38). This variant resides within an intron of the
gene TKTL1, though for this example, the high-confidence
causal gene was not the most proximal gene but rather
the gene G6PD (Table 2), which is located more than
200 kb downstream. G6PD encodes glucose-6-phosphate
dehydrogenase, an enzyme that is critical for red blood cell
metabolism, as deficiency is known to result in haemolysis,
anaemia, hyperbilirubinemia and jaundice (39). Although
the ProGeM output for this mQTL highlighted four genes
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Figure 2. Global benchmarking of ProGeM using high-confidence causal
gene assignments at 227 mQTLs. (A) Number (percentage) of high-
confidence candidate causal genes captured by our framework. (B) Sum-
mary of the number of high-confidence causal genes captured either
uniquely or by both the bottom-up and top-down components of Pro-
GeM. (C) Box plot summarizing the number of candidate causal genes
identified for each mQTL by our framework overall (total), as well the
bottom-up (BU) and top-down (TD) components uniquely and concur-
rently (CC). The box plot shows the median and interquartile ranges, with
the whiskers extending to 1.5 times the corresponding interquartile range.
Data points outside of this range are indicated individually as circles.

as concurrent candidates (i.e. DNASE1L1, RPL10, TAZ
and TKTL1), none of them corresponded to the expert-
curated gene, G6PD. This example underscores the impor-
tance of incorporating top-down information within the
ProGeM framework, whilst also cautioning against auto-
matically discounting non-concurrent genes without due
diligence.

Global benchmarking. Following the characterization of
the ProGeM output at individual molecular QTLs, we next
determined key performance indicators. In order to bench-
mark the sensitivity and specificity of ProGeM, we system-
atically compared the ProGeM output (stratified for the
bottom-up and top-down component) for all 227 mQTLs
with the corresponding high-confidence causal gene assign-
ments as described above (‘Materials and Methods’ sec-
tion).

To assess the sensitivity, we determined the proportion of
reference candidate causal genes at the mQTLs (‘true pos-
itives’) that were identified by ProGeM. Overall, ProGeM
was able to identify the curated candidates for 223 of 227
mQTLs, thereby demonstrating high sensitivity (98%; Fig-
ure 2A). Importantly, the vast majority of these genes (n =
187; 82%) were identified by both the bottom-up and top-
down components (Figure 2B), indicating that sensitivity
remains high even when restricting to the narrower set of
concurrent candidates. Indeed, the bottom-up (Supplemen-
tary Figure S2) and top-down (Supplementary Figure S3)

components alone identified 216 (95%) and 194 (85%) true
candidate causal genes, respectively.

Next, we assessed the specificity of ProGeM across all
227 mQTLs. In total, ProGeM highlighted 1629 candidate
causal genes at these loci, with a median of 6 [min. = 2, max.
= 31] candidates per locus (Figure 2C). The overall speci-
ficity of ProGeM for this dataset was 0.502 (‘Materials and
Methods’ section). When we compared the bottom-up and
top-down components of ProGeM, we found that the top-
down component performed slightly better with a speci-
ficity of 0.459 compared to 0.384 for the bottom-up com-
ponent. Nevertheless, the two components had very similar
medians and ranges (Figure 2C and Supplementary Figure
S4). Notably, when only the concurrent candidate causal
genes were taken into account, specificity was much im-
proved with an overall specificity of 0.846, corresponding
to a median of just 2 [min. = 0, max. = 9] candidates at
each locus (Figure 2C).

Comparative analysis of functional annotation data sources

One of the main limitations of current bioinformatic tools
for prioritizing candidate causal genes at molecular QTLs,
including ProGeM, pertains to the difficulties associated
with distinguishing between true and false positive candi-
dates. Our benchmarking analyses showed that focusing
solely on the concurrent gene set returned by ProGeM ap-
pears to be a potential means to address this issue. To for-
mally test this, we performed an enrichment analysis using
all non-concurrent candidates highlighted by ProGeM for
the same mQTL data (n = 227 loci) as a background set.
A Fisher’s exact test revealed a highly significant odds ra-
tio (OR) of 29 [95% confidence interval: 19–43] ( P = 8.5 ×
10−93), indicating that the odds of identifying the true causal
genes from candidates highlighted by ProGeM are greatly
improved when picking from the pool of concurrent candi-
date genes. Indeed, based on the observed frequencies, 46%
of the concurrent candidates corresponded to a reference
causal gene, relative to only 3% of non-concurrent candi-
date genes (Supplementary Table S7).

Next, we assessed the importance of the various func-
tional data sources leveraged by ProGeM for pinpointing
the true positive candidate causal genes. Of all the bottom-
up annotation criteria tested, the set of genes nearest to a
sentinel variant was enriched with true positive candidate
causal genes at the highest significance level (OR = 45 [31–
67], P = 1.0 × 10−107) (Figure 3 and Supplementary Ta-
ble S7). This was followed by the concurrent gene set (see
above), the LD overlapping gene set (OR = 15 [11–22], P
= 9.5 × 10−67), and then the three nearest genes to a sen-
tinel variant (OR = 15 [9–23], P = 8.2 × 10−55) (Figure 3
and Supplementary Table S7). Given that three of the four
most significant criteria relate to the most proximal genes
to the sentinel variant at the mQTLs, it can be concluded
that proximity-based criteria are effective indicators of true
positive causal genes at mQTLs.

When we compared the concurrent and nearest gene sets
more closely, the concurrent gene set achieved higher sen-
sitivity, having identified 187 (82%) relative to 157 (69%)
true positive causal genes out of 227. However, the con-
current gene set exhibited lower specificity (0.846) than the



PAGE 9 OF 13 Nucleic Acids Research, 2019, Vol. 47, No. 1 e3

Figure 3. Comparison of top-down and bottom-up functional criteria
for distinguishing true from false positive mQTL causal gene candidates.
Odds ratios and 95% confidence intervals indicating the likelihood that
candidate causal genes with various bottom-up or top-down characteris-
tics correspond to the high-confidence causal gene assignments (i.e. true
causal genes). The background gene set for enrichment analysis of each
characteristic was comprised of all remaining candidates identified by Pro-
GeM. Fisher’s exact test was used throughout, and Bonferroni-corrected
(26 tests) P-values are indicated. The number of true positive (TP) and
false positive (FP) causal genes identified by each characteristic is also in-
dicated. The boxes and confidence intervals are colour-coded according to
whether they correspond to bottom-up (red), top-down (blue) or concur-
rent (purple) data sources.

nearest gene set, which inherently achieved maximal speci-
ficity. Given this, we constructed a combined gene set by
imposing maximal specificity onto our concurrent gene set
using nearest gene information as follows: (i) for mQTLs
assigned to more than one concurrent candidate gene, we
restricted this assignment to the concurrent gene nearest
to the sentinel variant, and (ii) we assigned mQTLs with-
out a concurrent candidate to the gene nearest to the sen-
tinel variant. The resultant set of ‘nearest-concurrent’ genes
identified 177 of 227 (78%) reference causal genes, which
constitutes a 4% drop in sensitivity relative to our original
set of concurrent genes (187; 82%) but a 9% increase relative
to the nearest gene set (157; 69%). Further, an enrichment
analysis of the nearest-concurrent gene set revealed both a
higher odds ratio and P-value (OR = 84 [55–131], P = 1.6
× 10−137) relative to both the original gene sets.

The annotation criterion with by far the highest odds ra-
tio (OR = 169 [27–6667], P = 1.4 × 10−20) was related
to genes containing a sentinel variant of moderate impact
(Figure 3 and Supplementary Table S7). Indeed, of 25 such
candidate causal genes highlighted by ProGeM, 24 (96%)
corresponded to a reference causal candidate (Supplemen-
tary Table S7). However, although genes containing a proxy
(r2 > 0.8) variant of moderate impact were also enriched
with true positive causal genes, this gene set was associated
with a much lower odds ratio (OR = 6 [4–10], P = 5.6 ×
10−13) (Figure 3 and Supplementary Table S7).

Because genes containing a sentinel variant of moder-
ate impact will also inherently be the nearest gene to that
sentinel, we sought to determine whether the highly sig-
nificant enrichment observed for the nearest gene set was
driven by the genes that contain a sentinel variant of mod-
erate impact. Therefore, we repeated the enrichment analy-

sis of the nearest gene set after removing all mQTLs tagged
by a moderate impact sentinel variant, which resulted in a
dataset that comprised 202 out of 227 mQTLs. There were
no mQTLs tagged by a high impact sentinel in this dataset.
We found that this filtered nearest gene set was still signif-
icantly enriched with true positive causal genes (OR = 34
[23–51], P = 1.3 × 10−84) (Supplementary Table S8), indi-
cating that the enrichment observed for the complete near-
est gene set (OR = 45 [31–67], P = 1.0 × 10−107) was not
wholly driven by the genes containing moderate impact sen-
tinel variants. Accordingly, we obtained comparable results
when we also removed mQTLs tagged by a low impact sen-
tinel variant as well as after removing mQTLs tagged by
proxy variants of high, moderate and low impact (Supple-
mentary Table S8).

The cis-eQTL gene sets were also significantly enriched
with true positive causal genes, although the P-values and
associated odds ratios were modest (Figure 3 and Supple-
mentary Table S7). When we investigated in more detail the
24 mQTLs for which the true positive causal gene contained
a moderate impact sentinel variant, we found that just nine
of these genes were also cis-eQTL genes for either the sen-
tinel or a proxy variant. This indicates that these two meth-
ods of identifying true positive causal genes are predom-
inantly exclusive. We also performed enrichment analyses
for all GTEx tissues (n = 48) assayed individually; however,
we did not identify any specific tissues of particular rele-
vance (Supplementary Figure S5 and Table S9). The same
applied to individual top-down annotation criteria tested
(Figure 3 and Supplementary Table S7).

Comparative analysis of ProGeM and SNiPA

We also compared the output of ProGeM to that of an al-
ternative tool, the Single Nucleotide Polymorphisms Anno-
tator (SNiPA). SNiPA is a phenotype-agnostic candidate
causal gene prioritization tool that utilizes a wide range
of bottom-up resources, including positional, gene regula-
tory and cis-eQTL data (19). For this comparison, we used
SNiPA to identify candidate causal genes for the reference
set of 227 mQTLs (‘Materials and Methods’ section). Of
the 227 corresponding sentinel variants, nine were not rec-
ognized by SNiPA, leaving 218 mQTLs for direct compari-
son.

Overall, SNiPA identified 201 ‘true positive’ causal genes
out of 218, thereby achieving a sensitivity of 92%. At the
same time, SNiPA highlighted 1315 ‘false positive’ causal
genes, i.e. for every candidate causal gene highlighted by
SNiPA there was approximately a 1 in 7 chance that it corre-
sponded to a true positive gene. As a direct comparison, the
bottom-up component of ProGeM achieved both a higher
sensitivity and specificity than SNiPA, with a total of 209
true positive causal genes out of 218 (i.e. 96%) accompanied
by 827 false positives (i.e. a 1 in 5 chance that the highlighted
gene corresponded to a true positive gene).

Further, after combining the bottom-up and top-down
components of ProGeM, the number of true positive causal
genes was slightly reduced to 180 (83%), whilst the num-
ber of false positives was substantially reduced to 207, thus
representing a 1 in 2 chance that the candidate gene corre-
sponded to a true positive. This comparison provides ad-
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ditional evidence that by combining genetic variant-centric
with trait-centric annotation data, the sensitivity of identi-
fying candidate causal genes can be markedly increased.

Cross-validation and partial replication in a large-scale
pQTL dataset

Next, we assessed the extent to which these functional an-
notation criteria might serve as indicators of true positive
causal genes in another molecular QTL dataset. To this
end, we utilized a cis-pQTL dataset comprising 562 sentinel
variants (14), for which we hypothesized that the true pos-
itive causal gene ought to be the gene that encodes the cis-
affected protein (‘Materials and Methods’ section; Supple-
mentary Table S2). Importantly, this dataset only enabled
us to assess the bottom-up annotation criteria, as the top-
down criteria are not directly comparable across the mQTL
and pQTL datasets. Therefore, we used only the bottom-up
candidate genes from the corresponding ProGeM output
(obtained using default settings) as our background gene
set. Likewise, for the purposes of this comparison, we also
re-ran the enrichment analyses of the bottom-up criteria for
the mQTL dataset, where we used only the bottom-up can-
didates highlighted by ProGeM as a background gene set.

The findings for both the mQTL (Supplementary Ta-
ble S10) and cis-pQTL (Supplementary Table S12) datasets
(Figure 4) were strikingly similar. First, not only did the
set of nearest genes achieve the highest levels of signifi-
cance in both cases (cis-pQTL: OR = 54 [41–71], P = 4.1 ×
10−251 | mQTL: OR = 30 [20–45], P = 2.4 × 10−82), but the
other two proximity-based criteria (LD overlapping, near-
est three genes) also appeared in the top four of their re-
spective lists (ranked by P-value) (Figure 4). This is con-
sistent with previous observations made for this cis-pQTL
dataset, whereby the sentinel variants were found to clus-
ter at the TSS of genes encoding the cis-proteins (14). Sec-
ond, the gene sets containing a sentinel variant of moderate
impact achieved the highest odds ratios for both datasets
(cis-pQTL: OR = 99 [37–374], P = 4.6 × 10−58 | mQTL:
OR = 107 [17–4327], P = 1.2 × 10−16) (Figure 4). Third,
the significant enrichment observed within the nearest gene
sets from either dataset was only partially attenuated after
removing QTLs tagged by these moderate impact sentinel
variants (Supplementary Tables S8 and S12). These data in-
dicate that genomic proximity to the sentinel variant repre-
sents a strong indicator of the true positive causal genes for
both cis-pQTLs and mQTLs––even if the variant in ques-
tion does not reside in the coding sequence.

Enrichment analyses of the cis-eQTL target gene sets
yielded similar odds ratios across the two datasets, although
a higher significance was observed for the cis-pQTL dataset
(Supplementary Tables S10 and S11). Further, when we per-
formed enrichment analyses of each GTEx tissue individ-
ually, both the odds ratios and P-values observed for the
cis-pQTL dataset were generally more significant than for
the mQTL dataset (Supplementary Figures S6,S7 and Sup-
plementary Tables S9,S13). However, this difference in P-
values may be due to the fact that the cis-pQTL dataset
comprised more than twice the number of QTLs relative to
the mQTL dataset (i.e. 562 versus 227 QTLs), thereby lever-
aging greater statistical power.

Figure 4. Comparison of bottom-up functional criteria for distinguishing
true from false positive (A) cis-pQTL and (B) mQTL causal gene candi-
dates. Odds ratios and 95% confidence intervals indicating the likelihood
that candidate causal genes with various bottom-up characteristics cor-
respond to the high-confidence causal genes (i.e. true causal genes). The
background gene set for enrichment analysis of each characteristic was
comprised of all remaining bottom-up candidates identified by ProGeM
for the relevant ‘omic modality. Fisher’s exact test was used throughout,
and Bonferroni-corrected (14 tests) P-values are indicated. The number of
true positive (TP) and false positive (FP) causal genes identified by each
characteristic are also indicated.

Taken together, these results suggest that many of the
same bottom-up criteria can be used to effectively prioritize
the most likely true positive causal genes for both mQTLs
and pQTLs, and that ProGeM may be applicable to other
molecular QTL datasets beyond those tested here.

DISCUSSION

In the present study, we introduced an analysis framework
and highly configurable R script for the prioritization of
candidate causal genes at molecular QTLs. In benchmark-
ing analyses using a set of 227 mQTLs for which we mapped
high-confidence causal genes, we demonstrated that Pro-
GeM is highly sensitive in identifying these genes. In en-
richment analyses using this mQTL dataset, we found that
proximity-based indicators are an effective means of distin-
guishing between true and false positive causal genes.

Unique features of ProGeM

First, currently available tools are typically either trait ag-
nostic or aimed more generally at complex disease GWAS
data, whereas ProGeM is intended for a specific trait class,
i.e. molecular QTLs. This confers a major advantage, as
knowledge of the trait inherently enables the incorporation
of trait-specific annotation criteria. In the present study, we
demonstrated this for ‘metabolism’ as a broad trait class.
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We note that there are other web tools available that utilize
top-down information; however, these tools are distinct in
that they rely on either user-input (i.e. Phenolyzer (40)) or
literature/text mining (i.e. PolySearch (41), MimMiner (42),
Bitola (43), aGeneApart (44), GeneProspector (45)) to gen-
erate this information.

Second, ProGeM integrates both bottom-up and top-
down functional annotation data sources to hone in specif-
ically on ‘concurrent’ candidate causal genes. In our bench-
marking tests, we demonstrated that the concurrent can-
didate causal genes for a set of 227 mQTLs were strongly
enriched with the high-confidence causal genes. These data
suggest that there is a benefit in prioritizing concurrent over
non-concurrent candidates.

Third, ProGeM has been benchmarked against a large
reference set of mQTLs with high-confidence causal gene
assignments, which allowed us to empirically verify the va-
lidity and performance of our framework. By contrast, the
published tools that have been systematically benchmarked
(e.g. ToppGene Suite) have used very small datasets of
known causal genes, which are most likely not generalizable
(46,47). We have made our mQTL reference dataset avail-
able to the research community in Supplementary Table S1,
providing a substrate for future benchmarking analyses and
methods development.

Global benchmarking analyses

Our benchmarking analyses highlighted increased sensitiv-
ity to be one of the strengths of ProGeM, having missed
only four out of 227 reference causal genes at the tested
mQTLs (Figure 2). When we investigated these four elu-
sive genes in more detail, we found that three of them were
missed because they are located >500 kb from their respec-
tive sentinel variants (rs7542172; AKR1A1 | rs140348140;
GLDC | rs1550532; TRPM8), whilst the fourth was missed
because it was annotated as a pseudogene (rs7130284;
FOLH1B). This potentially explains why ProGeM was un-
able to capture the curated causal gene for rs10403668. Nev-
ertheless, we were able to achieve maximal sensitivity by
modifying two user-defined settings in ProGeM as follows:
(i) omit the default filter on protein-coding genes only and
(ii) extend the genomic locus from the default ±500 kb to
±1 Mb.

It is important to note that the high sensitivity achieved
by ProGeM was inevitably accompanied by high levels
of ‘background noise’ (i.e. low specificity; Figure 2). This
is not unusual within the context of candidate causal
gene prioritization tools, whereby the general focus tends
to be on ‘prioritizing’ multiple candidates at a locus
rather than force-assigning each QTL to a single causal
candidate––notwithstanding that at some molecular QTLs
there may be more than one causal gene. Thus, in order
to minimize the background noise associated with candi-
date causal gene prioritization tools, there is a general need
to be able to apply additional prioritization strategies post-
hoc that are both reliable and empirically validated. For ex-
ample, our comprehensive benchmarking analyses demon-
strated that by specifically prioritizing the concurrent can-
didate causal genes highlighted by ProGeM, we were able
to make considerable specificity gains at the cost of only

a minimal reduction in sensitivity. This was recapitulated
when we compared the performance of ProGeM with that
of SNiPA, which relies solely on bottom-up information.

Our analyses also showed that genomic proximity to
the sentinel variants tagging mQTLs was a highly effective
means of prioritizing candidates. Indeed, out of multiple
candidate gene sets defined by a series of bottom-up and
top-down criteria, the set of genes nearest to each sentinel
variant achieved the highest level of significance in enrich-
ment testing, with the concurrent gene set ranking second
(Figure 3). Furthermore, the subclass of nearest genes that
contained a moderate impact sentinel variant achieved the
highest odds ratio of all criteria tested, whereby out of 25
such genes in total, 24 corresponded to a true positive causal
gene. Although this relates to a relatively small number of
genes from the full dataset of 227 causal genes, it suggests
that genes containing moderate impact sentinel variants are
reliable indicators of true causal genes at mQTLs.

The general consensus in recent years has been that the
underlying genetic risk factors for complex human diseases
and traits are primarily regulatory in nature, whilst the near-
est gene to a sentinel variant often does not correspond to
the true causal gene (48). Notably, both the mQTL and cis-
pQTL datasets highlighted cis-eQTL target genes (as re-
ported in GTEx v7 data) as relatively poor indicators of
‘true positive’ causal genes. Further research is needed to
assess whether genomic proximity is a good indicator of a
true positive causal gene for other molecular QTLs as well
as complex disease traits, and will depend on the availability
of high-confidence reference datasets.

Current limitations of ProGeM

A potential limitation of ProGeM relates to the preparation
of the reference causal gene assignments at the 227 mQTL,
which could have been subject to bias, such as the prioriti-
zation of the nearest genes for the assignments. As outlined
in detail in the ‘Materials and Methods’ section, all genes
within 1 Mb of the sentinel variants were included for the
annotation and in-depth literature review. In support, our
findings obtained using the bottom-up component of Pro-
GeM were consistent across both the mQTL and cis-pQTL
datasets. The latter reference set was derived using distinct
methods (‘Materials and Methods’ section). This suggests
that our conclusion, that genomic proximity to the sentinel
variant is a reliable indicator of a true positive candidate
causal gene at molecular QTLs, has validity.

Furthermore, although the overall approach employed
by ProGeM and the methods used to curate the high-
confidence mQTL dataset were different (‘Materials and
Methods’ section), it is possible that some of the databases
utilized by ProGeM may have been informed by the bio-
chemical literature used for the expert curation. There-
fore, we acknowledge that ProGeM and the curated high-
confidence mQTL dataset are not entirely independent of
each other, and as a result, the sensitivity of ProGeM ob-
served within the context of mQTL may be inflated. We
also note that the KEGG database was utilized both by
ProGeM and as a guide for the expert literature review, al-
though KEGG was just one of five top-down databases uti-
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lized by ProGeM. Our data showed that this did not result
in a biased annotation.

Possible extensions of ProGeM

Looking ahead, we anticipate the application of ProGeM
to molecular QTL datasets from additional ‘omic modali-
ties in the future. This may be directly applicable for lipid
QTLs due to the similarities of standardized assay plat-
forms but less so for trans-pQTLs, for example. Indeed,
the prioritization of candidate causal genes at trans-pQTLs
would call for a different top-down strategy to the one
adopted here. Accordingly, we have previously applied a
‘guilt-by-association’ (GbA) strategy towards the annota-
tion of trans-pQTLs (14). Thus, rather than asking whether
genes local to a sentinel variant have previously been impli-
cated in a metabolic-related phenotype, we asked whether
any local genes exhibit related functioning to the gene en-
coding a given trans-affected protein, i.e. annotation within
the same biological pathway, or evidence of a protein–
protein interaction (PPI). Notably, multiple currently avail-
able tools intended for complex human disease have also
adopted GbA strategies. These approaches work under the
assumption that unknown or novel causal genes can be
identified on the basis that they must exhibit related func-
tionality to known causal genes (47,49). There is, therefore,
ample precedence for GbA within the context of candidate
causal gene prioritization.

Conclusions

In summary, ProGeM is a new gene prioritization tool
developed specifically for the identification and prioriti-
zation of candidate causal genes at molecular QTLs. We
have demonstrated its utility for mQTLs, with one of its
major strengths being high sensitivity. We have also high-
lighted multiple criteria that can be used to prioritize cer-
tain candidates over others at a given mQTL. Within the
ProGeM framework, we provided evidence that those can-
didate causal genes with both bottom-up and top-down
supporting evidence (i.e. concurrent candidates) represent
likely true causal genes. We also showed that proximity to
the sentinel variant is a reliable indicator of a true positive
causal gene, particularly those genes containing a sentinel
variant of moderate impact (i.e. missense variants). Based
on our findings, we caution against an overreliance on cis-
eQTL target genes, as it appears that long-range regula-
tory effects at molecular QTLs appear may be the exception
rather than the rule.
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