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Research Article

Assessing the suitability of capillary
electrophoresis-mass spectrometry for
biomarker discovery in plasma-based
metabolomics

The actual utility of capillary electrophoresis-mass spectrometry (CE-MS) for biomarker
discovery using metabolomics still needs to be assessed. Therefore, a simulated compar-
ative metabolic profiling study for biomarker discovery by CE-MS was performed, using
pooled human plasma samples with spiked biomarkers. Two studies have been carried
out in this work. Focus of study I was on comparing two sets of plasma samples, in which
one set (class I) was spiked with five isotope-labeled compounds, whereas another set
(class II) was spiked with six different isotope-labeled compounds. In study II, focus was
also on comparing two sets of plasma samples, however, the isotope-labeled compounds
were spiked to both class I and class II samples but with concentrations which differ by a
factor two between both classes (with one compound absent in each class). The aim was
to determine whether CEMS-based metabolomics could reveal the spiked biomarkers as
the main classifiers, applying two different data analysis software tools (MetaboAnalyst
and Matlab). Unsupervised analysis of the recorded metabolic profiles revealed a clear
distinction between class I and class II plasma samples in both studies. This classification
was mainly attributed to the spiked isotope-labeled compounds, thereby emphasizing the
utility of CE-MS for biomarker discovery.
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� Additional supporting information may be found online in the Supporting Infor-
mation section at the end of the article.

1 Introduction

Metabolomics offers a new approach to explore changes in
patterns for a large number of (endogenous) metabolites in
biological media, such as blood, urine, and cerebrospinal
fluid. [1–6] Currently, a wide range of advanced analytical
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separation techniques is used for metabolic profiling of bio-
logical samples. The complex data sets generated by these an-
alytical tools can be processed by software tools, for example
XCMS, [7] MZmine, [8] MetAlign, [9] or SpectConnect, [10]
and the main output is a peak table with the intensity of each
chromatographic or electrophoretic peak, characterized by a
specific retention or migration time, respectively, and one
or more m/z values. Supervised and unsupervised chemo-
metric approaches are often used to get visualization of the
relations between the metabolic profiles and to define bor-
ders between groups of samples. Global profiling of (endoge-
nous) metabolites in organisms has been vastly explored for
its potential application in research areas, such as diagnosis
of diseases, [1, 3, 6] guidance for personalized medicine, [11]
and evaluation of therapeutic treatments. [12,13] Despite the
efforts dedicated to metabolomics for biomarker discovery,
its impact on recent clinical practice is still rather limited
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Figure 1. Overview of the data analysis tools used in this study. The tools of the first data analysis strategy are shown in orange (stripes)
while in blue (dots) those for the second strategy are given. The workflow is similar starting with the data conversions to a readable
file. Subsequently, data compression is needed for the MCR-ALS feature detection of the second strategy. After selecting the features a
peak table is generated containing the corrected peak areas for each sample. The generated peak table can be further investigated using
univariate, unsupervised and supervised analysis to discover potential biomarkers.

due to various challenges encountered during the analytical
process, including study design, sample handling, data ac-
quisition and data analysis, [14] which may potentially lead
to contradictory results in reported biomarkers. For exam-
ple, Slupsky et al. [15] indicated succinic acid to be among
the down-regulated urinary metabolites in ovarian cancer pa-
tients, whereas Zhang et al. [16] obtained the opposite find-
ing for this compound using a different analytical technique.
Therefore, these studies clearly underscore the need for
assessing the capability of a given analytical technique for de-
livering the right biomarkers in metabolomics using prefer-
ably multiple data analysis procedures. In principle, each data
analysis procedure should provide the same chemical infor-
mation/output when employing a single analytical technique
for metabolic profiling. In this work, we have used Metabo-
Analyst and Matlab as two data analysis software tools for
analyzing metabolomics data obtained by CE–MS (Fig. 1).

CE is a separation technique that is well-suited for the
highly efficient profiling of polar and charged metabolites,
as compounds are separated according to their charge-to-
size ratios. It provides complementary metabolic information
compared to chromatography-based techniques. Until now,
CE coupled to MS has been utilized for metabolic profiling
of a wide range of biological samples in various application
fields. [17] However, in comparison to other analytical tech-
niques the use of CE–MS in metabolomics is still underrep-
resented. [18] CE–MS is often still considered by the scientific

community as a rather complicated or not robust technique,
in this case specifically the coupling of CE to MS, and often
not fulfilling the criteria of repeatability and sensitivity for
metabolomics studies.

Over the past years, various studies have clearly indicated
the long-term performance of CE–MS for metabolomics and
peptide profiling studies. [19–21] For example, the group of
Soga and co-workers, who introduced the first CE–MS meth-
ods for metabolomics in 2003, [22] has recently assessed
the long-term performance of CE–MS for metabolic profil-
ing of more than 8000 human plasma samples from the
Tsuruoka Metabolomics Cohort Study over a 52-month pe-
riod. [20] The study provided an absolute quantification of
94 polar metabolites in plasma with a similar or better re-
producibility than other analytical platforms employed for
large-scale metabolomics studies. The issue of migration-
time repeatability for metabolic profiling studies can be
tackled by converting migration times into electrophoretic
mobilities, as recently demonstrated by Drouin et al. [23].
This group has designed an experimental database for effec-
tive mobilities (�eff) measured for a large variety of charged
metabolites, which was successfully implemented for the
characterization of metabolites observed by CE–MS in tumor
cell samples. Overall, we expect that this approach will be of
great value for metabolomics studies, especially for the iden-
tification of metabolites when employing a library based on
electrophoretic mobilities. Other improvements in CE–MS
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Table 1. An overview of the design of class I and class II plasma samples for study I (IS: DL-phenyl-D5-alanine). Sample 1 within class I is
prepared by spiking Mix 1 to the blank plasma sample, and sample 2 within class I is prepared by spiking Mix 2 to the plasma
sample, etc

Concentration (µM)

Class I (n = 6 samples per mix)

Compound m/z Mix 1 Mix 2 Mix 3 Mix 4 Mix 5

L-Isoleucine (13C; 15N) 134.099 40 36 50 40 36
L-Asparagine (13C2;15N2) 139.066 100 80 90 80 80
L-Glutamine (13C2) 149.081 20 15 30 30 30
L-Lysine (4,4,5,5-D4) 151.135 10 10 15 12 15
L-Tryptophan (13C11;15N2) 218.124 40 48 50 36 50

Class II (n = 5 samples per mix)
Mix 6 Mix 7 Mix 8 Mix 9 Mix 10 Mix 11

Creatinine (N-methyl-D3) 117.088 40 30 45 50 45 50
L-Valine (D5) 126.134 5 7.5 10 7.5 10 7.5
L-Asparagine (2,3,3-D3) 136.078 100 80 90 100 80 90
L-Glutamine (2,3,3,4,4-D5) 152.110 100 90 100 80 90 80
L-Lysine (13C6) 153.129 40 35 50 45 35 40
L-Glutamic acid (13C5;D5;15N) 159.103 40 45 30 50 30 40

analyses, such as the use of novel interfaces [24, 25] and
multi-segment injection (MSI), [26] have clearly contributed
to the potential of CE–MS of becoming a sensitive and high-
throughput technique for metabolic profiling studies. Apart
from increasing sample throughput, the MSI approach, de-
veloped by the group of Britz-McKibbin, [26] could also be
used to distinguish authentic metabolite features from spu-
rious signals in biological samples. The latter could readily
be annotated based on their temporal signal pattern when
using the MSI approach in combination with high-resolution
tandem mass spectrometry.

Up till now, CE–MS has been used by various research
groups for a wide range of metabolomics studies provid-
ing useful insights into questions/problems from different
fields. Still, it is important to show the actual utility of CE–
MS for comparative metabolic profiling studies, especially in
order to convince the scientific community about the useful-
ness of this approach for biomarker discovery. An artificial
metabolomics study was therefore designed to test the capa-
bility of CE–MS in finding the correct biomarkers in a com-
parative metabolic profiling study. For this, two studies have
been carried out, in which the focus of study I was on compar-
ing two sets of plasma samples, i.e., class I was spiked with
five isotope-labeled compounds, whereas class II was spiked
with six different isotope-labeled compounds. In study II,
the focus was also on comparing two sets of plasma sam-
ples, however, in this case the isotope-labeled compounds
were spiked to both class I and class II samples but with
concentrations which differ by a factor two between both
classes, and with the absence of one compound in each class.
Blank pooled human plasma (without spiking) was used as
quality control (QC) sample to assess the performance of
CE–MS over time. Overall, the strategy outlined in this paper
could be considered as an approach to validate a (conven-
tional) CE–MS method for metabolomics studies.

2 Materials and methods

2.1 Chemicals and reagents

HPLC grade methanol and acetonitrile were obtained from
Actu-All Chemicals (Oss, the Netherlands). HPLC grade chlo-
roform was provided by Biosolve Chemicals (Valkensweerd,
the Netherlands). Acetic acid (99–100%) and sodium hydrox-
ide were purchased from VWR (Amsterdam, the Nether-
lands). Ammonium hydroxide (28–30%) was acquired from
Acros Organics (Amsterdam, the Netherlands). Water in this
work was produced by a Milli-Q R© Advantage A10 Water
Purification System from Millipore (Amsterdam-Zuidoost,
the Netherlands). The standards of eleven 13C, 15N and/or
D-isotope-labeled amino acids were purchased from Cam-
bridge Isotope Laboratories (Apeldoorn, the Netherlands).
In Study I, DL-phenyl-D5-alanine from CDN ISOTOPES
(Nieuwegein, the Netherlands) was used as the internal stan-
dard (IS). In study II, an L-methionine sulfone-containing
solution from Human Metabolome Technologies (Leiden,
the Netherlands) was employed as IS. All compounds were
dissolved in a mixture of water:acetonitrile (95:5, containing
0.5% v/v formic acid) and subsequently diluted to desired
concentrations with water (see Tables 1 and 2). A solution
of acetic acid (10% v/v in water, pH = 2.2) was employed as
BGE.

2.2 Plasma sample preparation

Pooled human plasma, anti-coagulated with citrate, was ob-
tained from Sanquin Blood Bank (Leiden, the Netherlands).
For protein precipitation, methanol was added to pooled
human plasma at a 5:1 ratio. The plasma/methanol mix-
ture was vortexed for 1 min at room temperature before
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Table 2. Design of class I and class II plasma samples for study II (IS: L-methionine sulfone)

Class I (n = 30 samples) Class II (n = 30 samples)
Compound m/z Concentration (µM) Concentration (µM)

L-Lysine (4,4,5,5-D4) 151.135 20 10
L-Asparagine (13C2;15N2) 139.066 100 50
L-Isoleucine (13C; 15N) 134.099 20 40
L-Tryptophan (13C11;15N2) 218.124 0 20
L-Glutamic acid (13C5;D5;15N) 159.103 20 40
L-Asparagine (2,3,3-D3) 136.078 40 20
L-Valine (D5) 126.134 5 10
L-Lysine (13C6) 153.129 10 20
L-Glutamine (2,3,3,4,4-D5) 152.110 20 0
L-Glutamine (13C2) 149.081 10 20
Creatinine (N-methyl-D3) 117.088 10 20

centrifugation at 16100 g at 4°C for 10 min. Subsequently,
120 µL of the supernatant was transferred to an Eppendorf
tube for liquid-liquid extraction, for which 300 µL methanol,
450 µL chloroform, 140 µL water, 50 µL internal standard
solution (200 µmol/L for L-methionine and 60 µ µmol/L
for DL-phenyl-D5-alanine), and 50 µL isotope-labeled com-
pounds mix for classes I and II (50 µL water was used for
the QC samples) were used to extract polar metabolites. Ta-
bles 1 and 2 provide an overview of how the samples were
prepared for each class of plasma samples within study I
and II, respectively. The samples were vortexed for 2 min
and then centrifuged at 16100 g at 4°C for 10 min. 500 µL
of the supernatant was centrifugally filtered using a 5 kDa
cutoff filter (Millipore) at 12000 g at 4°C for 1.5 h to fur-
ther remove proteins. The filtered sample was evaporated in
a CentriVap Concentrator (Labconco) and stored at −80°C.
The dried extract was reconstituted in 50 µL water prior to
CE–MS analysis. Standards for calibration curves were gen-
erated by spiking the pooled human plasma with the mix of
isotope labeled compounds at 10, 20, 40, 60, 80, and 100 µM,
respectively.

2.3 CE–MS analysis

All fused-silica capillaries used were 70 cm in length with
an internal diameter of 50 µm and obtained from BGB
Analytik (Harderwijk, the Netherlands). Prior to first use a
newly installed capillary was conditioned using the following
rinsing steps: water for 2 min at 5 bar, 0.1 M sodium hydrox-
ide for 10 min at 5 bar, water for 2 min at 5 bar, and BGE
for 2 min at 5 bar. The samples were injected hydrodynam-
ically at 50 mbar for 20 s, which corresponds to circa 1.2%
(�17 nL) of the total capillary volume.

The analyses were conducted on an Agilent 7100 CE in-
strument hyphenated to an Agilent 6230 Time of Flight mass
spectrometer (Agilent Technologies, Santa Clara, California),
equipped with an ESI source via a co-axial sheath-liquid in-
terface. The CE–MS approach used in this work was based on
the work from Drouin et al. [23] The sheath-liquid, consisting
of isopropanol/water (1:1, v/v) and acetic acid (200 µL added

to a final volume of 100 mL sheath liquid), was delivered at
a final flow-rate of 5 µL/min by an Agilent 1260 Infinity II
Isocratic Pump (Agilent Technologies) using a 1:100 splitter.
A voltage of 30 kV was used for electrophoretic separation
and detection was performed in positive MS mode. The MS
parameters were as follows: drying gas was set at 100°C with
a flow-rate of 11 L/min, and the nebulizer gas at 0 psi. The
capillary voltage was 5500 V, and the fragmentor, skimmer,
and OCT1 RF voltages were set at 100, 50, and 150 V, respec-
tively. The full scan MS acquisition covered the mass range
from 50 to 1000 m/z at an acquisition rate of 1.5 spectra/s,
which was controlled and monitored with MassHunter ver-
sion B05.01 (Agilent). Between consecutive biological sample
analyses, the capillary was flushed as follows: water for 30 s
at 5 bar, methanol for 1 min at 5 bar, water for 30 s at 5 bar,
10% ammonium hydroxide for 1 min at 5 bar, water for 30 s
at 5 bar and BGE for 2 min at 5 bar. The CE–MS data were
stored as .d files.

The capillary cassette was thermostated at 22°C and the
sample tray maintained at 10°C by means of a Julabo F12 cir-
culator temperature controller (Boven-Leeuwen, the Nether-
lands). To assess the repeatability of CE–MS for metabolic
profiling of plasma, the RSD for migration time and peak
area were determined for 19 endogenous metabolites in a
QC sample, which was analyzed in 16 consecutive runs. Dur-
ing the analysis of the individual plasma samples, every ten
runs a QC sample was analyzed. In total, 23 QC samples were
analyzed in each study.

2.4 Data processing and chemometric analysis

An overview of the data analysis, by the software tools used
in this study, is shown in Fig. 1. Each data analysis strategy
is described in detail below.

2.4.1 Strategy 1

The raw data were converted into mzXML format using
ProteoWizard and imported into MZmine 2.32 for feature
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detection. The detailed detection process is listed in Sup-
porting Information File S1. Considering that the peak area
calculation function was not ideal in MZmine, the peak ar-
eas were calculated in the Data Acquisition module within
MassHunter version B05.01 (Agilent). The peak areas were
integrated based on a standard list generated by an untar-
geted analysis. Peak areas of the detected metabolites were
corrected with the corresponding IS peak area (for study I with
DL-phenyl-D5-alanine and for study II with L-methionine
sulfone), and the peak area ratios were further used in the
statistical analysis.

MetaboAnalyst (http://www.metaboanalyst.ca) was used
for multivariate analysis, including principal component
analysis (PCA) and partial least squares - discriminant analy-
sis (PLS-DA) to identify the spiked markers as “biomarkers”
to distinguish “class I” from “class II”. Auto-scaling was done
prior to PCA to prevent highly responsive metabolites from
dominating the model, and prior to PLS-DA to facilitate the
discovery of the “spiked biomarkers”. [27] The peak area ra-
tios were also subjected to an unpaired non-parametric test
(Wilcoxon rank-sum test, also known as Mann-Whitney U
test) within MetaboAnalyst, and false discovery rates (FDR)
were calculated to discover if those m/z values are significant
different between class I and II. The compounds responsible
for distinguishing class I from class II samples were selected
using the variable importance in projection (VIP) score em-
ploying the criteria of VIP � 1 and FDR � 0.05.

2.4.2 Strategy 2

As in strategy 1, data was generated in centroid mode at an
Agilent CE-TOF-MS instrument and converted to mzXML
files with the open-source file translator ProteoWizard. Com-
pared to strategy 1, these files were imported and further
analyzed in MatlabTM R2014a (The Mathworks, Natick, MA)
instead of MetaboAnalyst. Due to storage requirements, a
binning method was necessary to compress the data [28, 29]
(Fig. 1). The regions-of-interest (ROI) method was used to
compress the generated Total Ion Current profile. [30] Here,
ROI values are searched among all measurement times in
the recorded CE–MS profile. However, different input vari-
ables are needed to define an ROI, such as a signal thresh-
old value, mass accuracy and the minimum time interval to
be considered as a peak width. [30, 31] In our study, these
parameters were set at 1000 for the signal threshold, mass
accuracy was set to 0.01 Da and the minimum time to elute
a peak was set to 6 s. All parameter values were based on
the protocol by Gorrochategui et al. [30] The following step
was the feature detection step, which does not make use of
MZmine, but is based on Multivariate Curve Resolution -
Alternating Least Squares (MCR-ALS) using the MCR-ALS
toolbox. [32]

As in strategy 1, peak areas were further integrated in the
Data Acquisition module within MassHunter version B05.01
(Agilent) and corrected with the corresponding IS peak area
(for study I with DL-phenyl-D5-alanine and for study II with

L-methionine sulfone). The peak area ratios were further uti-
lized in MatlabTM R2014a (The Mathworks) to perform unsu-
pervised PCA analysis, and supervised PLS-DA analysis. Au-
toscaling was also applied here as data pre-treatment method.
The number of latent variables for the PLS-DA model was
chosen based on a five-fold venetian-blind cross validation.
Additionally, the PLS-DA model evaluation was based on the
error rate, non-error rate and accuracy, based on the cross-
validation and calibration results. Finally, compounds mainly
responsible for distinguishing class I from class II samples
were selected based on the VIP score, with the aim to hope-
fully trace back the spiked markers and confirm the results
of strategy 1. An additional confirmation was performed with
the same non-parametric test as in strategy 1. All the m/z
values resulting in a VIP value above 1 were analyzed with
this univariate data analysis. Those resulting in a p-value
below 0.05 are significantly different between both classes
and are important for distinguishing class I from class II
samples.

3 Results and discussion

3.1 CE–MS for cationic metabolic profiling

Up till now, most metabolomics studies using CE–MS em-
ployed a standard co-axial sheath-liquid interface and low-pH
separation conditions to target cationic metabolites (i.e., ba-
sic compounds). In this study, this CE–MS approach was
used in order to assess its capability of delivering proper
chemical information in comparative metabolic profiling
studies.

For comparative metabolic profiling, the CE–MS method
should provide consistent migration times and peak areas
over time. Therefore, pretreated blank pooled human plasma
was first analyzed for 16 consecutive runs (lasting around
8 h in total). The RSD values for migration time, peak
area, and peak area divided by IS, of 19 selected endoge-
nous metabolites in this QC sample, were determined and
are shown in Table 3. RSD values found are below 5.9, 9.1,
and 4.5%, respectively. However, the lower RSD values are
found for the corrected areas by the IS. For 16 of the 19
selected endogenous metabolites, the RSD values for migra-
tion time were below 3%. Therefore, we considered the over-
all findings acceptable to perform the proposed assessment
study.

3.2 Suitability of CE–MS for metabolic profiling

of human plasma

To assess whether the CE–MS method for cationic metabolic
profiling has the capability to deliver proper chemical infor-
mation in biomarker discovery studies, a metabolomics study
was simulated. For this purpose, isotope-labeled compounds
were used as “spiked biomarkers”, while the capability of
CE–MS to trace them back as biomarkers was examined. The
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Table 3. Migration-time and peak-area repeatability (n = 16) for selected endogenous metabolites in pooled human plasma obtained by
CE–MS. Abbreviations: MT, migration time

Compound m/z value MT RSD(%) Area RSD(%) Area ratio 1 RSD(%)* Area ratio 2 RSD(%)*

Glycine 76.039 1.6 8.9 3.4 3.3
Serine 106.050 2.1 8.4 3.1 2.8
Proline 116.071 2.4 6.7 2.9 2.0
Valine 118.086 2.1 6.6 2.4 1.6
Threonine 120.066 2.3 7.9 3.3 3.1
Creatine 132.077 1.7 7.1 2.9 2.5
Asparagine 133.061 2.3 7.1 2.5 2.1
Ornithine 133.097 1.2 7.7 2.8 2.5
Glutamine 147.076 2.3 7.6 2.6 2.2
Glutamic acid 148.060 2.4 6.9 2.9 2.4
Phenyl-D5-alanine (IS2) 171.123 2.4 6.1 NA NA
Arginine 175.119 1.3 7.2 3.5 3.0
L-Methionine Sulfone (IS1) 182.048 2.7 6.6 NA NA
L-Alanine 90.055 1.8 8.2 3.6 3.0
L-Isoleucine 132.102 4.4 4.4 4.2 3.0
L-Leucine 132.102 5.9 5.9 2.3 1.1
L-Lysine 147.113 1.2 7.4 2.6 2.0
L-Methionine 150.058 2.3 9.1 4.3 4.5
L-Histidine 156.077 1.4 6.5 2.4 2.4
L-Phenylalanine 166.086 2.4 6.1 2.8 1.5
L-Tyrosine 182.081 2.5 6.9 4.0 3.3

*Area ratio 1 is representing the corrected areas for the first internal standard, L-Methionine Sulfone. The second internal standard is
Phenyl-D5-alanine and the correction for this internal standard resulted in the RSD values of area ratio 2.

selected isotope-labeled compounds included diverse chemi-
cal structures and were evenly spread over the analysis time.
Another requirement was that the unlabeled form could be
observed with a good detection sensitivity by CE–MS. Prior
to performing the simulation study, some performance met-
rics of CE–MS for the analysis of the selected isotope-labeled
compounds were determined. Special focus was on the accu-
racy of the method. The accuracy was determined comparing
the spiked concentrations of the isotope-labeled compounds,
with those experimentally estimated using calibration curves.
The accuracy for all labeled compounds was found to be in
the range of 85% to 115% (Supporting Information Table S1).

Study I (Table 1) focused on analyzing three sets of
plasma samples, i.e., class I is spiked with five isotope-labeled
compounds, class II is spiked with six different isotope-
labeled compounds, and set three consists of blank pooled
human plasma (used as QC). In order to mimic a comparative
metabolomics study, samples were constructed in a way as
indicated in Table 1, in which the (introduced) concentration
differences for the spiked compounds between the plasma
samples can be found. In metabolomics, it is important to
include QC samples to provide information about the robust-
ness of the method [33] and to mimic the sample composi-
tion, qualitatively and quantitatively. [34] Study II (Table 2)
focused on more subtle differences by spiking the ‘markers’
in both groups with concentrations which differ by a factor 2
between both classes (Table 2), and with the absence of one
compound in each class. For comparative metabolic profiling
only compounds with RSD values for migration time and cor-
rected peak area below 5 and 30%, respectively, as calculated

for each class including QC samples (n = 23), were consid-
ered for data analysis as those with higher values may be
considered as spurious signals. [35] Supporting Information
Fig. S1 shows extracted ion electropherograms obtained by
CE–MS for the analysis of the spiked compounds in plasma
samples of Group 2, Study II. Supporting Information Fig. S2
shows extracted ion electropherograms obtained for the anal-
ysis of selected endogenous compounds in a QC sample by
CE–MS (Supporting Information Fig. S2A) including a mass
spectrum for the same time window after noise subtraction
(Supporting Information Fig. S2B).

3.2.1 Data analysis for study I

The design of this first study introduced two groups of
metabolites into individual classes, so it was merely the
absence/presence of differences that needed to be distin-
guished. The whole corrected data matrix for the IS, including
all the samples, which differs in composition of the mixtures
mentioned in Table 1, are used for further data analysis.

The first feature detection approach with MZmine (from
Strategy 1) resulted in more than 100 features. A feature is
defined as a given mass-to-charge number with a defined
migration time and intensity. Manual examination was then
introduced to exclude falsely identified features, resulting in
70 features with peak heights above 1000. Except for the 11
compounds used for spiking, all the corrected peak areas
detected in QC samples and class I and II samples showed
variation far below 30% in RSD.
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Figure 2. Multivariate results for study I obtained with MetaboAnalyst 4.0. (A) PC1-PC2 score plot for the area corrected by the IS. �, +
and ✕ symbols represent samples of class I, class II and QC group, respectively. The elliptic areas represent the 95% confidence regions;
(B) PLS-DA scores plot. � and + symbols represent samples of class I and II, separately; (C) Permutation test results of the PLS-DA model
(statistical test: separation distance (B/W)), number of permutations set at 100.

Strategy 2 does not need alignment of the peaks and
is therefore suitable for CE data where, especially the late-
migrating analytes, may experience significant migration
shifts between samples. [31] 67 features were investigated,
resulting in the parameters for the best MCR-ALS model,
with an explained variance of 99.1% and an lack-of-fit value
of 9.3%. For 67 resolved compounds, which can be related to
endogenous metabolites or spurious markers, the RSD values
for corrected peak areas and migration times were maximally
29.0 and 3.8%, respectively.

PCA was first conducted to investigate relations between
groups. Auto-scaling was adopted as data-pretreatment to
strip away the dominance of highly responsive/abundant
metabolites and to render all metabolites equally important.
PCA plots thus generated from study I, using both data-
analysis approaches, are displayed in Figs. 2A and 3A. Good
separation of the three groups was observed in both cases.
However, Fig. 3A will result in better separation of the groups,
which may be the result of a different number of features in
the X-matrix resolved by another feature selection method. It
is worth noticing that samples in all groups in both PCA plots
sprawled mainly along PC1, suggesting that most variation
could be explained by the instrumental drift, while the dif-
ference between the groups was along PC2. However, no QC
correction was performed because of the lack of spiked mark-
ers in the QC sample, which are pooled human plasma sam-
ples. The two spiked groups were well separated in Fig. 3B.
Then a supervised analysis is performed to build a classifi-
cation model and to identify the features responsible for the
classification.

PLS-DA is a commonly used classification method in
metabolomics studies, because of its ability to identify
biomarkers from the loadings of the model. [29] In the first
data analysis strategy with MetaboAnalyst, a five-component
PLS-DA model was established based on the leave-one-out
cross validation (LOOCV) results. The obtained PLS-DA plot
is shown in Fig. 2B. The LOOCV parameters, R2 = 0.994

and Q2 = 0.979, indicated an excellently fitting and predictive
PLS-DA model. In order to prevent PLS-DA from overfitting
the data, the established model was validated by performing a
permutation test to determine whether differences observed
between groups are significant. [36,37] In each permutation,
a PLS-DA model is established between the data (X) and
the permuted class labels (y), utilizing the previously deter-
mined optimal number of components. Then the ratio of the
between-group sum of the squares and the within-group sum
of squares, indicated as B/W-ratio, is calculated for the class
assignment predictions of each PLS-DA model built. These
ratios can be plotted in a histogram known as “the distri-
bution of random class assignments”. [36] If the B/W ratio
of the original class assignment is part of this distribution,
the differences between the two class assignments cannot be
deemed significant. In the permutation test in strategy 1, the
class assignment was permuted 100 times (histogram shown
in Fig. 2C). The bar pointed out by the arrow represents the
original sample. A p-value below 0.01 in 100 permutations
means that not even once (�0.01*100) did the permutated
data yield better performance (higher B/W) than the original
label, suggesting the significant difference between these two
classes.

The second data analysis approach resulted in a less com-
plex PLS-DA model with only one latent variable, based on
the values for the non-error rate and the not-assigned sam-
ples. The PLS-DA model was evaluated by five-fold venetian
blind cross-validation, instead of LOOCV, because the latter
may over-estimate the predictive power. Good merits of the
model were demonstrated with an excellent predictive abil-
ity of 100% accuracy and a zero-error rate. Comparing the
two PLS-DA models shows a simpler model with Strategy 2,
which is the result of the better separation of the two classes
observed in the unsupervised PCA plot in Fig 3A.

The validation of supervised models is often lacking in
metabolomics studies. [28, 29, 38, 39] The validation of the
established models in both strategies was performed with

C© The Authors Electrophoresis Published by Wiley-VCH Verlag GmbH & Co. KGaA www.electrophoresis-journal.com



2316 W Zhang et al. Electrophoresis 2019, 40, 2309–2320

Figure 3. A) PC1-PC2 score
plot obtained for the X

matrix of study I of the
second data analysis strat-
egy using internal standard
correction and autoscaling;
Quality Control samples are
represented by stars; Class
I by dots and Class II by
squares; (B) PC1-PC2 score
plot for the two groups using
internal standard correction
and autoscaling; (C) PC1-PC2
loadings plot (for numbers
see Supporting Information
Table S2).

cross-validation, LOOCV or five-fold venetian blind cross-
validation, respectively. These cross-validation approaches are
often conducted when only a limited number of samples are
involved, as in the present study, but it was also reported
that this approach may have the risk of over-fitting, especially
LOOCV. [29]

VIP scores are often applied to select variables that are
important in the projection in PLS-DA models and for the dif-
ferentiation of the groups. A variable with a VIP value above

1.0 may be considered important. [40] Data analysis strategy 1
revealed 17 features and strategy 2 revealed 16 features (Sup-
porting Information Table S2) with VIP scores above 1.0. In
the results from both data analysis strategies, the 11 spiked
“markers” were detected with VIP scores above 2.0. The FDR
were obtained from the unpaired non-parametric test in or-
der to assess the incidence of false positives. All 17 features
had FDR values below 0.05 (data not shown), indicating that
these features can indeed be regarded as potential “markers”.
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Figure 4. Extracted ion electropherogram obtained by injecting
the standard solution of compound m/z 159.103, resolving the
contaminant m/z 158.101.

The second data analysis strategy took also into consid-
eration the results generated from the non-parametric test to
confirm whether the results of the VIP score for the defined
features were significantly different for comparing class I
with class II, and it resulted in p-values below 0.0001 for
all 16 m/z values. Furthermore, the PC1-PC2 loadings plot
(Fig. 3C) showed similar findings as the statistical tests, i.e.,
five extra features (9, 13, 14, 20, 21), apart from the 11 spiked
compounds are among the highest absolute loadings, indi-
cating their contribution to the group classification. Among
these detected features, m/z 158.101 showed a comparable
VIP score to the rest of the spiked features in data analy-
sis strategy 2. The individual standard solutions of the spiked
compounds were injected and analyzed in an attempt to deter-
mine the source of feature m/z 158.101. Fig. 4 clearly shows
that m/z 158.101 and m/z 159.103 are detected at the same
migration time, thereby suggesting that m/z 158.101 could
potentially be another labeled form of the same original com-
pound (L-Glutamic acid). The reason why this feature was not
detected in strategy 1 is that the peak height of m/z 158.101
did not always meet the peak height threshold of 1000, and got
omitted from the feature list by the filtering function within
MZmine.

Apart from the features discussed above, there are still
some unaccounted features with a VIP score above 1.0.
However, the reason why these variables ended up being
“markers” is not clear at this stage. Strategy 2 resulted in
5 unaccounted markers (9, 13, 14, 20, 21), which could be
related to an impurity. Strategy 1 resulted in 6 spurious mark-
ers (13, 15–19). Strategy 2 resulted in better results for all steps
performed in study I. The separation of the different groups
was clearer, the PLS-DA model was much simpler for a better
performance and less unknown markers are indicated. In the
future, it will be interesting to investigate the importance of
the unaccounted markers in more detail.

3.2.2 Data analysis for study II

Study I showed that spiked “markers” were detected by both
data analysis strategies, but it is important to stress that in

real-life metabolomics studies, changes in the abundance of
metabolites tend to be more subtle than those introduced
in study 1, where spiked metabolites were present in one
group and not in the other. In the second study more sub-
tle differences (Table 2) were introduced between the two
classes, which anyway still might be larger than the very small
metabolic differences that may actually occur between healthy
and diseased individuals.

The data from the second study were subjected to
the same analysis processes as study I. The application of
MZmine resulted in 73 features, among which only 3 features
had RSD values above 30%. Those features were deleted prior
to further data analysis. The MCR-ALS model in strategy 2
resulted in 90 features with 99.2% explained variance and
9.2% lack-of-fit. After removing features with RSD values of
peak area ratios over 30%, 84 remained in the data set.

PCA score plots were generated after auto-scaling the
peak area ratios in both strategies, as shown in Figs. 5A
and 6A. As in study I, the QC samples were distributed along
PC1, indicating that the largest variation in the first PC was
not related to the group information. The auto-scaled data
were well separated along PC3. The PC1-PC2 score plot for
only the two spiked groups (Fig. 6B) shows that these groups
tend to be separated, despite the subtle differences between
the profiles.

A PLS-DA model with five components was established
in the first data analysis strategy, using MetaboAnalyst, with
parameters R2 = 0.998 and Q2 = 0.995 acquired by LOOCV.
A 100- permutations test using separation distance (B/W)
as test parameter, was performed with the observed statistic
having a p�0.01 (Fig. 5C). The second data analysis strategy
resulted in a PLS-DA model with one latent variable, with
good predictive ability (100% accuracy and non-error rate)
and the model was validated as mentioned above by the same
cross-validation method, resulting in good parameters (100%
accuracy and non-error rate). Based on the criteria VIP�1.0,
and FDR or p�0.05 in the non-parametric tests in both data
analysis strategies, the 11 spiked compounds were identified
as “biomarkers” in study II (Supporting Information Table
S3). However, again in Strategy 2 the peak with m/z value
158.101 was indicated as a biomarker.
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Figure 5. Multivariate results for study II obtained with MetaboAnalyst 4.0. A) PC1-PC3 score plot for the area corrected by the IS. �, +
and ✕ symbols represent samples of class I, class II and QC group, respectively. The elliptic areas represent the 95% confidence regions;
B) PLS-DA scores plot. � and + symbols represent samples of class I and II, respectively; C) Permutation test results of the PLS-DA model
(statistical test: separation distance (B/W)), number of permutations set at 100.

Figure 6. A) PC1-PC3 Score plot of study II obtained
with the second data analysis strategy using internal
standard correction and autoscaling. Quality Control
samples are represented by stars, class I by dots and
class II by squares; B) PC1-PC2 Score plot for the
two groups using internal standard correction and
autoscaling.

Again features with peak heights over 1000 were extracted
for further data analysis, because smaller peaks are difficult
to measure precisely and might increase the chance of false
biomarker identification. [41, 42] For a reliable detection of
low abundant metabolites with the current CE–MS set-up, the
use of an in-capillary preconcentration technique is needed.
[43, 44]

In summary, both data processing and analysis strate-
gies resulted in similar findings, despite the small differ-
ences observed with the VIP scores. An interesting phe-
nomenon is that the three groups were better separated in the
PCA score plots using the second strategy. Additionally, the
better separation may be the result of simpler PLS-DA mod-
els in the second strategy compared to the 5 component
PLS-DA model in the first strategy. This might be the con-

sequence of the different numbers of m/z values included
in the X-matrix. However, the better separation results be-
tween the groups with data analysis strategy 2 makes this
method more suitable. However, strategy 2 is more time con-
suming and more difficult for an analyst less skilled with data
analysis approaches. In real-life cases, targeted metabolomics
studies are usually required after untargeted analysis,
quantifying the earlier indicated potential “biomarkers”,
in order to validate and quantify the extent of changes
in “biomarkers”. The essential message here is that all
spiked features could be distinguished by univariate and
multivariate analyses of the recorded sheath-liquid CE–
MS data. This clearly emphasizes the utility of sheath-
liquid CE–MS in metabolomics studies of human plasma
samples.
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4 Conclusions and perspectives

In metabolomics, CE–MS has become a useful analytical
technique for the profiling of highly polar and charged com-
pounds. In the context of biomarker discovery, it is important
to assess whether a given analytical technique provides the
proper chemical information and does not result in false pos-
itive or negative decisions. In this study, the utility of CE–MS
for this purpose was evaluated. Different chemometric anal-
ysis procedures were used in order to confirm each other’s
results and to show that both data analysis strategies give
similar information. As shown, the second strategy will in-
dicate less spurious markers in study I and shows a better
separation between the groups in study II. However, the lat-
ter approach is more difficult to perform than the use of the
MetaboAnalyst software.

Additionally, in this work the two data analysis strategies
resulted in very similar outcomes, as expected, and showed
that CE–MS in combination with data analysis tools may
help to uncover the spiked “biomarkers”. Overall, this work
emphasized the capability of CE–MS in metabolic profiling
studies of human plasma. The usefulness of CE–MS for com-
parative metabolic profiling may also be evaluated using a
comparison or cross-validation with another analytical tech-
nique, such as, for example HILIC-MS or NMR spectroscopy.
In this case it would be important to focus in such a study
on the compounds that can be covered by each analytical
technique. For a follow-up study, it would also be interesting
to use very small differences in concentration levels for the
spiked compounds between sample groups in order to better
simulate the actual biological situation in which metabolic
differences may be very subtle or to make use of real-life
samples.
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