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Abstract

Amikacin (AK) has the largest spectrum of aminoglycosides. However, its use is constrained

because of nephrotoxicity and ototoxicity. Ellagic acid (EA) is a polyphenol present in plants.

It has antioxidant, anticarcinogenic, and antimutagenic characteristics. Cilostazol (CTZ) is a

phosphodiesteraseШ inhibitor, it is a potent vasodilator and antiplatelet drug. CTZ has an

inhibitory effect on reactive oxygen species and superoxide generation in addition to

hydroxyl radicals scavenging action. This study determines whether EA and cilostazol have

a protective effect against AK-induced nephrotoxicity. Forty-nine rats were divided into

seven equal groups: control normal; AK 400 mg/kg; EA 10 mg/kg; CTZ 10 mg/kg; AK 400

mg/kg plus EA 10 mg/kg; AK 400 mg/kg plus CTZ 10 mg/kg; AK 400 mg/kg plus EA 10

mg/kg and CTZ 10 mg/kg. For seven days, drugs were administered using gavage one hour

before intramuscular injection of AK. Twenty-four hours after the last AK dosage, blood sam-

ples were collected to determine blood urea nitrogen and creatinine levels. Kidneys were

removed for histopathological examination and measurement of: malondialdehyde (MDA),

catalase (CAT), decreased glutathione (GSH), superoxide dismutase (SOD), interleukin 6

(IL6), tumor necrosis factor-alpha (TNFα), nuclear factor kappa B (NFκB), and Bcl-2 associ-

ated x protein (BAX). AK caused kidney damage, inflammatory mediator elevation, and oxi-

dative stress and apoptotic markers. Rats receiving EA or CTZ indicated significant

improvement in kidney function, decrease in oxidative stress and inflammation through

NF-kB down-regulation and BAX expression. The combination of EA and CTZ showed a

synergistic effect. In conclusion, EA and CTZ might play a beneficial role in preventing neph-

rotoxicity induced by AK partially by inhibition of tissue inflammation and apoptosis.

Introduction

Nephrotoxicity is defined as a 50% increase in serum creatinine or a 50% decrease in creatinine

clearance and an increase in blood urea nitrogen. Drugs like aminoglycosides, chemotherapeutic
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agents, angiotensin-converting enzyme inhibitors, non-steroidal anti-inflammatory drugs,

angiotensin receptor blockers, vancomycin, amphotericin B and chemicals as well as radio con-

trast cause 20% of nephrotoxicity [1]. The mechanisms underlying nephrotoxic-induced renal

cell death and renal diseases are surprisingly similar. ATP depletion, oxidative stress, proximal

tubule cell death and loss of the brush border membrane, and cell polarity are all involved in

ischemia-induced acute kidney injury (AKI) [2]. AKI induced by cancer chemotherapeutic, such

as cisplatin, alternatively, includes oxidative stress, proximal tubule cell death, and loss of the

brush border membrane and polarity [3]. Increased oxidative stress, ATP loss, and proximal

tubule cell death are all common manifestations of nephrotoxicity caused by contrast media, also

known to affect glomerular function and renal blood flow [4].

Amikacin (AK) has the broadest spectrum and the least resistance of all aminoglycosides.

AK is preferred owing to its advantageous characteristics, including rapid and robust bacte-

ricidal activity, synergy with β-lactam antibiotics, low cost, chemical stability, and low resis-

tance; however, its use is limited because of the risk of nephrotoxicity and ototoxicity [5].

Because AK is not metabolized in the body and is eliminated in large amounts in the urine,

it builds up in the proximal convoluted tubules, causing free radical manufacture and renal

damage [6]. Several mechanisms, such as inflammation, blockage of transporters, produc-

tion of oxidative stress, and decreased renal blood flow, are involved in amikacin-induced

renal damage [7].

Ellagic acid (EA) is a polyphenolic compound naturally found in plants. Several studies

have indicated that EA has antioxidant, anti-apoptotic, and anticarcinogenic qualities. This

antioxidant action of this compound is determined by its chemical structure, precisely the

number of hydroxyl groups and their ability to boost the stability of the phenoxyl radicals [8].

EA reduces the expression of proinflammatory and profibrogenic cytokines, such as tumor

necrosis factor-alpha (TNFα), transforming growth factor-beta (TGFβ), and many interleu-

kins involved in alcohol-induced inflammation and fibrosis [9].

Cilostazol (CTZ) is a strong antiplatelet and vasodilator that is a specific PDE III inhibitor.

It increases intracellular cyclic adenosine monophosphate (cAMP) levels [10]. It also increases

cyclic guanosine monophosphate (cGMP) [11]. CTZ prevents oxidative stress by activating

redox defense systems through increased expression of phosphoinositide 3-kinase/protein

kinase B (PI3K/Akt) and nuclear factor erythroid 2-related factor/heme oxygenase-1 (Nrf2/

HO-1) mRNAs, resulting in oxidative stress reduction and restoration of mitochondrial dys-

function [12].

This study determines possible nephroprotective effects of EA, CTZ, their combination,

and the underlying mechanism of renal tubular necrosis induced by AK.

Materials and methods

Drugs and reagents

Amikacin (Amikacin1) 500 mg/2ml vial (Amoun Pharmaceutical Co., EL-obour city, Cairo,

Egypt). All other drugs were bought from Sigma Aldrich (St. Louis, MO).

Experimental animals and ethical statement

Forty-nine male albino rats weighing 150–180-g were obtained from Zagazig University Fac-

ulty of Veterinary Medicine. The animals were placed in hygienic and standard environmental

conditions (25 ± 2˚C) and 12 h light/dark cycle. They were given access to water and food ad-
libitum. The study was approved by Zagazig University’s local animal Ethical Committee. The

approval number is ZU-IACUC/3/F/57/2019. National Institutes of Health’s guidelines (USA)
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were followed throughout the experiment. Rats were randomly divided into seven groups;

each group having seven rats as follows:

Group 1: non-treated (control normal);

Group 2: received AK 400 mg/kg, intramuscular injection once daily for seven days for induc-

tion of experimental nephrotoxicity as described by [13].

Groups 3: received EA 10 mg/kg; dissolved in 1 ml distilled water and given by oral gavage

according to [14].

Groups 4: received CTZ 10 mg/kg; dissolved in 1 ml distilled water and given by oral gavage

according to [15]

Group 5: received EA 10 mg/kg, orally by gavage one hour before intramuscular injection of

AK 400 mg/kg.

Group 6: received CTZ 10 mg/kg, orally by gavage one hour before intramuscular injection of

AK 400 mg/kg.

Group 7: received EA 10 mg/kg plus CTZ 10 mg/kg, orally by gavage one hour before intra-

muscular injection of AK 400 mg/kg (Fig 1).

Fig 1. Experimental design.

https://doi.org/10.1371/journal.pone.0271591.g001
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Collection of blood and renal samples

On the 8th day of the experiment, the animals were anesthetized using a 50 mg/kg intraperi-

toneal injection of sodium pentobarbital for sacrifaction. The blood samples from the

retro-orbital plexus of veins were collected using microcapillary tubes. These samples were

centrifuged at 3000 × g for ten minutes to separate the serum for determining serum BUN

and creatinine concentrations. The left kidneys were dissected for histopathological exami-

nation and biochemical estimation of malondialdehyde (MDA), reduced glutathione

(GSH), superoxide dismutase (SOD), catalase (CAT), nuclear factor kappa B (NFκB), inter-

leukin 6 (IL6), tumor necrosis factor-alpha (TNFα), and Bcl-2 associated x protein (BAX).

The remaining kidneys were frozen at −80˚C and ice-cold 0.05 M phosphate buffer pH 7.4

until used.

Biochemical analysis

Determination of BUN and creatinine. Using kits bought from Spinreact (Gerona,

Spain) and following the manufacturer procedure.

Estimation of lipid peroxidation marker. MDA levels in kidney homogenates were mea-

sured by spectrophotometry. Kit reagents obtained from ZeptoMatrix corporation, Bufflo,

united states (catalog No: 0801192). kidney samples were homogenized in ice-cold 50 mM

potassium phosphate buffer (pH 7.5), centrifuged for 15 min at 4˚C 12,000 × g then the super-

natant was obtained. MDA in the supernatant can generate a colorful complex with thiobarbi-

turic acid, which was absorbed maximally at 535 nm [16].

Estimation of the antioxidant parameters; GSH, CAT, and SOD. Colorimetric kits

were obtained from Dokki Biodiagnostic Company in Giza, Egypt. Measurements were

carried out on reduced glutathione levels using the colorimetric method based on the

reduction of 5,5‘dithiobis (2-nitrobenzoic acid) (DTNB) with glutathione (GSH) to obtain

a yellow compound. The decreased chromogen is directly proportional to GSH concentra-

tion, and its absorbance can be measured at 405 nm [17]. CAT was measured following

the method performed by [18]. SOD activity was determined using the method described

by [19].

Quantitative estimation of tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL6)

concentration in renal tissue. They were analyzed using USCN Life Science Inc. ELISA kits.

According to the manufacturers’ protocol, the competitive inhibition enzyme immunoassay

technique was used in this assay.

Estimation of Bcl-2 associated x protein (Bax) and nuclear factor kappa B (NFκB) in

renal tissue. It was determined using quantitative real-time PCR after total RNA was isolated

according to the manufacturer’s instructions using the Qiagen tissue extraction kit (Qiagen,

USA). Using a high-capacity cDNA reverse transcription kit (Fermentas, USA), total RNA was

converted to cDNA. Then, using Applied Biosystems with Step One TM software version 3.1

(USA), amplification and analysis of real-time qPCR product were conducted. The primer

sequence of the gene under study include:

BAX: Forward primer:5’-CCCTGTGCACTAAAGTGCCC-3.

Reverse primer: 5’-CTTCTTCACGATGGTGAGCG-3

NFκB: Forward primer: 5’-CATTGAGGTGTATTTCACGG -3

Reverse primer: 5’-GGCAAGTGGCCATTGTGTTC -3
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Histopathological studies

The kidneys were quickly extracted and opened. The specimens were fixed in 10% formalin,

sectioned into 5 mm thick paraffin blocks, and hematoxylin as well as eosin stains (H&E) were

used for light microscopy [20].

Statistical analysis

To compare all groups, a one-way analysis of variance (ANOVA) was conducted, while to

compare between every two groups, the post-hoc Turkeyʼs test was used. All data are expressed

as mean ± SEM. A p-value less than 0.05 is considered significant. Computer analysis of the

obtained data was conducted using the Statistical Package for Social Services version 25

(SPSS).

Results

Effect of ellagic acid, cilostazol and their combination on renal function

AK 400 mg/kg significantly increased BUN and creatinine levels compared with the normal

control group. EA 10 mg/kg or CTZ 10 mg/kg alone produced a non-significant reduction in

both parameters in relation to the normal control group. AK plus EA and AK plus CTZ signifi-

cantly reduced BUN and creatinine compared with the AK group. AK plus EA and CTZ signif-

icantly reduced both parameters than each drug alone (Fig 2).

Effect of ellagic acid, cilostazol, and their combination on oxidative stress

markers

AK 400 mg/kg significantly increased MDA levels in the renal tissue and caused a significant

reduction of CAT, SOD, and GSH in renal tissue compared to the control group. EA10 mg/kg

or CTZ 10 mg/kg alone produced non-significant results concerning the normal control

Fig 2. The effect of ellagic acid, cilostazol, and their combination on renal function. Graphical presentation of serum BUN (blood urea nitrogen) (A) and creatinine

(B). Ellagic acid (EA) 10 mg/kg, cilostazol (CTZ) 10 mg/kg and their combination were administered one hour before intramuscular injection of amikacin 400 mg/kg for

seven days. Groups were compared using one-way ANOVA and post-hoc Turkeyʼs test. Values are presented as mean ± SE (n = 7). Values without common small letters

are significantly different (p< 0.05).

https://doi.org/10.1371/journal.pone.0271591.g002
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group. AK plus EA and AK plus CTZ significantly decreased MDA and significantly increased

GSH, SOD, and CAT in renal tissue concerning the AK group. AK plus EA and CTZ produced

a more significant MDA reduction and a more significant rise of GSH, SOD, and CAT than

each drug alone (Fig 3).

Effect of ellagic acid, cilostazol, and their combinations on inflammatory

markers

AK 400-mg/kg produced a significant increase in renal tissue TNFα and IL6 compared to the

normal control group. EA 10 mg/kg or CTZ 10 mg/kg alone produced non-significant results

concerning the control group. AK plus EA and AK plus CTZ produced a significant reduction

in TNFα and IL6 in renal tissue compared to the AK group. AK plus EA and CTZ produced a

more significant decrease in TNFα and IL6 than each drug alone (Fig 4).

Effect of ellagic acid, cilostazol, and their combination on apoptotic

markers

AK 400 mg/kg resulted in a significant increase in NFκB and BAX expression in renal tissue

compared with the normal control group. EA 10 mg/kg or CTZ 10 mg/kg alone produced a

non-significant result concerning the normal control group, while AK plus EA and AK plus

CTZ showed a significant decrease in NFκB and BAX expression concerning the AK group.

AK plus EA and CTZ produced a more significant NFκB reduction and BAX expression in

renal tissue than each drug alone (Fig 5).

Fig 3. Effect of ellagic acid, cilostazol, and their combination on oxidative stress markers in renal tissue.

Quantitative analysis of malondialdehyde (MDA) (A), reduced glutathione (GSH) (B), superoxide dismutase (SOD)

(C), catalase (CAT) (D) in the renal tissue. Ellagic acid (EA) 10 mg/kg, cilostazol (CTZ) 10 mg/kg and their

combination were administered one hour before intramuscular injection of amikacin 400 mg/kg for seven days.

Groups were compared using one-way ANOVA and post-hoc Turkeyʼs test. Values are indicated as mean ± SE (n = 7).

Values without common small letters are significantly different (p< 0.05).

https://doi.org/10.1371/journal.pone.0271591.g003
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Effect of ellagic acid, cilostazol, and their combination on the structure of

the renal cortex

Histopathological findings exhibited the normal structure of the renal cortex, tubules, and glo-

meruli [A]. After nephrotoxicity was induced by amikacin, the kidney exhibited karyolysis,

loss of the outer basement membrane of tubules, and accumulation of necrotic material in the

lumen [B].

Fig 4. The effect of ellagic acid, cilostazol, and their combinations on inflammatory markers. Quantitative analysis of tumor necrosis

factor-alpha (TNF-α) (A) and interleukin 6 (IL6) (B) in the renal tissue. Ellagic acid (EA) 10 mg/kg, cilostazol (CTZ) 10 mg/kg and their

combination were administered one hour before intramuscular injection of amikacin 400 mg/kg for seven days. Groups were compared using

one-way ANOVA and post-hoc Turkeyʼs test. Values are presented as mean ± SE (n = 7). Values without common small letters are

significantly different (p< 0.05).

https://doi.org/10.1371/journal.pone.0271591.g004

Fig 5. The effect of ellagic acid, cilostazol, and their combination on apoptotic markers. Quantitative analysis of Bcl-2 associated x protein

(BAX) and nuclear factor kappa B (NFκB) in renal tissue. Ellagic acid (EA) 10 mg/kg, cilostazol (CTZ) 10 mg/kg and their combination were

administered one hour before intramuscular injection of amikacin 400 mg/kg for seven days. Groups were compared using one-way ANOVA and

post-hoc Turkeyʼs test. Values are presented as mean ± SE (n = 7). Values without common small letters are significantly different (p< 0.05).

https://doi.org/10.1371/journal.pone.0271591.g005

PLOS ONE Cilostazol and nephrotoxicity

PLOS ONE | https://doi.org/10.1371/journal.pone.0271591 July 18, 2022 7 / 14

https://doi.org/10.1371/journal.pone.0271591.g004
https://doi.org/10.1371/journal.pone.0271591.g005
https://doi.org/10.1371/journal.pone.0271591


EA 10 mg/kg produced no changes in normal kidney structure [C]. Also, CTZ 10 mg/kg

produced no changes in normal kidney structure [D]. The administration of EA 10-mg/kg or

CTZ 10 mg/kg one hour before AK as a prophylactic agent exhibited an improvement of AK-

induced nephrotoxicity in reducing the percentage of the area of inflammation, eosinophilia,

and necrosis [E]&[F] respectively. Administration EA plus CTZ one hour before AK as a pro-

phylactic agent showed more reduction in the percentage of the area of inflammation, eosino-

philia, and necrosis [G] than each drug alone (Fig 6).

Discussion

AKI occurs in 20–30% of children exposed to aminoglycosides [21]. This study investigated

the renoprotective effect of EA alone, CTZ alone, and their combination.

The results of the current work showed that AK 400 mg/kg significantly increased serum

BUN and creatinine levels. These results agree with Hlail and colleagues [1], who demon-

strated than intraperitoneal AK 120 mg/kg injection for 14 d produced a significant increase

in serum creatinine and urea levels. Also, previous studies found that i.m injection of AK 100

mg/kg for seven days produced a significant rise in creatinine, uric acid, and urea [5].

Multiple pathophysiological effects of AK-induced kidney damage include the creation of

reactive oxygen and nitrogen species and stimulation of apoptosis, as AK forms a complex

with mitochondrial Fe2+, causing the development of free radicals. These free radicals and

reactive species are essential in drug-induced renal impairment and BUN and creatinine

increase [7].

Antioxidant enzymes like SOD and CAT are essential for cellular antioxidative defense.

SOD catalyzes the formation of hydrogen peroxide (H2O2) by superoxide radical dismutation

[22]. MDA is a lipid peroxidation end product that can be used as a biological biomarker to

Fig 6. Effect of ellagic acid, cilostazol, and their combination on the structure of the renal cortex. A

photomicrograph (H&E stain x400) of renal tissue showing: (A) a normal structure of the renal cortex, tubules (T) and

glomeruli (G); control normal, (B) Amikacin (AK), (C) ellagic acid (EA), (D) cilostazol (CTZ), (E) AK + EA, (F) AK

+ CTZ and (G) AK+EA+CTZ. Ellagic acid (EA) 10 mg/kg, cilostazol (CTZ) 10 mg/kg and their combination were

administered one hour before intramuscular injection of amikacin 400 mg/kg for seven days.

https://doi.org/10.1371/journal.pone.0271591.g006

PLOS ONE Cilostazol and nephrotoxicity

PLOS ONE | https://doi.org/10.1371/journal.pone.0271591 July 18, 2022 8 / 14

https://doi.org/10.1371/journal.pone.0271591.g006
https://doi.org/10.1371/journal.pone.0271591


describe the degree of oxidative stress [23]. GSH acts as a potent electron donor acting against

free radicals. With the aid of glutathione peroxidase enzymes, GSH can degrade H2O2 to H2O

[24].

Also, this work indicated that AK 400 mg/kg produced a significant reduction in the antiox-

idant parameters; GSH, SOD, and CAT, and a significant increase in oxidation parameter;

MDA, in renal tissue. These results are following Abdel-Daim and colleagues [5] who reported

a significant elevation of MDA and a significant reduction of SOD, CAT, and GSH caused by

AK 100 mg/kg.

AK is not metabolized in the body and is primarily eliminated in the urine. As a result, it

accumulates in proximal tubules and glomeruli, leading to the activation of renin-angiotensin-

aldosterone system, lowering the glomerular filtration rate and increasing the production of

platelet-activating factor, reactive oxygen species (ROS), and vasoconstrictors [25]. The exces-

sive ROS production causes oxidative stress, which causes significant interconnected distur-

bances in cellular metabolism, such as protein and nucleic acid structure changes, DNA

damage, apoptosis induction, elevation in intracellular free calcium, damage to membrane ion

transport, and cell damage from lipid peroxidation [1].

TNF is a proinflammatory cytokine formed by macrophages and monocytes and can acti-

vate neutrophils and lymphocytes, enhancing vascular endothelial cell permeability, and trig-

gering the production and release of other cytokines. It acts on tumor necrosis factor receptor

1 (TNFR1) and 2 (TNFR2). TNFR1 mediate inflammation and increases fibroblast prolifera-

tion by activating nuclear factor (NF). TNFR2 contributes to cell migration, regeneration, pro-

liferation, and TNF1-mediated apoptosis regulation. TNFα may stimulate the NF-B pathway,

which regulates the transcription and production of inflammatory mediators. This is a vicious

cycle that exacerbates inflammatory reactions [26].

The results of this work proved that AK 400 mg/kg produced a significant increase in

NFκB, TNFα, and IL6 in relation to the normal control group. Ozbek et al. (2009) agreed with

these results and stated that intraperitoneal injection of gentamycin 100 mg/kg significantly

increased NFκB expression in renal tissue [27].

AK-induced nephrotoxicity could be due to up-regulation of TNF-α expression or due to

AK-induced oxidative stress, which induces oxygen-containing derivatives and cytokine pro-

duction, which function as a second messenger for activating NF-B, resulting in the transcrip-

tion of cytokines, growth factors, and extracellular matrix proteins [5]

This work indicated that AK 400 mg/kg significantly increased BAX expression in renal tis-

sue. Helmy et al. (2020) agreed with this result and showed that AK 1.2 g/kg single intraperito-

neal injection increased BAX expression in renal tissue [28].

Aminoglycosides can cause apoptosis in the kidney by increasing the content of cytosolic

BAX protein, which activates the mitochondrial pathway of apoptosis, it includes caspase-9

activation as an initiator, caspase-3 activation as an effector, and DNase activation, leading to

DNA fragmentation and apoptosis [29].

In this study, oral administration of EA 10 mg/kg one hour before AK significantly reduced

BUN and creatinine. These findings support those of [14], who reported that EA 10 mg/kg sig-

nificantly reduced urea and creatinine in gentamycin 100 mg/kg induced nephrotoxicity. Ateş-
şahı́n et al. (2007) [30] reported that EA 10 mg/kg significantly reduced urea and creatinine in

nephrotoxicity induced by intraperitoneal injection of cisplatin 7 mg/kg. The improvement in

RBF and GFR could explain EA’s favorable effect in improving kidney function tests and low-

ering creatinine and BUN levels [31].

In this study, EA 10 mg/kg orally one hour before AK produced a significant reduction of

oxidation parameter; MDA, and a significant increase in the antioxidant parameters; GSH,

CAT, and SOD in renal tissue in relation to the AK group. A previous study [14] agreed with
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these results as they reported that EA 10 mg/kg induced a preventive effect on nephrotoxicity

caused by gentamycin as it increased SOD, CAT, and GSH levels. Also, Bhattacharjee et al.
(2021) reported that oral administration of EA 25, 50 mg/kg, orally for two months showed a

preventive effect on nephrotoxicity caused by lead by increasing CAT, SOD, GSH, and reduc-

ing MDA compared with the control nephrotoxic group [32].

The ability of EA to scavenge free radicals has been related to its intrinsic antioxidant activ-

ity. This is since it can transfer the phenolic H-atom to a free radical. Lactone systems and EA

hydroxyl groups can create hydrogen bonds and act as hydrogen donors and electron accep-

tors. As a result, EA can participate in antioxidant redox reactions, resulting in a highly effi-

cient free radical scavenger [33].

Oxidative stress has been shown to be decreased by EA through modulation of several

mechanisms. These involve antioxidant response activation through Nrf2, suppression of cyto-

kines, such as IL1, IL6, TNF, and cyclooxygenase 2 (COX-2) through NF-kB, and cell survival

or apoptosis control through NF-kB [34]. EA is classed as a multiple-function antioxidant

since it exerts its beneficial effect through both primary and secondary ways [35].

EA 10 mg/kg orally one hour before AK significantly reduced TNFα, IL6, and NFκB

expression in this work. These findings are consistent with that of Marn et al. (2013), who sug-

gested that EA reduced NF-B, IL-6, and TNF levels compared to the control group in mice

with ulcerative colitis [36]. EA inhibits inflammation through modulating the NF-B signaling

pathway [37]. These findings are consistent with Cornélio Favarin et al. (2013), who discov-

ered that EA 10 mg/kg increased the anti-inflammatory cytokine IL-10 and decreased the

proinflammatory cytokine IL-6 in bronchoalveolar lavage fluid [38]. EA decreases toll-like

receptor 4 (TLR4) and high mobility group protein 1 (HMGB1) in the kidney tissue by cutting

down TLR4 downstream protein leading to reduction in inflammatory factors [26].

In this study, EA 10 mg/kg orally one hour before AK reduced BAX expression in renal tis-

sue. A previous study [14] agreed with this finding and reported that EA 10 mg/kg reduced

gentamycin-induced nephrotoxicity in rats by increasing Bcl2/BAX ratio and decreasing Cas-

pase- 3. It is one of the main executors of apoptosis.

EA’s antioxidant and anti-apoptotic qualities may be attributed to the increased SIRT1

expression in renal tissues [39]. SIRT1 (sirtuin1) is the mammalian homolog of the yeast Sir2

(silent information regulator 2). It protects against oxidative stress by deacetylating forkhead

box O (FOXO) and tumor suppressor protein (p53). SIRT1 deacetylates p53 and FOXO,

resulting in transcriptional activities suppression and loss of stress-induced apoptosis [40].

FOXOs also contribute to the viability of cells through the transactivation of enzymes that

detoxify ROS, such as SOD2/MnSOD and CAT [39].

Also, this study indicated that oral administration of CTZ 10 mg/kg one hour before AK

significantly decreased BUN and creatinine. These findings support a previous study [15]

which demonstrated that administration of CTZ 10 mg/kg once daily for eight days reduced

creatinine, urea, and uric acid levels in the nephrotoxicity induced by gentamycin. Also,

Gokce et al. (2012) reported concomitant use of CTZ 10 mg/kg, orally with cyclosporine

reduced urea and creatinine level [41].

This work showed that oral administration of CTZ 10 mg/kg one hour before AK produced

a significant decrease in oxidation parameter; MDA and a significant increase in the antioxi-

dant parameters; GSH, CAT, and SOD in renal tissue in relation to the AK group. These

results agree with that of Gokce et al. (2012), who reported that administration of CTZ 10 mg/

kg for seven days eases cyclosporine-induced nephrotoxicity by decreasing MDA and increas-

ing SOD and CAT activity [41]. CTZ prevents oxidative stress by activating redox defense sys-

tems through increased expression of PI3K/Akt and Nrf2/HO-1 mRNAs, resulting in

oxidative stress reduction and restoration of mitochondrial dysfunction [12].
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In this study, oral administration of CTZ 10 mg/kg decreased TNFα, IL6, and NFκB expres-

sion in renal tissue. These results are according to Hermes et al. (2016), who reported that oral

administration of CTZ 100 mg/kg for 14 days decreased TNFα and NFκB in dystrophic dia-

phragm muscle [42]. Also, Sakamoto et al. (2018) demonstrated that CTZ 50 mg/kg for seven

days reduced interleukin-6 and TNFα [43]. CTZ prevents nitric oxide (NO), prostaglandin E2

(PGE2), cytokines, such as IL1, TNF α, and monocyte chemoattractant protein-1 (MCP-1)

production by inhibiting extracellular signal-regulated kinases 1 and 2 (ERK1/2) and c-Jun N-

terminal kinase (JNK) [44].

In this study, CTZ 10 mg/kg orally as a prophylactic dose, significantly reduced expression

of BAX in relation to AK group. These results agree with a previous study [15] which reported

that CTZ 10 mg/kg for eight days produced a significant reduction in BAX expression in gen-

tamycin-induced nephrotoxicity model. CTZ suppresses signals of mitochondria-dependent

apoptosis. Additionally, it reduces cytochrome c release from mitochondria and down-regu-

lates BAX expression [45].

This histopathology findings revealed that AK 400 mg/kg was associated with disturbances

in the kidney histopathological picture, including inflammatory cell infiltration, tubular epi-

thelial lining degeneration, and tubular necrosis. These results agree with Abdel Fattah and

Gaballah, (2020), who demonstrated that marked degenerative changes in the kidney and

marked tubular necrosis occurred with AK [46].

EA administration before AK exhibited an improvement in the histopathological

changes as it decreased inflammation and necrosis. These results are consistent with Bhatta-

charjee et al., 2021, who stated that EA 25, 50 mg/kg reduced histopathological changes and

renal tubular necrosis in lead-induced nephrotoxicity [32]. Also, CTZ administration one

hour before AK shows a reduction in inflammation and tubular necrosis. These results

agree with Abdelsameea and colleagues [15] who reported that administration of CTZ 10

mg/kg rat eases degenerative changes in the renal cortex in gentamycin-induced nephrotox-

icity model.

In this study, oral administration of EA 10 mg/kg plus CTZ 10 mg/kg before AK 400 mg/kg

produced a more significant reduction of BUN and creatinine; more significant reduction of

oxidation parameter MDA; more significant reduction of antioxidant parameters: GSH, SOD,

and CAT; more significant reduction of inflammatory mediators: TNFα, IL6; more significant

reduction of NFκB and BAX expression; more improvement in the histopathological changes

developed in kidney tissue by AK than each drug alone due to the synergistic effect of both

drugs.

Conclusion

EA and CTZ have a renoprotective effect partially due to their antioxidant, anti-inflammatory,

and anti-apoptotic effects.
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