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The human sperm is one of the smallest cells in the body, but also one of the most important, as it serves as the entire paternal
genetic contribution to a child. Investigating RNA and mutations in sperm is especially relevant for diseases such as autism
spectrum disorders (ASD), which have been correlated with advanced paternal age. Historically, studies have focused on the
assessment of bulk sperm, wherein millions of individual sperm are present and only high-frequency variants can be detected.
Using 10x Chromium single-cell sequencing technology, we assessed the transcriptome from >65,000 single spermatozoa across
six sperm donors (scSperm-RNA-seq), including two who fathered multiple children with ASD and four fathers of neurotypical
children. Using RNA-seq methods for differential expression and variant analysis, we found clusters of sperm mutations in each
donor that are indicative of the sperm being produced by different stem cell pools. Finally, we have shown that genetic variations

can be found in single sperm.
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INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) allows for the discovery
and investigation of many cellular subtypes.! To date, this
technique has not been employed on human germline tissues
such as ova or mature sperm (spermatozoa). Spermatozoa are a
challenging cell type for the investigation of RNA at the single-cell
level, as they differ from typical somatic cells in several aspects.
First, they are transcriptionally restricted cells, retaining only a
small quantity of RNA per cell (~50fg) which exists in a
fragmented or partially degraded state.>™ Second, transcription
ceases during the spermatid stage of spermiogenesis and
sequential displacement of histones by transition proteins and
eventually protamines (PRM1 and PRM2) takes place, along with
nuclear remodeling.® Third, spermatozoa exhibit a compact
nucleus, minimal cytoplasm, a head-housed acrosome, and a
mitochondria-heavy midpiece, plus a long tail of ~50 um. This
particular cell morphology, paired with the ability to move rapidly,
can also prove challenging for capturing of single sperm,
especially with microfluidic devices. These features taken as a
whole make sequencing of single-spermatozoa RNA more
challenging, but also create an ideal paradigm for investigating
transcriptome composition of sperm at a mature stage where new
RNAs are not being produced and the ones retained may be of
functional importance to the oocyte.

The functions of the majority of RNAs in sperm remain
unknown.® However, there has been evidence that spermatozoa
may have a role in the regulation of early embryonic development
by delivering functional RNAs to the oocyte during fertilization.”™®
During the final stage of spermatogenesis (spermiogenesis),
chromatin remodeling takes place, leading the nucleosome from
a histone-bound to a protamine-bound configuration, involving
histone-variants replacement of histones, hyperacetylation,

transient DNA breaks and repair, transition proteins (TNPs)
replacing histones and protamines PRM1 and PRM2 replacing
TNPs. Prm1 and Prm2 are, by far, the most abundant transcripts
we (and others) found in expressed mature sperm. Due to their
abundance relative to other sperm RNAs, they have been studied
extensively in bulk assays. Departures from typical ratios of PRM1/
PRM2 (protein), Prm1/Prm2 (mRNA), protamine/histones, and
protamine protein/mRNA in sperm have been shown to correlate
with altered reproduction-related phenotypes.'®'" Furthermore,
retained sperm histones associate with telomeric sequences
and are the first sperm structures to respond to oocyte signals,'”
and histone marks are heavily implicated in fertilization and
development.'?

Using the 10x Genomics Chromium platform, we performed
single-cell RNA sequencing of six donor sperm samples obtained
from a sperm bank with approval for research use (see “Methods”).
This platform has been extensively validated across a wide range
of sample types, and has been shown to be extremely consistent
when the same sample is analyzed multiple times.'*'> As a test
case for our single-cell sperm sequencing, we decided to
sequence sperm from donors who have had children with autism
and those who have had only had children without the disorder.
ASD is a complex neurodevelopmental condition with an often
undetermined complex etiology'® and is classified as a paternal
age effect (PAE) disorder, since increased paternal age is
associated with higher ASD risk."” Typically, two to three new
mutations arise in sperm germ cells with each year of the father’s
age.'®'? Although hundreds of mutations increasing the risk of
autism have been identified, they only account for <20% of known
causes, with many cases having an unknown component, limiting
diagnostic breadth.® Here, we used a unique approach in
performing single-nucleotide variant (SNV) calling on RNA-seq
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data at single-cell resolution to uncover variants in the sperm of
donors. Our data represent the first proof of principle for single-
cell RNA sequencing and mutation detection at single-cell
resolution in spermatozoa, which set the stage for identifying
patterns of paternal transmission risk of the ASD phenotype.
Finally, by enabling both expression mapping and allele-specific
variant calling, it also shows the potential for an RNA-seq-based
biomarker test in sperm and for potential use as a diagnostic or
investigational tool of other neurodevelopmental and PAE-
transmitted phenotypes.

RESULTS
Sequencing results and filtering parameters

Among the six sperm samples, the number of barcodes with at
least one gene varied between 72,507 in sample Control 3 and
97,064 in sample ASD2, while the number of genes detected
varied between 18,238 in Control 4 and 21,701 in sample ASD1
(Fig. 1a). For the downstream analysis, we excluded cells under the
25 UMI per cell threshold, cells with fewer than 10 detected genes,
and genes detected in <20 cells and cells with mitochondrial
genes exceeding 40% of the total, based on the typical mature
sperm mitochondrial content.” We detected 4872 common genes
among the four Control samples and 6260 common genes
between the two ASD samples (Fig. 1a). Across all samples in the
filtered data set passing the thresholds, 4266 genes are common
(Fig. 1a). The distribution of genes, the number of unique
molecular identifiers (nUMI), and percent mitochondria reads per
cell in the filtered set are shown in Fig. 1b. Multiple sample
alignment and normalization for the integration of the data sets
were performed with Seurat R package v.2.1.0 and 2.2.0,*" leading
to correlated expression values per cell across groups (Fig. 1¢) and
comparable post-alignment distributions for features common
among both groups (Fig. 1d, e). After alignment, the number of
cells in each sample were reduced (Fig. 1f), and also the number of
genes to 1833, 4239, and 632 in the ASD unique, shared, and
control feature groups.

To determine whether our results were a consequence of using
a single-cell assay, we compared them to gene expression data
from bulk sperm samples. We took the set of genes that were
expressed in at least 500 cells in our samples (2259 genes) and
compared them to genes that were reported to be expressed in
published RNA-seq data of three mature sperm samples.* There
was a significant overlap of 514 genes that were found to be
expressed in both data sets, but also genes that are expressed
only in one set (Fig. 1g; Supplementary Data 2).

Transcript abundances and DEG analysis

The most abundant transcripts present in the largest number of
cells in both control and ASD samples include: PRM1, PRM2,
TSSK6, DNAJC4, NUPR2, CRISP2, and SMCP (Table 1; Supplemen-
tary Data 3). Protamines PRM1 and PRM2 replace ~85% of the
histones in human sperm during maturation, at the spermatid
stage®? and, as expected, are the highest-expressed transcripts in
our spermatozoa samples, appearing both in the largest number
of cells and at the top of the list of the gene-specific average
expression values in our samples. These abundant transcripts are
highly specific to sperm, and have lower or no expression in
Human Universal Reference (UHUR) controls.**

Overall, after normalization, the average number of molecules
expressed per cell between the two groups was highly correlated
(R*=0.86) (Fig. 1c), indicating overall high correlation between
their transcriptomes. Differential expression analysis comparing
the cells in the ASD and the Control samples in the aligned set
revealed 2114 differentially expressed genes (DEGs, g-value < 0.05,
Bonferroni-adjusted p-value for multiple hypothesis testing), of
which 1247 were increased and 867 were decreased in the ASD
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samples. When the minimum threshold for marker expression was
set such that a transcript was present in at least 1% of cells in
either group, the list was reduced to 688 differentially expressed
genes between the ASD and the Control groups, with 345 genes
showing an increase and 343 genes showing a decrease in the
ASD set. (Fig. 2a; Supplementary Data 4).

To perform a broader, exploratory analysis of the two groups of
donors, we also calculated the differentially expressed genes for
the entire Seurat gene set (Wilcoxon rank-sum test, see
“Methods”), finding 1000 DEGs to have a significant g-value <
0.05 (Supplementary Data 5) and performed Gene Set Enrichment
Analysis,>* uncovering enriched gene sets and pathways in
Control vs. ASD samples, with representative results shown in
Fig. 2b-d. Notably, we uncovered enrichments in epigenetic
regulation, such as chromatin remodeling, H3K4me3 and
H3K27me3, and histone deacetylation activity, as well as
neurodevelopmental and sperm-related processes, such as sperm
flagellum, spermatogenesis, male gamete generation, and mito-
chondria functions. The extended GSEA test results are shown in
Supplementary Data 6.

SNV analysis

To explore the mutational landscapes of the individual sperm
cells, we developed a new method for calling variants in scSperm-
RNA-seq data (see “Methods”). First, we examined the distribution
of variations across the cells. For each sample, there were between
194 and 302 SNPs present, with non-synonymous SNPs found in
genes including CARHSP1, CRISP2, DNAJC4, NUPR2, PRM1, PRM2,
and SMCP. To increase the stringency and to remove false
positives, we further filtered the data to only include variants that
were found in at least 100 sperm cells. At this level, we only found
non-synonymous SNV in the PRM1 and PRM2 genes (Fig. 3a, b).
Notably, we were able to discern distinct mutations in the sperm
from individual cells. To our knowledge, this is the first detection
of such variants from single-cell sperm RNA.

Given recent reports of using 10x Genomics single-cell RNA-seq
data for calling variants within genes and nearby regions,® we
next examined the overall distribution of variants in the ASD and
control samples. For this purpose, we carried out variant calling at
bulk level (see “Methods”), obtaining a list of variants present in
each genomic region. We first compared the total number of
called variants per region between the ASD and control groups,
which seemed not only to be higher overall but also in exonic,
intronic, and intergenic regions (Fig. 3c). Despite the small sample
size for this type of analysis, the p-value for each comparison was
close to significance (p-value =0.053). Furthermore, when com-
paring the number of rare variants, defined as those absent or
present with an allele frequency <0.001 in the Genome Aggrega-
tion Database (gnomAD),26 this trend still holds true across both
autosomes and sex chromosomes (Fig. 3d).

DISCUSSION

These results demonstrate that scSperm-RNA-seq is a promising
method to profile gene expression and mutational dynamics of
the transcriptomes of individual sperm cells. As expected, the
highly expressed genes in both the ASD and Control samples
displayed an overlap with genes in pathways for sperm
maturation, DNA binding, early embryonic development, cell
growth, and proliferation. Although the DEG and pathway
differences observed between the cohorts can provide potential
leads or serve as biomarkers for sperm health or function, they will
need to be validated in a larger donor cohort size for a proper
interpretation.

Nonetheless, the differences between the small cohorts reveal
distinct expression landscapes and pathways, such as enrichment
of genes from IPA canonical pathway analysis for mTOR signaling
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Fig. 1 Single-sperm RNA-seq profiles and metrics. a Metrics for (i) barcodes containing one or more genes and (ii) for the filtered set used in
downstream analysis that includes all cells with 10 or more genes, all genes present in at least 20 cells, and all cells with at least 25 unique
molecular identifiers (UMI). b The distribution of genes and unique molecular identifiers and percent mitochondrial genes/cell in the groups in
the filtered set used for analysis. ¢ Cell scatter plot comparing the range in scaled average expression in each cohort and the correlation
statistic for the whole set. Each feature represents a gene expression value averaged across all single cells in the group. d, e Violin plots of the
cohort-specific features in the data sets post-alignment of the data sets. f The number of common and unique genes in each group in the
post-alignment set. g A Venn diagram of the number of genes expressed in our single-cell sperm sequencing as compared with bulk sperm

sequencing.
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Control 2 22 children w/o Autism 75507 20926 33085 1158665 35 7575 33 35
Control 3 >2 children w/o Autism 72887 19353 35487 1257081 35 6804 33 36 4872 4266
Control 4 22 children w/o Autism 73036 18238 33430 1225652 37 7401 33 36
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Fig. 2 Distinctive profiles between groups. a Heatmap of representative DEGs (aligned set) from the top and bottom of the list ranked by
average log fold change, between the ASD and the Control samples. Each rectangle represents the scaled average expression of the single
cells for a specific gene. b-d GSEA enrichment plots showing: (b) Chromatin remodeling (c) Spermatogenesis (d) Flagellum. (e) Canonical
pathways enrichment analysis in Qiagen IPA, the red bar represents the ratio of the # of DEGs in the pathway to total genes in the pathway.

and elF2 regulation in the ASD samples (Fig. 2e). The mTOR
signaling pathway has recently been highlighted as a potential
target of autism,”’ while the elF2 pathway is involved in the
inhibition of CREB, a transcription factor required for long-lasting
synaptic plasticity and long-term memory, and has recently been
investigated in connection with several neurodegenerative
disorders.?®

Importantly, given sufficient depth from sequencing, which is
now routine in terms of NGS platforms, we have shown that an
investigation of sequence variants in RNA from sperm is possible.
We were able to identify these features by sequencing sperm at
single-cell level and by mapping individual gene expression across
thousands of single cells and clusters of cells. Notably, rare
mutational differences of single sperm would be not discovered
from bulk RNA sequencing of the sperm. For example, performing
differential expression statistical testing at the single-cell level,
across thousands of cells simultaneously allows for the identifica-
tion of differentially expressed features that may have a relatively
small fold change across groups taken as a whole, but that are
strong drivers in a subpopulation of cells.

These results serve as a proof of principle that single-cell
sequencing can be done on likely any cell in the human body,
even sperm. In order to determine whether there is truly a genetic
marker in sperm for ASD, a much larger set of samples will need to
be assessed in order to provide statistical power. In addition, since
there are strong indicators that the markers may be found in SNVs
rather than in gene expression differences, there might be value in
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doing single-cell sperm DNA sequencing in addition to single-cell
sperm RNA sequencing.

METHODS
Samples

Sperm samples were purchased from a private sperm bank in the USA. A
summary of the donor’s ethnicity and year of birth are listed in
Supplementary Data 1. Since the donor sperm samples at the sperm
bank are purchased by women to use for insemination, many of the
donors have a large number of children. Interestingly, there are cases
where a donor will have one of his many children having ASD with the rest
being unaffected, indicating that there are other causes of autism besides
paternal genetics. For this reason, we required that our ASD donors have
evidence of at least two children with ASD. The control donors needed to
have multiple children with no evidence of ASD. The samples were of Ul
quality, purified by the sperm bank with the standard protocol for
enrichment of mature, motile spermatozoa, and were shipped on liquid
nitrogen from the sperm bank to the lab where they were thawed for
analysis. All of the donors signed an informed consent with the sperm
bank agreeing to the inclusion of their samples in a biobank and that those
samples could be used for research without the need for further consent.
This research was approved by the New England IRB. We have complied
with all relevant ethical regulations in this research for samples from a
biobank.

Cell preparation

Frozen sperm cell vials were obtained from the sperm bank. These samples
were prepared according to the standard procedures of the sperm bank to
remove somatic cells and to improve sperm quality. These techniques
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Fig. 3 SNVs from single-sperm cells. Using the Integrative Genome Viewer (IGV), data are shown from alignments to the reference genome
from single cells. a PRM1 variants are shown as coverage tracks (rows) with the reference genome on top and the donor variants on the
bottom row. b Same as a, but shown for the same donor in PRM2. ¢ The number of SNVs found in exonic, intronic, intergenic, and all
three regions for the bulk RNA-seq analysis, normalized to the total number of reads mapped to the transcriptome by the size of the read.
Values are shown in a log10 scale. d The number of SNVs found in the bulk RNA-seq analysis with an allele frequency < 0.001 in gnomAD per
chromosome, normalized to the total number of reads mapped to the transcriptome by the size of the read and to the chromosome length.

Values are shown in a log10 scale.

include swim-up and density gradient centrifugation.?>° Sperm cells were
provided with expected post-thaw cell count. Frozen cells were rapidly
thawed in a 37 °C water bath. Thawed cells were centrifuged at 300 rcf for
10 min and washed twice with 1x PBS containing 0.04% bovine serum
albumin, then resuspended in PBS at room temperature.

Single-cell library construction and sequencing

Cell suspension post-washing was loaded on the 10x Chromium System
(10x Genomics, Pleasanton, CA) for single-cell isolation into Gel Bead
Emulsions (GEMs) as per the manufacturer’s instruction in Chromium
Single Cell 3’ Reagent Kits v2 User Guide, Rev A'* using Chromium Single
Cell 3/ Solution (Chromium Single Cell 3’ Chip Kit v2 [PN-120236], Gel Bead
kit v2 [PN-120235]. The input cells per channel in the chip were targeted
around ~1 million cells, based on provided initial post-thaw cell count from
the sperm bank. However, the loss of cells during washing would reduce
the actual cell counts to input significantly less than targeted cells.

Sperm samples that successfully generated proper GEMS were further
processed for GEM-RT incubation, cDNA amplification and subsequent
single-cell library construction using Chromium™ Single Cell 3/ library Kit v2
[PN-120234] following the manufacturer’s protocol. Barcoded final libraries
were quantified by Qubit® 2.0 Fluorometer (Invitrogen) and gqPCR (KAPA
Biosystems Library Quantification kit), and fragment size profiles were
assessed from Agilent 2100 BioAnalyzer. All libraries were sequenced on
lllumina Hiseq 2500 with 2 x 100 paired-end kits using following read
length: 26 bp Read 1, 8 bp i7 Index, and 98 bp Read 2.

Cellranger (v 1.2) single-cell pipeline (https://support.10xgenomics.com/
single-cell-gene-expression/software/overview/welcome) was used for
demultiplexing libraries, using cellranger mkfastq to generate FASTQ files.
STAR alignment, barcode/UMI processing, and counting were conducted
by the Cellranger count pipeline. Barcode, UMI, and duplicate sorting are
further described.'

Data analysis

For the data analysis, we excluded cells under the 25 UMl/cell threshold,
cells with fewer than 10 detected genes, and genes detected in <20 cells.
Cells with mitochondrial genes comprising >40% were excluded. Multiple
pairwise alignment to remove batch effects and allow for integrated

Published in partnership with CEGMR, King Abdulaziz University

analysis was performed on all samples for each cohort as described and
implemented in R toolkit Seurat (Seurat v.2.1.0 and 2.2.0).>" Briefly, the
filtered ASD and Control data sets were randomly subsampled to 12,000
cells per sample, including 24,000 cells total for ASD and 48,000 cells for
the Control data set. The cells were subsampled based on common genes,
the expression normalized, scaled and aligned into a conserved low-
dimensional space using nonlinear warping algorithms. Canonical correla-
tion vectors are aligned to normalize for differences in feature scale, an
approach robust to shifts in population density. Variable genes were
detected across the data sets. The ASD data set includes two samples,
ASD1 with 9300 cells and ASD2 with 8472 cells, while the control data set
contains four samples, Controls 1-4, each with 5241 cells, 2697 cells, 6686
cells, and 6682 cells, respectively.

We performed differentially expressed gene (DEG) analysis between all
the single cells in the aligned data set as well as between all the cells in the
filtered nonaligned data set (Bonferroni-adjusted p-values). For detecting
differentially expressed genes between the sperm samples from fathers of
children with ASD and those of children without ASD, we performed a
Wilcoxon rank-sum test at single-cell level. A t-distributed stochastic
neighbor embedding (t-SNE) analysis to visualize cells in a two-
dimensional space was done. Based on the relative position of the cells
on the t-SNE plot, unsupervised graph-based clustering was performed
with the FindClusters function in Seurat, and unique cluster marker genes
were identified. Further, we also calculated differentially expressed genes
on the filtered set, without performing canonical correlation analysis (CCA)-
based alignment between the samples, as described above. This gene set
was used for running gene set enrichment analysis, in pre-ranked mode
and with standard parameters and MSigDB sets.**

Variant calling

The BAM file produced by the CellRanger software is not designed to easily
allow for variant calling, and needs to be modified. In particular, the reads
from each individual cell are marked with the CB tag in the BAM file,
whereas a typical BAM file would record each set of reads from the same
source as a read-group with the RG tag. We developed a cleaning
algorithm (convertBAMfull.perl) that converted the BAM file and also
removed any of the cells that had <100 reads per cell. We then used the
Freebayes®' variant caller on the converted BAM files, and we removed any

npj Genomic Medicine (2020) 14
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variants with a quality of <20 and required that a SNP be present in at least
ten individual single cells. Thus, our SNPs were relatively rare in the sperm
population, but were not only found in an individual cell.

The code for variant pruning is at: https://github.com/jeffr100/
singleCellSperm.

Variant calling, annotation, and analysis for bulk RNA-seq

Genetic variants were called using the Broad Institute’s GATK®? Best
Practices for bulk RNA-seq variant calling. Duplicates were marked, and
aligned reads were sorted using Picard tools. The SplitNCigarReads was
used to split reads into exon segments and to clip reads overhanging
intron regions. Variants were called using the HaplotypeCaller, and single-
nucleotide polymorphisms (SNPs) were extracted using SelectVariants.
Hard filtering was carried out using VariantFiltration to remove artifacts
due to clusters of at least three SNPs in windows of 35bp, as
recommended by the Broad Institute. Finally, variants with a coverage <
20X for the alternative to the reference genome were not included in the
analysis. The remaining variants were annotated using the most updated
version (96) of Ensembl Variant Effect Predictor (VEP).>3

Downstream analyses were performed using the processed data as
input. First, the total number of variants was calculated per region (i.e.,
exonic, intronic, intergenic and all three) based on the annotations
provided by VEP. For each sample, all variant counts were normalized to
the reads mapped to the transcriptome according to the following
formula:

Normalized number of variantssampie i
- Number of variantssample_i
" Reads confidently mapped to the transcriptome, e ; x read size

VEP filter was then used to extract rare variants for each sample, that is,
those variants absent or present in the Genome Aggregation Database
(gnomAD)26 with allele frequency <0.001. Next, the total number of
rare variants per chromosome was calculated and normalized following
the subsequent formula:

Normalized number of rare variantssampie, chr;
Number of rare variantssample,
" Reads confidently mapped to the transcriptomeg, o1, x read size/length of chr;

Mean and standard deviation were calculated for the ASD and control
groups, and one-sided Wilcoxon rank-sum test was used to determine
statistical significance between groups under the hypothesis that the
number of SNVs is greater in ASD samples.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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