
ARTICLE

Received 22 May 2014 | Accepted 27 May 2015 | Published 7 Jul 2015

The minimal work cost of information processing
Philippe Faist1, Frédéric Dupuis1,2,3, Jonathan Oppenheim4 & Renato Renner1

Irreversible information processing cannot be carried out without some inevitable

thermodynamical work cost. This fundamental restriction, known as Landauer’s principle, is

increasingly relevant today, as the energy dissipation of computing devices impedes the

development of their performance. Here we determine the minimal work required to carry out

any logical process, for instance a computation. It is given by the entropy of the discarded

information conditional to the output of the computation. Our formula takes precisely into

account the statistically fluctuating work requirement of the logical process. It enables

the explicit calculation of practical scenarios, such as computational circuits or quantum

measurements. On the conceptual level, our result gives a precise and operational connection

between thermodynamic and information entropy, and explains the emergence of the entropy

state function in macroscopic thermodynamics.
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T
hermodynamics in essence is an information theory—its
purpose is to make statements about systems for which we
only have certain partial information, such as a gas of

many particles for which only macroscopic quantities like
temperature, volume and pressure are accessible. Following this
point of view, Jaynes showed that the entropy function derived in
statistical mechanics corresponds to the information-theoretic
entropy of the gas associated with a macroscopic observer who is
maximally ignorant of the microscopic degrees of freedom1,
resorting to Shannon’s mathematical theory of information2

developed in the context of telecommunications.
When the observers have access to knowledge about micro-

scopic quantities, such as positions and velocities of particles in a
gas, the second law of thermodynamics seems to break down, as
was illustrated by Maxwell’s demon. To address this problem,
Szilard3 studied a one-particle gas that can be located on either
side of a box, left (‘L’) or right (‘R’), and noted that by
isothermally compressing the gas or letting the gas expand, one
can trade this one bit of information for kT ln 2 work, as depicted
in Fig. 1a (in the presence of a heat bath at temperature T,
and where k is Boltzmann’s constant). Landauer and Bennett
later realized that the information content of data stored in a
memory register, independently of the nature of its physical
representation, counts as thermodynamic entropy when
considering thermodynamical operations on that register4–13.
For example, given a bit in an unknown state, any operation that
resets it to zero must dissipate at least kT ln 2 heat, and thus the
corresponding amount of work must be supplied (this is known
as Landauer’s principle). This fact salvages the second law of
thermodynamics and resolves the paradox of Maxwell’s demon.

More recently with the advent of quantum information, efforts
were made to understand the laws of quantum thermodynamics

from an information-theoretic viewpoint14–18, while the
increasing technological ability to control and manipulate
nanoscale systems19,20 has prompted the study of particular
operational models and frameworks, leading to characterization
of the work cost of various information-theoretic tasks such as
erasure and work extraction21–32. For a more specific review of
existing results, we refer to (Supplementary Note 1).

The aim of this work is to study thermodynamics in such
generalized scenarios, where one may have knowledge about
microscopic degrees of freedom, by resorting to modern tools of
information theory33,34. We provide a fundamental lower bound
to the work cost of a physical implementation of a logical process,
discuss several examples and illustrate how traditional
thermodynamics emerges from our micrsocopic result in the
limit of macroscopic systems.

Results
The Framework. We determine a general expression for the
minimal amount of work needed to carry out any given logical
process E. This can be for example an AND gate or any quantum
or classical computation; most generally E is defined as any
completely positive, trace-preserving map from quantum states
on an input Hilbert space HX to quantum states on an output
Hilbert space HX0 . We assume these spaces to be of finite
dimension for simplicity; note that such a space can be a subspace
of an infinite-dimensional Hilbert space in which the relevant
computation or logical process takes place. The terminology
‘logical process’ is meant to emphasize that the mathematical
object E only specifies for each input state the corresponding
output state and does not prescribe its physical realization, which
would consist of a full description of a physical system including
the parts of its environment that are relevant to determine its
time evolution. Note that in performing a logical process one does
not merely transform one quantum state into another; rather, the
output must be related to the input in a precisely specified way. In
the case where the input is a classical value, this means that the
output depends on the particular input value received, and not
only on the distribution of inputs. This might be checked in
practice, for example, if one keeps a copy of the input as a
reference system and observes the correlations between the
output and the reference system.

There are, generally, many ways of actually realizing a logical
process with an actual physical device. The device and its
interactions with the environment (for example, a heat bath) may
for example be described by a Hamiltonian or a Liouvillian. For
our purposes, it is sufficient to specify the set of operations which
the device is allowed to perform as well as the associated work
cost. We then optimize the work expenditure over precisely those
strategies, which realize the given logical process E. Observe that
the more permissive our framework is, the more robust our
bound will be. In our model, we shall be allowed to implement at
no work cost any trace-preserving completely positive map that is
unital, that is, which preserves the identity operator. Note that if
we were to allow any logical process that is not unital to be
performed for free, one could flagrantly violate the second law of
thermodynamics on a macroscopic scale: in this sense, unital
maps are the most permissive logical operation that we can allow
for free. The model must also include a description of a ‘battery’
that provides the energy required to drive the process. For this we
resort to Bennett’s idea of an ‘information fuel tape’5,11: such a
battery consists of a large number of qubits with a degenerate
Hamiltonian. Initially, a certain number l1 of these qubits are in
the maximally mixed state and the rest are pure. We may freely
implement any joint unital map on the system and battery. At the
end of the operation, the state of the battery consists of a possibly
different number l2 of qubits in a maximally mixed state, while
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Figure 1 | Work and information are related by physical processes.

(a). A gas formed by a single particle can either be on the left (‘L’) or the

right (‘R’) side of the cylinder (known as a Szilard box3). This one bit of

information can be reversibly traded for kT ln 2 work by isothermally

compressing the gas with a piston or letting the gas isothermally expand.

This illustrates that discarding 1 bit of entropy (or uncertainty) requires kT ln

2 work. (b) An implementation of the logical process E mapping a system X

to an output X0 interacts with the thermal bath may discard information and

in general costs work. The logical process E may be written as part of a

global unitary U on an additional hypothetical system E, which represents

the discarded information (inset). Our main result states that the minimum

work required in a physical implementation of E is the amount of discarded

information, which the implementation has to dump into the environment.
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the rest should be pure (The requirement that these l2 qubits be
maximally mixed is not a restriction, see Methods section.).
We then count the amount of work consumed as W¼ kT
ln 2 � (l2� l1), which is the amount of work required to restore
the battery system into its initial state. Indeed, a vast amount of
literature has well underscored the correspondence between
possessing a pure degenerate qubit, or storing kT ln 2 work, and
vice versa3,5,11,12. The quantity W may be negative, indicating
that work can be extracted from the battery when restoring it to
its initial state. In addition, we assume that the input to the logical
process E is encoded in a system whose initial Hamiltonian is
degenerate. The same is assumed about the output system at the
end of the computation. Note that this does not exclude making
use of systems with nontrivial Hamiltonians during the
implementation of the process. Also, this requirement is in
practice not a limitation, as many other frameworks may be
mapped to this setting26,28,29; indeed the assumption should
rather be regarded as a technicality to ensure a clean way of
accounting for work.

To obtain physically relevant results, we also have to exclude
overwhelmingly unlikely events from our considerations. This is
actually quite common in thermodynamics and is usually done
implicitly. For example, consider a stone lying on the ground.
There is a very small chance that by thermal fluctuation the stone
spontaneously jumps in the air. However, this event is so
disproportionately unlikely that in a physical theory we may
safely choose to ignore this possibility. Within our framework, we
do this more explicitly. That is, we consider a parameter that
specifies the total probability of all events we want to exclude. In
the quantum regime, where events are generally not well-defined,
this idea is captured by E-approximations: the stone has a very
small amplitude of being found in the air, but its state is E-close
to a state completely located on the ground. Analogously,
we study the work requirement of logical processes that are
E-approximations of the desired logical process. This is a standard
procedure in information theory33,34, and is justified by the fact
that an E-approximation cannot be distinguished from the
original logical process with probability greater than E.

The main result. To formulate our main claim, we represent the
logical process E by its Stinespring dilation35. This is an isometry
U (which can be seen as part of a unitary) that maps X onto X0 as
well as an extra system E such that the original map E is retrieved
by ignoring E (see Fig. 1b). Our main result asserts that WE,
the work one needs to supply to execute the operation up to an
E-approximation, is lower bounded by

WE � kT lnð2ÞH�E
max E X0jð Þ : ð1Þ

The right hand side is the smooth max-entropy of E conditioned
on X0 and may be interpreted as a measure for the irreversibility
of the logical process. More precisely, the smooth max-entropy is
an information-theoretic measure defined in the Methods section,
and quantifies the uncertainty one has about E when given access
to X0. The parameters E and �E are related by �E ¼

ffiffiffiffiffi
2E
p

; E may be
chosen arbitrarily. We stress that the system E is an abstract
mathematical concept used to represent the logical map E, and
can be interpreted as the information discarded by the mapping.
In particular, our bound is independent of the choice of this
representation.

The form of the bound (1) naturally expresses our intuition
that the amount of work that needs to be provided corresponds to
the amount of information that is logically discarded, and which
therefore has to be dumped into the environment. This
consideration is done from the viewpoint of the observer who
has completed the computation, and thus has access to X0,

explaining the occurrence of the conditional entropy. Also, if E is
classical, the max-entropy has the operational interpretation of
being the amount of memory space needed to compress the
information contained in E when possessing knowledge of X0

(ref. 36) (In the fully quantum case, it corresponds to quantum
state merging37.).

The proof of our main result proceeds by first considering the
special case in which E ¼ 0. The bound one then obtains is

WE¼0 � kT ln 2 � log2 E �Xð Þk k1; ð2Þ

where PX is the projector onto the support of the input state. This
expression proves particularly useful for calculating some simple
practical examples.

The proof of this special case, and its generalization to the
regime where E40, is presented in the Methods section. An
alternative proof, using techniques from majorization, is given in
(Supplementary Note 5).

Classical mappings and dependence on the logical process. Our
result, which is applicable to arbitrary quantum processes, applies
to all classical computations as a special case. Classically, logical
processes correspond to stochastic maps, of which deterministic
functions are a special case. As a simple example, consider the
AND gate. This is one of the elementary operations computing
devices can perform, from which more complex circuits can be
designed. The gate takes two bits as input, and outputs a single bit
that is set to 1 exactly when both input bits are 1, as illustrated in
Fig. 2a.

The logical process is manifestly irreversible, as the output
alone does not allow to infer the input uniquely. If one of the
inputs is zero, then the logical process effectively has to reset a
three-level system to zero, forgetting which of the three possible
inputs 00, 01 or 10 was given; this information can be viewed
as being discarded, and hence dumped into the environment.
We can confirm this intuition with our main result, using the fact
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Figure 2 | Examples of logical processes. (a) The AND gate is one of the

building blocks of computers. Our result implies that any successful

implementation of this logically irreversible gate requires at least work

log2 3 � kT ln 2E1.6 kT ln 2 due to the entropy of the discarded information

(dotted arrows). (b) The XOR gate only requires kT ln 2 work, as it discards

less entropy per output event than the AND gate. (c) Work can be

extracted if randomness is being produced: the discarded information is

entangled with the output (orange wavy lines), and the conditional entropy

on the right hand side of (1) is negative. (d) The erasure of a quantum

system S with access to a quantum memory M must transfer the content of

S into the system E containing the discarded information, while preparing S0

in a pure state and mapping M to M0 identically. The corresponding minimal

work cost is kT lnð2Þ � HE
max S Mjð Þ; this can be achieved using the procedure

of del Rio et al.25 If the system is entangled with the memory, this quantity

is negative and work may be extracted.
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that a general classical mapping is given by the specification of the
conditional probability p(x0|x) of observing x0 at the output if the
input was x. Embedding the classical probability distributions
into the diagonals of quantum states, the infinity norm in
expression (2) becomes simply

WE¼0 � kT ln2 � log2 max
x0

X
x

p x0 xjð Þ; ð3Þ

where the sum ranges only over those x that have a non-zero
probability of occurring. In the case of deterministic mappings
p(x0|x)A{0,1}, this corresponds to the maximum number of input
states that map to a same output state. For the AND gate,
provided all four states 00, 01, 10 and 11 have non-negligible
probability of occurring, there are three input states mapping
to the same output state, so (3) gives us simply
WE¼0

AND � log23 � kT ln2 � 1:6kT ln 2. Also, in simple examples
as considered here, the expression (3) is stable to considering an
E-approximation (Supplementary Note 4); this quantity is thus
physically justified.

Crucially, our result reveals that the minimal work requirement
in general depends on the specific logical process, and not only on
the input and output states. This contrasts with traditional
thermodynamics for large systems, where the minimal work
requirement of a state transformation can always be written as a
difference of a thermodynamical potential, such as the free
energy. For example, the minimal work cost of performing
specifically an AND gate may differ from that of another logical
process mapping an input distribution (p00, p01, p10, p11) (withP

i pi¼ 1) to the distribution (p00, p01)¼ (p00þ p01þ p10, p11)
(Recall that the classical counterpart of a quantum state is a
probability distribution.). To see this, consider the XOR gate,
which outputs a 1 exactly when both inputs are different (see
Fig. 2b). The minimal work cost requirement of this gate, as given
by (3), is now only kT ln 2, as in the worst case, only a single bit of
information is erased (again supposing that all four input states
have non-negligible probability of occurring). Now, suppose that,
for some reason, the input distribution is such that p01þ p10¼
p11, that is, the input 11 occurs with the same probability as of
either 01 or 10 appearing. Then, the XOR gate reproduces the
exact same output distribution as the AND gate: in both cases, we
have p00¼ p00þ p10þ p01¼ p00þ p11 and p01¼ p11¼ p01þ p10. In
other words, both logical processes have the same input and
output state, yet the XOR gate only requires work kT ln 2
compared with the AND gate, which requires 1.6kT ln 2.
Furthermore, we point out that this difference, which appears
small in this case, may be arbitrarily large in certain scenarios
(Supplementary Note 4).

On the one hand, we are by definition interested in the work
cost of a given logical process, so one might have expected that
this work cost should not only depend on the input and output
states. On the other hand, it might seem contradictory that the
full logical process matters even though we have fixed an input
state sX. However, this makes sense if we consider preparing the
input state as part of a pure state on the input system and a
reference system. In this case, the logical process that is
implemented influences the (in principle detectable) correlations
between the output and the reference system, even if the reduced
state on the input is the fixed state sX.

We emphasize that the phenomenon observed here is
fundamentally different from the notion of thermodynamic
irreversibility. Here we always consider the optimal procedure
for implementing the logical process, whereas a thermodynami-
cally irreversible process is in fact an ‘inefficient’ physical process
that could be replaced by a more efficient, reversible one. In our
framework, the thermodynamically irreversibile processes are
those physical implementations that do not achieve the

bound (1). A longer discussion with examples is provided in
(Supplementary Note 2).

Work extraction. While erasure requires work, it is well known
that in a wide range of frameworks one can in general extract
work with the reverse logical process, which corresponds to
taking a register of bits that are all in the zero state and making
them maximally mixed3,5. Our result intrinsically reproduces this
fact: the Stinespring dilation UX!X0E of a logical process that
generates randomness in fact creates entanglement between the
output X0 and E (see Fig. 2c). The conditional entropy HE

max E X0jð Þ
then becomes negative, such that the bound (1) allows work to be
extracted. We remark that, even if the logical process EX!X0 is
classical, the relevant state for the entropic term in (1) is
entangled, and thus all but classical; this is due to the construction
of E as a purifying system for the logical process.

Erasure with a quantum memory and tightness of our bound.
Recently, del Rio et al.25 have constructed an explicit procedure
capable of resetting a quantum system S to a pure state using an
erasure mechanism assisted by a quantum memory M, and doing
so at a work cost of approximately

WE
erasure � kT ln2 �HE

max S Mjð Þ : ð4Þ
The approximation holds up to terms of the order of the
logarithm of E and are negligible in typical scenarios
(Supplementary Note 4).

Our main result implies that their procedure is nearly optimal
(Fig. 2d). Indeed, consider the total system X ¼ S�M, in the
initial state sSM, with the logical process E �ð Þ ¼ trS �ð Þ � 0j i 0h jS0 ,
denoting symbolically with a prime the output system S0 (The
state on M remains unchanged.). One then straightforwardly sees
that the resulting joint state on E and the output X0 ¼ S0 �M is
obtained from the initial state on S and M by isometrically
‘transferring’ the S part to E and replacing it by a fixed pure
state. The entropy term in our bound (1) then becomes
HE

max E S0Mjð Þ ¼ HE
max E Mjð Þ ¼ HE

max S Mjð Þ, the latter entropy
being evaluated on the input state. This matches the term in (4).

Conversely, this optimal erasure procedure can be used to
show that for any arbitrary logical process, the minimal amount
of work our result associates to it can be in principle achieved to
good approximation. Given a logical process E and an input state
sX, calculate its Stinespring dilation UX!X0E as explained above,
and consider an ancillary system AE of the same dimension as E.
This ancilla system is initialized in a pure state 0j iAE

. One can
then carry out a unitary U0XAE!X0A0E

on X and AE, chosen such that

U0XAE!X0A0E
sX � 0j i 0h jAE

� �
¼ UX!X0A0E

sXð Þ : ð5Þ

In effect, A0E impersonates the abstract system E while we
perform a unitary corresponding to the Stinespring dilation of E
(see inset of Fig. 1b). This unitary operation can be implemented
at no work cost because it is reversible. The aforementioned
optimal erasure procedure can then be used to restore the ancilla
A0E to its original pure state, using the output system X0 as
the quantum memory, at a work cost of approximately
kT lnð2Þ �HE

max A0E X0j
� �

. As A0E corresponds to E, this matches
our bound (1) and therefore proves its tightness.

The work requirement of a quantum measurement. The
problem of determining the amount of work needed to carry out
a quantum measurement has been the subject of much
literature38–40, especially in the context of Maxwell’s demon5,6,12,41.
A quantum measurement is a logical process (depicted in Fig. 3a)
acting on a system X to be measured and a classical register C
initially set to a pure state, and outputting systems C0 and X0, with
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C0 containing the measurement result and X0 the quantum post-
measurement state. We will consider a projective measurement for
simplicity, treating the more general case in (Supplementary
Note 4). The logical process corresponding to the measurement
described by a complete set of projectors {Pi}i takes the form

ECX!C 0X0 sCXð Þ ¼
X

i

ij i ih jC 0� PisXPið Þ : ð6Þ

Our bound (2) for this map is at most zero (since
E 0j i 0h jC��X
� ��� ��

1� 1), implying that the measurement can be
carried out in principle at no work cost, as was already stated by
Bennett5. Note that a work cost is required if the classical register C
was not initially pure40.

A related question is the work cost of erasing the information
contained in the register C0 after the measurement. Doing so
would allow us to construct a cycle. The cost of this erasure can
be reduced using the post-measurement state as a quantum
memory, by employing the procedure presented above, to
kT ln 2 �HE

max C0 X0jð Þ. But because C0 and X0 may only be
classically correlated, no work may be extracted in this way25.
In some cases this work cost may be zero, for example for
projective measurements on a maximally mixed state
(Supplementary Note 4). This might seem to save Maxwell’s
demon from Bennett’s information-theoretic exorcism, which
argues that the demon must pay work to reset its memory5 (see
Fig. 3c). However, the key point is to notice that the demon
cannot use the post-measurement state to both extract work and
to reset its internal memory register.

Discussion
Our main result exposes various features of thermodynamics in
the microscopic regime that are not present in the standard

setting of large systems. In particular, as argued above, the
minimum work cost of a logical process cannot be given in terms
of a state function, such as the entropy or the free energy in
thermodynamics.

Traditional thermodynamics is concerned with macroscopic
systems, and we may retrieve this limit by considering logical
processes that consist of many individual operations. Under
appropriate independence assumptions and using typicality
arguments42, one can show that the average minimal work cost
per process as determined by (1) simply takes the form kT ln
(2) � [H(X)�H(X0)], where H(X)¼ � tr(rX log2 rX) is the usual
von Neumann entropy (see Methods section): the minimal work
requirement is now given by a function of state H(X), and no
longer depends on the logical process that maps X to X0 (see
Methods).

Our result thus provides the following fresh view on the
macroscopic regime. Thermodynamics can be seen as a general
framework, in which the second law postulates the existence of a
state function, the thermodynamic entropy, which relates to the
heat flow in processes. Many standard results of thermodynamics
follow from that starting point. It is now the role of a microscopic
theory to construct a state function with this property, based on
the microscopic dynamics of the particular system. In textbook
statistical mechanics, this construction is given for several
physical setups, such as gases or lattices; one usually considers,
for example, the configuration entropy, or an appropriately
normalized Shannon or von Neumann entropy of the density of
the statistical ensemble. Our result generalizes this construction
and clarifies when it is justified: the state function, in general,
appears whenever the inherent fluctuations due to the micro-
scopic stochastic nature of the process vanish by typicality.
The existence of an entropy state function is therefore not a
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that the measurement costs no work in principle. (c) Maxwell’s demon with a Szilard box, as proposed by Bennett5. A measurement detects on which side

of the inserted separator the particle is, and extracts work with a piston in either case. The cylinder is left in its original state, apparently creating a

perpetuum mobile with net work gain. However, the measurement outcome (represented by ‘L’ or ‘R’) had to be stored in a memory register, which was

initially in some pure state (represented by ‘—’) and the work cost of resetting it to a pure state again compensates the work gain. The register could have

been reset using the post-measurement state at no work cost, but the latter was consumed during work extraction.
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property of the microscopic system; it is rather an emergent
quantity that appears whenever the full system is typical, such as
in the limit of macroscopic processes (Fig. 4).

Finally, one should note that the system in consideration need
not be large for the typicality arguments to apply. For example, if
one considers the work requirement of performing many
independent repetitions of a single given logical process (seen
as one big joint process), then the work requirement WE per
repetition converges to the average work requirement as
calculated via statistical mechanics, even if the individual system
is small: in this case, the entropy function emerges. This further
justifies the usage of the von Neumann entropy in statistical
mechanics even for small systems. Conversely, a large system
does not necessarily display typicality; such is the case for systems
out of thermodynamic equilibrium. An explicit example is
provided in (Supplementary Note 4).

In summary, our main result quantifies the minimal required
work to perform a logical process on the microscopic level. On
the conceptual level, our result shows how, for macroscopic
systems, the information-theoretic von Neumann entropy
emerges as a state function and can thus be strictly identified
with the thermodynamic entropy.

Methods
Mathematical formulation and proof of the main result. The task is to
implement the logical process EX!X 0 . Recall the framework allows for the
implementation of any unital map, that is, �E 1ð Þ ¼ 1, to be performed on the
systems at hand. We first adapt a well-known classical result about doubly
stochastic and doubly sub-stochastic matrices43 to relate unital quantum maps to
so-called subunital maps, that is, maps ~E that satisfy ~E 1ð Þ � 1. Note also that the
composition of two unital maps is unital, and similarly the composition of two
subunital maps is subunital. We will need the following proposition, which we
prove in (Supplementary Note 6) as Prop. 17.

Proposition I (dilation of a subunital map). Let HK and HL be finite dimensional
Hilbert spaces, and let ~EK!L be a completely positive, trace-nonincreasing,
subunital map. Then there exists finite dimensional Hilbert spaces HQ and HQ0 , and
a completely positive, trace-preserving, unital map ~EKQ!LQ0 such that

~EK!L �ð Þ ¼ 1L � fh jQ0
� �

�EKQ!LQ0 1K � ij iQ
� �

�ð Þ 1K � ih jQ
� �h i

1L � fj iQ0
� �

; ð7Þ

for some pure states |iiQ, |fiQ0. In addition, dim (HK � HQ)¼ dim (HL � HQ0 ).
Let’s now denote by A the ‘information battery’ system, which is the physical

system that tracks how much work we have used or extracted. The system A may
be as large as we might wish (but finite) and starts in a state 2� l112l1 �
0:::0j i 0:::0h j with some given number of mixed qubits l1. The system X starts in a

given state sX, and we assume that the Hamiltonians of X and A vanish at the
beginning and at the end of the physical process.

Our framework specifies that we are allowed to perform any sequence of joint
unital operations on any subsystems of X and A. The final state on X0 � A0 should
be a product state, with the state on A0 of the form 2� l212

l2 � 0:::0j i 0:::0h j. Note

that the structure imposed on this state is not a restriction: if the final state on A0 is
not of this form, an additional unital map can be applied on the support of the final
state on A0 to replace the latter by a maximally mixed state on its support.
However, this condition does assume that there is no way to extract work while
transforming a state r to a maximally mixed state of the same rank, or,
equivalently, that the worst-case erasure cost of a state r is kT ln 2 log2 rank r. This
can usually be seen as a consequence of the choice of framework, and is in line with
the findings of refs 28, 29. Alternatively, given a state r, let m be its rank, pmin its
smallest non-zero eigenvalue and P the projector on its support. The state r may
be written as a statistical mixture of 1

m 1m with probability m � pmin and some state
(r� pminP)/(1�m pmin) with probability 1�m � pmin. In the event where the
system is prepared in the maximally mixed state of rank m, the work requirement
for erasure is deterministic because the state is uniform, and equals kT ln 2 log2 m
(refs 3,5,11,12); it follows that the work required for erasing r with certainty is at
least kT ln 2 log2 rank r.

Observe that our framework is equivalent to allowing the agent to perform a
single unital operation on the whole of X and A, leaving both systems in the state
rX0 � 2� l212

l2 � 0:::0j i 0:::0h j
� �

A0 : indeed the composition of unital maps is
unital, and extending a unital map by an identity map still yields a unital map.

Even though we have presented our results while hinting that X and X0

represent the same system, and are thus of the same dimension, this need not be
the case: our results are valid for arbitrary finite dimensions of X and X0 . However,
we will assume that one can bring in ancillas of arbitrary finite dimension in pure
states and dispose of ancillas restored to a pure state for free. Henceforth, we will
assume that such ancillas are counted as part of the pure systems composing the
work storage systems A and A0 (The systems A and A0 hence need not be of same
dimension.).

We must in addition require that the physical process implement the logical
process E. Let |siXR be a purification of sX on a system R. If one applies the
physical process to X while leaving R untouched, then the state on X0 � R that
results from the physical process must be equal to the state rX0R that would
result by applying the mapping E � idR on sXR, that is, rX 0R ¼ E � idR sXRð Þ.
Observe that this constraint is equivalent to requiring the logical mapping
corresponding to the physical process to be exactly E on the support of sX,
due to the Choi-Jamiołkowski isomorphism. So, even with a fixed given input
state sX, the full information about the mapping can be observed in the resulting
state on X0 � R, by keeping a purification of sX: in other words, the full
information about the mapping and the input state is one-to-one encoded
in the bipartite state rX0R.

Let’s now state a formal version of our problem, in the case where we do not yet
consider an E-approximation. The task is to find the minimal kT ln2 � (l2� l1),
such that there exists a unital, trace-preserving, map �EXA!X0A0 satisfying

�EXA!X0A0 sXR � 2� l112l1

� �� �
¼ rX0R � 2� l212l2

� �
; ð8Þ

where rX0R ¼ E sX0Rð Þ and where an identity mapping on R is implicitly
understood (We henceforth omit the pure states on system A, that is, the factors
‘� 0:::0j i 0:::0h j’ above, for readability.).

At this point, note that whenever for given l1, l2, there is such a unital map,
then there is also a subunital map achieving the same logical process and vice versa.
Let’s write this as a proposition:

Proposition II. Let l1, l2Z0 and let E be given. Then are equivalent
(1) For a large enough A, and corresponding A0, there exists a trace-preserving

unital map �EAX!A0X0 such that

�EAX!A0X0 sXR � 2� l112l1

� �
A

� �
¼ rX 0R � 2� l212l2

� �
A0 ; ð9Þ

H (X)
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Statistical
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H (X)
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Figure 4 | Relation between information-theoretic and thermodynamic quantities. Our result relates two quantities that depend on the microscopic

details of the system: the information-theoretic entropy HE
max E X0jð Þ that quantifies the amount of information discarded by the logical process, and the

amount of work WE needed to carry out a logical process on the microscopic level. Standard thermodynamics is obtained in the limit of macroscopic

systems. In this limit, it follows from typicality arguments that the entropic measure HE
max converges to the von Neumann entropy H(X), which may thus be

seen as an emergent quantity. Furthermore, in this regime, the minimum amount of work WE used by a process corresponds to the heat Q that is reversibly

transferred to the environment, which in turn is related to the thermodynamic entropy, S, as defined by Clausius. Our result thus permits the identification

of the information-theoretic entropy H(X) for a macroscopic observer, that is, the entropy considered in statistical mechanics, with the thermodynamic

entropy S.
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(2) For a large enough B, and large enough B0, there exists a trace-nonincreasing
subunital map ~EXB!X 0B0 such that

~EXB!X 0B0 sXR � 2� l112l1

� �
B

� �
¼ rX0R � 2� l212l2

� �
B0 : ð10Þ

Proof. The forward direction is straightforward, as a unital map is in particular
subunital. For the converse, we will dilate the given subunital map ~EXB!X 0B0 to a
unital map using Prop. 1, with HK ¼ HX � HB and HL ¼ HX0 � HB0 : let HQ ,
HQ0 and �EKQ!K 0Q0 ¼ �EXBQ!X0B0Q0 be given by the Proposition. Now define
HA ¼ HB � HQ and HA0 ¼ HB0 � HQ0 . We would like to show that
�EXA!X0A0 ðsXR � 2� l112l1

� �
AÞ ¼ rX0R � ð2� l212l2 ÞA0 , where we have defined

ð2� l112l1 ÞA ¼ 2� l112l1

� �
B� ij i ih jQ and ð2� l212l2 ÞA0 ¼ 2� l212l2

� �
B0� fj i fh jQ0

(as pure states, |iiQ and |fiQ0 do not alter the amount of work stored in the work
storage systems A and A0). Define also the shorthand �EX 0B0Q0R :¼ �EXBQ!X0B0Q0

ðsXR � 2� l112l1

� �
B� ij i ih jQÞ. By construction, and using (7), we have

1X 0B0R � fh jQ0
� �

�EX 0B0Q0R 1X0B0R � fj iQ0
� �

¼ rX0R � 2� l212l2

� �
A0 : ð11Þ

Since �E is trace-preserving, we have tr (�EX 0B0Q0R)¼ 1 and

tr 1X0B0R � 1� fj i fh jð ÞQ0
� �

�EX0B0Q0R

h i
¼ 1� tr 1X0B0R � fj i fh jQ0

� �
�EX 0B0Q0R

h i
¼ 0 ;

as the expression in (11) has unit trace. It follows that �EX0B0Q0R lies in the support of
1X0B0R � fj i fh jQ0 , and from (11) we conclude as requested that

�EX0A0R ¼ rX0R � 2� l212l2

� �
A0 :

We can now characterize the allowed operations in our framework and their
work costs with the following proposition.

Proposition III. Let sX, EX!X0 be given. Choose system B big enough and let be
given integers l1, l2Z0. Then are equivalent:

(1) There exists a trace-nonincreasing subunital map ~EXB!X0B0 such that

~EXB!X 0B0 sXR � 2� l112l1

� �
B

� �
¼ rX0R � 2� l212l2

� �
B0 ;

(2) There exists a trace-nonincreasing map T , mapping linear operators
on HX to linear operators on HX 0 , such that T X!X 0 1ð Þ � 2� l1 � l2ð Þ1, and
T X!X0 sXRð Þ ¼ rX 0R ;

(3) The map EX!X0 satisfies E �Xð Þk k1� 2� l1 � l2ð Þ, where PX is the projector
onto the support of sX.

Proof. (i)) (ii): Define T X!X0 �ð Þ ¼ trB 12l2
~EXB!X0B0 �ð Þ � 2� l112l1

� �� �
12l2

� 	
.

Then, T sXRð Þ ¼ trB0 12l2 E sXRð Þ � 2� l212l2

� �� �
12l2

� 	
¼ rX 0R . Also, T 1ð Þ ¼

trB0 12l2
~EXB!X0B0 1X � 2� l112l1

� �� �
12l2

� 	
� 2� l1 trB0 12l2

~EXB!X0B0 1XAð Þ12l2

� 	
� 2l2 � l11X , because ~E is subunital.

(ii)) (iii): We have E �Xð Þ ¼ T �Xð Þ because the maps are equal
on the support of rX (alternatively, operate trR[( � )rR

� 1] on both sides of
T sXRð Þ ¼ rX0R ¼ E sXRð Þ noting that rR¼sR); then because PXr1X, we have
E �Xð Þk k1� T 1Xð Þk k1� 2� l1 � l2ð Þ.

(iii)) (i): Let ~EXA!X0A0 �ð Þ ¼ E trB �X � 12l1ð Þ �ð Þ �X � 12l1ð Þ½ �ð Þ � 2� l212l2

� �
.

Observe that ~E is subunital: ~EXA!X0A0 1XAð Þ ¼ E trB �X � 12l1½ �ð Þ � 2� l212l2

� �
�

2l1 � l2E �Xð Þ � 12l2 � 1X 0A0 . Also, ~EXA!X0A0 ðsXR � ð2� l112l1 ÞÞ ¼ E sXRð Þ�
ð2� l212l2 Þ, because the input to ~E is inside the support of �X � 12l1 . Hence,
~E satisfies the conditions of (i).

With these propositions, we can calculate straightforwardly and explicitly the
minimization in the formulation of the main problem. It now reduces to the simple
question of minimizing l2� l1 subject to E �Xð Þk k1� 2l2 � l1 ; we have thus
proven (2).

Entropic form of the bound. Some basic facts about the smooth entropy
framework are necessary to understand the rest of this section. For a more
complete introduction on the smooth entropy framework, we refer to
(Supplementary Note 3).

An equivalent definition of the Rényi-zero conditional entropy, also known as
alternative max-entropy, for a bipartite state rAB, is given as

H0 A Bjð Þr¼log2 trA�ABk k1; ð12Þ

where PAB is the projector on the support of rAB. For consistency with the
standard literature, we will express our final result in terms of the max-entropy,
which is related to the Rényi-zero entropy up to factors logarithmic in E (ref. 34).
The non-smooth conditional max-entropy can be defined as

Hmax A Bjð Þ ¼ max
oB

log F2 rAB; 1A � oBð Þ; ð13Þ

where F r1; r2ð Þ ¼ kr1=2
1 r1=2

2 k1 is the fidelity between two quantum states35,
and where the optimization ranges over density operators on B. The smooth
conditional max-entropy is defined by ‘smoothing’ the max-entropy on states that
are E-close to rAB in fidelity distance:

HE
max A Bjð Þr¼ min

r̂ �E r
Hmax A Bjð Þr̂ ; ð14Þ

where the minimization ranges over all r̂ such that F2 rAB; r̂ABð Þ � 1� E2.

Let’s now return to our bound (2). Consider the Stinespring dilation of E, given
by an isometry VX-X0E including an additional system E : E �ð Þ ¼ trEðVX!X 0E �ð ÞVyÞ.
Defining the pure state rX0ER¼VsXRVw is obviously compatible with our previous
definition of rX0R, as trErX0ER ¼ E sXRð Þ. It follows that VPXVw¼PX0E, where PX0E

is the projector on the support of rX0E. Recalling (12), we have

E �Xð Þk k1¼ trEV�X Vy
���

���
1
¼ trE�X 0Ek k1¼ 2H0 E jX0ð Þr ; ð15Þ

and our bound (2) takes the form

WE¼0 � kT ln 2 � H0 E X0jð Þr : ð16Þ

Considering an E-approximation. A ‘smooth’ version of the result is straight-
forward to obtain. In this case, we allow the actual process to not implement
precisely E, but only approximate it well. The best strategy to detect this
inexactness is to prepare |siXR and send sX into the process, and then perform a
measurement on rX0R. To ensure that the approximate process is not distin-
guishable from the ideal process with probability greater than E, we require that the
trace distance between the ideal output of the process rX0R and the actual output
r̂X0R must not exceed E. We can apply our main result to the approximate process
that brings s to r̂, and lower bound the work cost of that process by

Wðs! r̂Þ � H0 E X0jð Þr̂�kT ln ð2Þ
� Hmax E X0jð Þr̂�kT ln ð2Þ ;

ð17Þ

where the second inequality is shown in ref. 44 This relaxation of H0 to Hmax is
done for the sake of presentation and consistency with other results within the
smooth entropy framework. When smoothing with a parameter E, there is no
significant difference with this relaxation: indeed, the two quantities are equivalent
up to adjustment of the E parameter and up to a logarithmic term in E (Lemma 18
of ref. 44).

If we optimize (17) over all possible maps T that output such r̂X0R, we obtain a
bound on the work requirement of the E-approximation,

W � min
r̂X 0R �

E
rX 0R

Hmax E X0jð Þr̂�kT lnð2Þ

� min
r̂X0RE �

�E
rX0RE

Hmax E X0jð Þr̂�kT lnð2Þ

¼H�E
max E X0jð Þr�kT lnð2Þ ;

ð18Þ

where the first optimization ranges over all r̂X0R such that the trace distance
1
2 r̂X 0R � rX 0Rk k1� E, and where the second optimization ranges over all r̂X 0RE such
that F2 rX0RE; r̂X0REð Þ � 1��E2, with �E ¼

ffiffiffiffiffi
2E
p

, where F r; r̂ð Þ ¼ ffiffiffi
r
p ffiffiffî

r
p�� ��

1
is the

fidelity between the quantum states r and r̂.35

Macroscopic limit: many independent repetitions. As we have seen in the
introduction, considerable previous work has focused on the limit cases where
many i.i.d. systems are provided. In such a case, the process E�n is applied on n
independent copies of the input s�n , and outputs r�n. A smoothing parameter
E40 is chosen freely. We may simply apply our (smoothed) main result to get an
expression for our bound on the work cost,

W � H�E
max En Xnjð Þr�n �kT lnð2Þ ; ð19Þ

However, it is known that the smooth entropies converge to the von Neumann
entropy in the i.i.d. limit42,

lim
�E!0

lim
n!1

1
n

H�E
max En Xnjð Þr�n¼ H E Xjð Þr ; ð20Þ

which allows us to simplify the expression of the work cost per particle, or per
repetition of the process, to

H E Xjð Þr¼H EXð Þr �H Xð Þr¼ H Xð Þs �H Xð Þr ;

where the last equality holds because rEX and sX have the same spectrum being
both purifications of the same rR¼ sR. We conclude that in the asymptotic i.i.d.
case, the work cost is simply given by the difference of entropy between the initial
and final state,

W � H initial stateð Þ�H final stateð Þ½ � kT lnð2Þ : ð21Þ

Here W is the average work cost per particle, or per repetition of the process. In the
case for example of many independent particles undergoing a similar, independent
process, the total work W required is obtained by considering the entropy of the
full system of all particles in both terms in (21).
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