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ABSTRACT
Importance: The process of brain development in children with developmental 
delay is not well known. Amide proton transfer-weighted (APTw) imaging is a novel 
molecular magnetic resonance imaging (MRI) technique that can noninvasively 
detect cytosolic endogenous mobile proteins and peptides involved in the myelination 
process, and may be useful for providing insights into brain development.
Objective: To assess the contribution of amide proton transfer-weighted (APTw) 
imaging and magnetization transfer (MT) imaging to the evaluation of children 
with developmental delay (DD).
Methods: Fifty-one patients with DD were recruited to this study. The patients 
were divided into two groups according to the state of myelination assessed on 
conventional magnetic resonance imaging (MRI). Thirty patients (10 girls, 20 
boys; age range: 1–8 months; median age: 4 months) in group A showed delayed 
myelination on MRI , while 21 patients (3 girls, 18 boys; age range: 12–36months; 
median age: 25months) in group B showed normal myelination on MRI. Fifty-
one age- and sex-matched children with normal developmental quotient (DQ) and 
normal MRI appearance were recruited as normal controls. Three-slice APTw/MT 
axial imaging was performed at the level of the centrum semiovale, the basal ganglia 
and the pons. Quantitative data of the MT ratio (MTR) and APTw were analyzed for 
multiple brain regions. Independent-sample t-tests were used to compare differences 
in APTw and MTR signals between the two DD groups and normal controls. Analysis 
of Covariance was conducted to correct the statistical results. The level of statistical 
significance was set to P < 0.05.
Results: For group A, the MTR values were lower  in all regions (P = 0.004–0.033) 
compared with the normal controls, while the APTw values were higher in the 
pons, middle cerebellar peduncle, corpus callosum, frontal white matter, occipital 
white matter and centrum semiovale (P = 0.004–0.040 ). For Group B, the MTR 
values were slightly reduced, and the APTw values were slightly increased 
compared with the normal controls, but the differences were not statistically 
significant (P > 0.05). 
Interpretation: For DD patients showing signs of delayed myelination on MRI, 
MTR and APTw imaging can help to diagnose myelination delay by quantifying 
semi-solid macromolecules and cytosolic endogenous mobile proteins and 
peptides at a molecular level, providing a new method for comprehensive 
evaluation of DD. For DD patients with normal myelination on MRI, the clinical 
values of MTR and APTw imaging remain to be explored.
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INTRODUCTION
Developmental delay (DD) is relatively common in 
pediatric patients, with an estimated prevalence ranging 
from 5% to 10%,1-3 1% to 3% among children aged less 
than 5 years.4 DD is defined as a significant delay in two 
or more of the following: motor functions (gross/fine), 
speech/language, cognition, personal/social skills, and 
activities of daily living. Magnetic resonance imaging 
(MRI) is generally essential for the assessment of children 
with DD, and is prioritized over computed tomography, 
for detecting abnormalities in 48.6%–65.5% of children 
with global delay.5-8 One study reported that brain 
developmental abnormalities on neuroimaging can be 
identified in 30%–60% of children with mental retardation 
and DD.9 This implies that nearly half of children with 
DD demonstrate a normal MRI examination or normal 
variants ,10,11 which inspired us to explore novel imaging 
methods for the further assessment of DD.

Over the past few years, MRI progressed from structural 
to functional and molecular imaging. Several advanced 
imaging techniques have been reported to provide more 
information for the assessment of DD in pediatrics. The 
MRI technique of diffusion tensor imaging has been 
employed to assess children with DD, and its application 
has led to a suggestion that the white matter fiber tract in 
children with DD (whose scans are otherwise commonly 
normal on conventional MRI) had different segments to 
that in normal children.12-14

Molecular MRI is an exciting new approach for recent 
biomedical studies. Amide proton transfer-weighted 
(APTw) imaging is a novel molecular MRI technique 
capable of noninvasively detecting cytosolic endogenous 
mobile proteins and peptides involved in myelination, 
while conventional magnetization transfer (MT) imaging 
is susceptible to a semi-solid macromolecular phase in 
tissues. A previous study at our institution used APTw/MT 
imaging to quantify brain maturation in pediatric brain 
development. It characterized age-related variations in the 
magnetization transfer ratio (MTR) and APTw, and offered 
additional information in the form of imaging biomarkers 
for the assessment of pediatric brain development.15 

The present study aimed to evaluate whether APTw/MT 
imaging can add valuable information for the assessment 
of children with DD by finding abnormalities at the 
molecular lever by comparing DD patients with age- and 
sex-matched normal controls. We hypothesized that in 
comparison with normal subjects, DD patients would show 
increased levels of mobile protein content and decreased 
semi-solid macromolecular content in the white matter, 
thereby leading to an elevated APTw signal and decreased 
MTR signal. Such differences at the molecular level 
may hold potential as an imaging biomaker for delayed 
development.

METHODS
Ethical approval

This study was approved by the Ethics Committee of 
Beijing Children’s Hospital(2015–85). The parents of 
all children actively participating in the study provided 
written informed consent for their child’s participation in 
the study.

Subjects

Each child underwent a full neurological examination 
performed by a pediatric neurologist. The developmental 
quotient (DQ) was calculated for all children according 
to the Gesell Development Scale. Abiding by previous 
guidelines.16 two radiologists (Z.H. and Y.P., experienced 
in developmental neurology) further assessed the images 
in terms of the degree of myelination and the existence of 
disease on conventional MR images. Before undergoing 
the MRI scans, all subjects were sedated with oral 10% 
chloral hydrate (0.5 mL/kg), because of their young age. 

Al l  DD pat ients  admit ted to  our  hospi ta l  for  a 
neuroradiologic examination because of  mental 
retardation of unknown origin but having not undergone 
a progressive clinical course and without any evidence 
of metabolic abnormalities were recruited. Patients with 
recognizable lesions on MRI, cerebral palsy, chromosome 
abnormalities, autism, or other neurologic or degenerative 
diseases were excluded. No hearing disorders were 
identified. Finally, 51 pediatric patients with DD were 
recruited to this study. The patients were split into 
two groups according to their state of myelination on 
conventional MRI. Thirty patients (10 girls and 20 boys; 
age range: 1–8 months; median age: 4 months) assigned 
to group A exhibited delayed myelination on MRI, with 
9 children showing severe retardation (DQ 25–39), 14 
showing moderately severe retardation (DQ 40–54), and 
7 exhibiting only minor retardation (DQ 55–75). A further 
21 patients (3 girls and 18 boys; age range: 12–36 months; 
median age: 25 months) showing normal myelination 
on MRI were assigned to group B, with 4 having severe 
retardation, 8 having moderately severe retardation, and 9 
only minor retardation.

A further group of 51 age- and sex-matched children with 
normal DQ (DQ > 85) and normal MRI findings were 
recruited as normal controls. To comply with the case 
control design, these normal control subjects were also 
split into groups A’ and B’ (Table 1). The control children 
received a brain MRI examination for noncerebral 
or nonneurologic indications, the most common of 
which were nausea, vomiting, headaches, dizziness and 
idiopathic febrile seizures. The general characteristics of 
the control subjects included an age between 1 and 36 
months; a full-term gestational age between 37 and 41 
weeks without a complicated perinatal course; normal 
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brain MRI results; normal myelination for the age; normal 
results on neurological examinations; absence of current 
and past neurological or psychiatric disorders; and no 
evidence of genetic, metabolic, or infectious disorders. 
A follow-up review of the medical records of all subjects 
was performed 1 year after the MRI examination, and 
any children with DD or demonstrating neurologic 
abnormalities were excluded. 

TABLE 1 Age and sex distribution of normal controls recruited to this study

Group
Age (months)

Sex (Male/female)
Range Median

A’ 1–8 4 20/10

B’ 12–36 25 18/3

MRI protocol and image acquisition

All MRI was acquired on a 3-T scanner (Achieva; Philips 
Medical Systems, Best, The Netherlands), using a pencil-
beam, second-order shimming, a dual-channel body 
coil for emission, and an eight-channel coil (sensitivity-
encoding) for reception. Conventional MRI with T1-
weighted, T2-weighted, FLAIR, and DWI sequences to 
characterize brain morphology was conducted before 
MT/APTw imaging. MT/APTw single-section imaging 
was performed under off-resonance continuous-wave 
radiofrequency irradiation. To increase the signal-to-noise 
ratio, a multi-acquisition MT/APTw imaging method 
with multiple radiofrequency pulses was performed, 
as described in previous study of our institution.15 The 
scanning schemes and data processing for the conventional 
sequence and MT/APTw imaging were formulated before 
the acquisitions were started. 

Image processing and analysis

The acquired raw data were uploaded into an IDL 
application (ITT Visual Information Solutions, Boulder, 
CO, USA) for analysis, measurement and reconstruction 
of  pseudocolor images. The amide proton transfer (APT) 
experiments involved acquisition of three transverse 
slices positioned at the levels of the pons, basal ganglia, 
and centrum semiovale, according to axial T2-weighted 
imaging. Based on the approach used for previous studies 
in our hospital,15 ten regions of interest (ROIs) were 
manually plotted in a consensus fashion by two senior 
staff neuroradiologists (H.Z. and Y.P., with 10 and 15 
years of experience in brain imaging respectively), using 
the co-registered standard MR images (T2-weighted or 
FLAIR) for anatomical reference (Supplementary Figure 
S1). These ROIs consisted of the pons, middle cerebellar 
peduncle, genu of the corpus callosum, splenium of 
the corpus callosum, frontal white matter, occipital 
white matter, caudate, putamen, thalamus, and centrum 
semiovale. The APTw and MTR signals of all subjects 
were measured for all of the regions of interest.

Statistical analysis

The data were analyzed using SPSS version 17.0 (Chicago, 
IL, USA). Differences in the MTR/APTw values between 
the left and right hemispheres were tested using paired- 
sample t-tests. Independent-samples t-tests were employed 
to compare differences in APTw and MTR signals between 
the DD patients and normal controls. ANCOVA was 
conducted to control for differences in age and the internal 
correlation of the different brain regions, and to prevent 
these from affecting the statistical results. The level of 
statistical significance was set to P < 0.05.

RESULTS
No statistically significant differences in the MTR/
APTw values were identified between the left and right 
hemispheres (P > 0.05); therefore, the data from both 
hemispheres were combined for the analysis of  all 
subjects. 

For group A, the DD patient’s MTR values were 
considerably lower than those of the normal controls in 
all regions (P = 0.004–0.033; Figure 1). The APTw values  
in the DD patients were higher than those of normal 
controls in the pons, middle cerebellar peduncle, genu of 
the corpus callosum, splenium of the corpus callosum, 
frontal white matter, occipital white matter and centrum 
semiovale (P = 0.004–0.040; Figure 2). In the caudate, 
putamen and thalamus, the APTw values were slightly 
elevated compared with the normal controls, although the 
differences were not statistically significant (P = 0.086–
0.267). The ANCOVA (Table 2) showed that statistically 
significant differences in the MTR and APTw values 
between patients and normal controls  remained after the 
effects of age and internal correlation between ROIs were 
controlled for (P < 0.001).

FIGURE 1 Comparisons of the MTR values of all regions between group 
A (red) and the corresponding normal controls (blue). In all regions, the 
MTR values of patients are obviously lower than those of normal controls. 
Data are shown as mean ± SD. *P < 0.05, **P < 0.01. MTR, magnetization 
transfer ratio; ROIs, regions of interest; MCP, middle cerebellar peduncle; 
GCC, genu of the corpus callosum; SCC, splenium of the corpus callosum; 
FWM, frontal white matter; OWM, occipital white matter; HCN, head of 
caudate nucleus; Put, putamen; Tha, thalamus; CS, centrum semiovale; 
DG, delay group; CG, control group.
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Figures 3 and 4 show representative T2-weighted, MTR, 
and APTw MR images taken from a 7-month-old child 
with DD (group A) and a 7-month-old normal child. 
Figure 3 reveals that lower MTR intensities and higher 
APTw intensities in the basal ganglia and the white 
matter structures were identified in children with 
DD in comparison with normal controls. Figure 4 
indicates that the MTR signal intensities in the centrum 
semiovale of children with DD were lower than those of 
the normal controls, while the APTw signal intensities 
in the centrum semiovale were higher than those of 
normal controls. During myelination, relatively large 
variations in MTR and APTw signals can be observed in 
white matter structures.

For group B, the MTR values slightly reduced (Figure 5), 
while the APTw values slightly increased in comparison 
with normal controls (Figure 6). However, the differences 
were not statistically significant (P > 0.05).

TABLE 2 Results of ANCOVA applied to the MTR and APTw values between patients and controls in all regions of group A

Source
MTR APTw

Partial Eta Squared F P Partial Eta Squared F P

Intercept 0.837 3067.066 <0.001 0.452 491.743 <0.001

Group 0.125 85.031 <0.001 0.077 49.373 <0.001

Age 0.528 665.927 <0.001 0.218 166.272 <0.001

ROI 0.073 46.919 <0.001 0.029 17.622 <0.001

MTR, magnetization transfer ratio; APTw, proton transfer-weighted; ROI, regions of interest

FIGURE 2 Comparisons of the APTw values of all regions between 
group A (red) and the corresponding normal controls (blue). The APTw 
values of the patients are higher than those of the normal controls in all regions, 
especially in the white matter. Data are shown as mean ± SD. *P < 0.05, **P < 
0.01. APTw, amide proton transfer-weighted; ROIs, regions of interest; MCP, 
middle cerebellar peduncle; GCC, genu of the corpus callosum; SCC, splenium 
of the corpus callosum; FWM, frontal white matter; OWM, occipital white 
matter; HCN, head of caudate nucleus; Put, putamen; Tha, thalamus; CS, 
centrum semiovale; DG, delay group; CG, control group.

FIGURE 3 T2-weighted, MTR, and APTw MR images of a 7-month-old child with developmental delay (A) and a 7-month-old normal child (B). 
The MTR signal intensities of the child with DD are lower than those of the normal child, while the APTw signal intensities are higher in the white 
matter structures and basal ganglia. Larger differences were found in occipital white matter (white arrows) and the splenium of the corpus callosum 
(black arrows) where myelination had occurred. Note the presence of cerebral spinal fluid artefacts (curved white arrows). T2W, T2-weighted; MTR, 
magnetization transfer ratio; APTw, amide proton transfer-weighted.
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FIGURE 4 T2-weighted, MTR, and APTw magnetic resonance images of a 7-month-old child with DD (A) and a 7-month-old normal child (B). 
Compared with the normal controls, the MTR signal intensities of the child with developmental delay are lower, while the APTw signal intensities are 
higher in the centrum semiovale (white arrows). T2W, T2-weighted; MTR, magnetization transfer ratio; APTw, amide proton transfer-weighted.

FIGURE 5 Comparison of the MTR values of all regions between group 
B (red) and the corresponding normal controls (blue). The MTR values 
of patients were slightly lower than these of the normal controls in all 
regions, but the differences were not statistically significant (P > 0.05). 
Data are shown as mean ± SD. MTR, magnetization transfer ratio; ROIs, 
regions of interest; MCP, middle cerebellar peduncle; GCC, genu of the 
corpus callosum; SCC, splenium of the corpus callosum; FWM, frontal 
white matter; OWM, occipital white matter; HCN, head of caudate 
nucleus; Put, putamen; Tha, thalamus; CS, centrum semiovale; DG, delay 
group; CG, control group.

FIGURE 6 Comparison of the APTw values of all regions between group 
B (red) and the corresponding normal controls (blue). The APTw values 
of patients are were slightly higher than these of normal controls in all 
regions, but the differences were not statistically significant (P > 0.05). 
Data are shown as mean ± SD. APTw, amide proton transfer-weighted; 
ROIs, regions of interest; MCP, middle cerebellar peduncle; GCC, genu 
of the corpus callosum; SCC, splenium of the corpus callosum; FWM, 
frontal white matter; OWM, occipital white matter; HCN, head of 
caudate nucleus; Put, putamen; Tha, thalamus; CS, centrum semiovale; 
DG, delay group; CG, control group.

Compared with group B (Figures 5 and 6), the standard 
deviations of the MTR and APTw values in group A 
(Figures 1 and 2) were relatively higher in all regions, 
particularly for the APTw values. The presence of image 
artefacts (Figures 3 and 4) was noted, including inevitable 
interference from the skull, cerebrospinal fluid and 
cerebral ventricles. 

DISCUSSION
This study demonstrated the application and feasibility 
of APTw/MT imaging for assessing brain development 
in children with DD, suggesting the possibility of using 
the measurements as non-invasive biomarkers. The most 
noteworthy finding of the present study is the significant 
differences in the MTR and APTw values between DD 
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The MTR and APTw values of pediatric patients with DD 
and normal-appearing myelination on conventional MRI 
were also found to be slightly different from those of the 
normal controls, with slightly decreased MTR values and 
increased APTw values in all regions of the children with 
DD. According to previous reports,26-28 myelination is 
predominantly complete by the end of the second year. In 
group B, the median age of the patients was 25 months, 
probably leading to extremely small differences. 

There are several limitations to this study. First, the 
patients with DD and normal myelination on MRI were 
all older than 12 months, and younger patients should be 
covered in future studies. Moreover, it should be further 
investigated whether there are any correlations between 
the MTR or APTw values and the mental performance 
of children. From a technological angle, only three-slice 
imaging was obtained, which is a limitation of the single-
slice acquisition protocol, and the MRI signal variations 
could not be assessed for all brain regions. Cerebrospinal 
fluid pulsation artifacts were relatively obvious for the 
relatively wide extracerebral space and encephalocele, 
particularly in the first years after birth, and therefore 
the APTw values in some regions (e.g., corpus callosum 
and basal ganglia) will obviously be impacted. The small 
APTw effect leads to extremely low spatial resolution; 
in the future, a more complicated APTw imaging 
acquisition29,30 or analysis31,32 method should be adopted to 
more accurately quantify the APTw effect. 

We believe this study to be the first application of 
3-T MRI APTw imaging in children with DD. Using 
quantitative APTw and MT imaging, we demonstrated 
that children with DD and delayed myelination on MRI 
showed lower MTR and higher APTw values than normal 
controls, especially in white matter. Moreover, for children 
with DD and normal myelination on MRI, APTw/MT 
imaging was found to add little additional information 
to the neuroradiologic work-up, and the clinical values 
of MTR and APTw imaging require further exploration. 
Subsequently, we intend to perform a whole brain study of 
DD with delayed myelination using 3D-APT technology.
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