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Abstract: The highly toxic oxidative transformation of hemoglobin (Hb) to the ferryl state (HbFe4+)
is known to occur in both in vitro and in vivo settings. We recently constructed oxidatively stable
human Hbs, based on the Hb Providence (βK82D) mutation in sickle cell Hb (βE6V/βK82D) and in a
recombinant crosslinked Hb (rHb0.1/βK82D). Using High Resolution Accurate Mass (HRAM) mass
spectrometry, we first quantified the degree of irreversible oxidation of βCys93 in these proteins,
induced by hydrogen peroxide (H2O2), and compared it to their respective controls (HbA and
HbS). Both Hbs containing the βK82D mutation showed considerably less cysteic acid formation, a
byproduct of cysteine irreversible oxidation. Next, we performed a novel study aimed at exploring the
impact of introducing βK82D containing Hbs on vascular endothelial redox homeostasis and energy
metabolism. Incubation of the mutants carrying βK82D with endothelial cells resulted in altered
bioenergetic function, by improving basal cellular glycolysis and glycolytic capacity. Treatment of
cells with Hb variants containing βK82D resulted in lower heme oxygenase-1 and ferritin expressions,
compared to native Hbs. We conclude that the presence of βK82D confers oxidative stability to Hb
and adds significant resistance to oxidative toxicity. Therefore, we propose that βK82D is a potential
gene-editing target in the treatment of sickle cell disease and in the design of safe and effective
oxygen therapeutics.
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1. Introduction

Heme iron oxidation can have serious biological consequences as it impacts the ability of Hb to
deliver oxygen, which can jeopardize its safe use in transfusion medicine [1]. Spontaneous oxidation
of the heme iron, also known as autoxidation, occurs within red blood cells (RBCs), and at much
higher rates when Hb is found outside circulating RBCs. Hb oxidation in RBCs occurs despite the
presence of several antioxidant proteins and enzymes that are designed to suppress reactive oxygen
species (ROS), resulting from the oxidation of the heme iron [2,3]. However, when RBCs are stored
or pathogen inactivated for transfusion purposes, the function of these antioxidant mechanisms can
be compromised [4]. Likewise, RBC genetic disorders and hemoglobinopathies also accelerate Hb
oxidation, which often leads to premature hemolysis and heme loss [5]. As a result, understanding the
underlying mechanisms of Hb oxidation is therefore critical for designing methods aimed at potentially
reducing or preventing its complications.

The last three to four decades witnessed considerable efforts to develop commercial products
using free Hb oxygen-based carrier (HBOCs) therapeutics, also known as blood substitutes. The initial
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HBOC manufacturing process involved extracting Hb from human or animal blood, followed by
extensive purification and crosslinking into tetramers or other polymers, to extend circulation time in
recipients after infusion [6]. Unfortunately, adverse side effects caused by the infusion of HBOCs in
patients led to the termination of several clinical trials in the USA and elsewhere [7]. Uncontrolled
heme iron oxidation of HBOCs, coupled with vascular complications due to the reaction of free Hb with
nitric oxide (NO), were among the major contributors to the safety issues with these therapeutics [8].

Oxidation of heme iron not only compromises the ability of Hb to carry and unload oxygen, it can
also be a source of heme and other toxic oxidative intermediates. Rapid oxidation to ferric (met) Hb
during transfusion of HBOCs was documented in several preclinical and clinical settings [9]. The level
of metHb measured in some of these animal experiments varied from 10 to 65% [10], after infusion of
HBOCs and higher metHb levels (~50%) in humans. To address this, a powerful reducing agent of
Hb, ascorbate, was successfully used in one reported case to control HBOC oxidation in humans [11].
These applications of HBOCs provided a unique opportunity to study free Hb’s oxidative pathways
closely outside the cellular environment [12].

Hydrogen peroxide (H2O2) reacts with both ferrous (oxy Hb) and ferric (met Hb) forms of Hb,
and this reaction results in the formation of highly reactive species, e.g., ferryl Hb (HbFe4+), together
with a protein radical (HbFe4+). The radical is formed when the reaction starts with met Hb and
is stabilized on the porphyrin or nearby amino acids, leading to the formation of the peroxidase
compound II heme state [13]. This “unharnessed” radical, unlike true peroxidases, escapes from the
porphyrin ring to other amino acid side chains, including βCys93, which then reacts with oxygen to
form cysteic acid. These internal reactions appear to result in the modification of heme, its subsequent
attachment to nearby amino acids, and the irreversible oxidation of reactive amino acids, particularly
βCys93, which promotes the unfolding and dissociation of Hb [1].

We previously discovered that a naturally occurring mutant Hb Providence (βLys82→Asp)
(βK82D), was much more resistant to degradation by H2O2 than normal human HbA [14]. Based on this
finding, we then engineered this mutation into a genetically cross-linked Hb tetramer (rHb0.1/βK82D)
and subsequently demonstrated that the βK82D mutation conferred more resistance to degradation
by H2O2, by markedly inhibiting oxidation of the β93 cysteine side chain [15]. Next, we tested this
extraordinary stability of the βK82D mutation in another Hb model system known for its oxidative
instability, e.g., sickle cell Hb (HbS). The HbS (βE6V) mutation is known to oxidize faster than normal
HbA and remains longer in a highly oxidizing ferryl form (HbFe4+), which then targets the “hotspot”
amino acids including βCys93 [16]. We found that the (βE6V/βK82D) form of Hb added a significant
oxidative resistance to βE6V when challenged with H2O2, in addition to a dramatic improvement in
the delay times and polymerization of βE6V [16].

In this study, we investigated the impact of sickle cell and crosslinked human Hbs containing
the βK82D mutation and their respective controls (βK82D, HbA, and HbS) on vascular endothelial
cellular metabolism and oxidative toxicity, using human pulmonary artery endothelial cells (HPAECs).
We found a strong correlation between the suppression of βCys93 oxidation in Hb proteins containing
βK82D mutation and the recovery of endothelial glycolytic capacity, along with diminished heme
oxygenase-1 (HO-1) expression, which is caused by the toxic release of heme.

2. Results

2.1. Pseudoperoxidase Activity of the Providence Mutation

Redox transition of ferrous Hb to a ferric/ferryl state can be monitored spectrophotometrically
and the accompanying changes can be followed in real-time (Figure 1A,B). Under oxidative stress
conditions, i.e., in the presence of H2O2 (up to 30-fold over heme), the spectrum of the highly purified
ferrous HbA0 (two peaks at 541 and 577 nm) is rapidly transformed to the ferryl species (Figure 1A).
The ferryl Hb with its signature UV/Vis spectrum (two major peaks at 545 and 580 nm and a flattened
region between 500 and 600 nm) remains in solution all the way to the end of the experiment (1 h),
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and ultimately self-destructs, leading to unfolding of the protein and heme loss [13]. Treatment of the
of K82D variant with the same levels of H2O2 results in the formation of a transitional ferryl species,
which is rapidly autoreduced back to the ferric protein (peaks at 510, 550, and at 630 nm), clearly
demonstrating an effective pseudoperoxidative activity (Figure 1B).
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Prov) (gray, 5SW7). The drawing was made by MOL Molecular Graphics System, version 2.0 
(Schrodinger, LLC) (New York, NY, USA). Panels A, B, and C were reprinted with permission from 
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Figure 1. Pseudoperoxidase activity of hemoglobin Providence. (A) Spectral changes in wild-type
hemoglobin A (β82K) (arrows pointing downward indicate the direction of the reaction and the
conversion of the oxy/ferrous (two main peaks; 541 and 577 nm) to ferryl heme (two main peaks;
545 and 580 nm)). (B) Hemoglobin Providence (βK82D) during oxidation by hydrogen peroxide.
(C) A model represents the pseudoperoxidase activity of hemoglobin. (D) Comparison of the active
sites, EF corner, F-helix, and C-terminus of β subunits in HbA (cyan, 2DN3) and rHb0.1/βK82D
(rHb0.1 Prov) (gray, 5SW7). The drawing was made by MOL Molecular Graphics System, version
2.0 (Schrodinger, LLC) (New York, NY, USA). Panels A, B, and C were reprinted with permission
from [14,17].

These reactions can be analyzed based on a simple model (pseudoperoxidative cycle) described
earlier [13] (Figure 1C). The reaction of H2O2 with both ferrous and ferric forms of Hb results in the
formation of a highly reactive species, e.g., ferryl Hb (HbFe4+), together with a protein radical (·HbFe4+)
(when the reaction starts with met/ferric Hb) (k1). Once its formed, ferryl heme is autoreduced back to
the ferric form (k2), and in the presence of access H2O2, the ferric is transformed to a ferryl heme (k3),
thus, completing a pseudoperoxidative cycle [13] (Figure 1C).

Based on a recent crystal structure analysis, the extraordinary oxidative stability of the βK82D
mutation was attributed to changes in reactivity of the βCys93 side chain, which might be due to either
indirect electrostatic effects (replacement of the positive Lys by a negative Asp acid) or alterations in
the dynamics in the vicinity of Lys82 [16] (Figure 1D). In native HbA, the Lys82 side chain is located far
away from the heme group and the ε-amino N atom is roughly 13 Å away from the βCys93 sulfur
atom (Figure 1D). The amino acid side chains and the heme group are superimposable, with the only
significant differences being the loss of the Lys82 (positive charge), and the appearance of the Asp82
carboxyl group (negative charge), which is roughly 9.5 Å away from the βCys93 sulfur atom. As a
result, these electrostatic effects on βCys93 occur indirectly, since these regions are ≥9 Å away from the
sulfur atom [16] (Figure 1D).
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2.2. MS Analysis of βK82D Mutants Treated with Hydrogen Peroxide

We previously used 5,5-Dimethyl-1-pyrroline N-oxide (DMPO) labeling studies and LC/MS/MS
analysis to show that Hb toxicity is linked to irreversible βC93 oxidation to cysteic acid, by virtue of ferryl
ions and globin radicals [18]. While other intermediates might occur, comparing βC93 oxidation to cysteic
acid is an effective method for evaluating Hb oxidative stability, relative to HbA. For each βC93 containing
peptide charge state identified by the Mascot database searches, the extracted ion chromatograms (XICs)
were generated from the most abundant monoisotopic peak of each peptide isotopic profile (in a 2-step
process (shown in Figure 2) and the resulting ratio differences were compared. As βCys93 exists in either
the oxidized or unoxidized form, after treatment with H2O2, the relative abundance of both isoforms were
calculated based on the sum of the XIC peak area from all the detectable βCys93 peptides. As shown in
Table 1, H2O2 addition at 2.5, 5.0, and 10-fold excess led to increased βCys93 oxidation for both HbA and
HbS. However, there was 1.5 to 2.0-fold increases at the low and middle [H2O2] and 1.0-fold at extreme
[H2O2], in HbS over HbA [16]. Overall, these data support many of our past and current lab studies that
show HbS is oxidatively less stable than wild-type HbA [18–20].
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Figure 2. Quantitative LC/MS/MS analysis of hemoglobin Providence. (A) Total Ion
Chromatogram (TIC) collected during a 60-min mobile phase gradient separation of tryptically
digested Hb Providence peptides (after treatment with 10× H2O2), using C18 reverse phase
chromatography. (B) LC/MS/MS fragmentation spectra of the βK82D containing +3 peptide
KKVLGAFSDGLAHLDNLDGTFATLSELHCDK (1039.872 m/z), which eluted at 36.11 min. Step 1:
Database searches from LC/MS/MS analysis were utilized to identify all oxidized and unoxidized
C93 containing βK82D peptides. The y an b ion series from this spectrum provided (representing
the βK82D peptide with unoxidized C93) sequence information that was used to confirm the peptide
identify prior to quantification. (C) Extracted ion Chromatogram (XIC) of the same peptide identified
from MS/MS spectra represented in panel 2. Step 2: After database searches were used to identify all
βK82D peptides containing oxidized and unoxidized C93, extracted ion chromatograms (XICs) from
full MS scans were used to quantify the relative abundance of oxidized βK82D.
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Additionally, the data in Table 1 show that the βK82D mutation confers markedly more resistance
to oxidation by H2O2, when compared to HbA and HbS, respectively. There was a 3 to 6-fold reduction
and 4 to 7.0-fold decrease in βCys93 in HbA and HbS at low, medium, and high H2O2 concentrations.
Construction of βK82D in HbS (βE6V/βK82D), reduced βCys93 oxidation by 2.7-fold and 3.0-fold in
this mutant at low and high H2O2, whereas the same mutation in Providence (βK82D) crosslinked rHb
(rHb0.1/βK82D) reduced oxidation of βCys93 below the detection levels, under the same peroxide
levels. These quantitative results collectively showed that βK82D provides antioxidant protection by
reducing H2O2-induced oxidation damage to the proteins.

Table 1. Oxidation parameters of the hemoglobin Providence constructs.

Treatment Conditions
HPAECs

Cys93 Oxidation Cys93 Oxidation Cys93 Oxidation

2.5:1 5:1 10:1

(H2O2:heme) (H2O2:heme) (H2O2:heme)

HbA [18] 21 ± 4.2% 31 ± 2.8% 58 ± 3.8%
HbS (βE6V) [18] 32.9 ± 2.7% 64 ± 5.0% 67% ± 6.8

Hb Prov (βK82D) 6.8 ± 3.1% 11.6 ± 0.8% 9.5 ± 4.3%
HbS Prov (βE6V/βK82D) [16] 11.9 ± 2.0% N/A 22 ± 1.3%

Crosslinked Providence (rHb0.1 Prov) [15] Below detection Below detection 2.7 ± 0.2%

2.3. Endothelial Oxidative Stress Induced by Hemoglobin Mutants

We and others have shown that cell-free Hb, especially oxidatively unstable HbS, exerts oxidative
toxicity on cultured endothelial and other cells, during in vitro incubation through the release of heme,
as result of oxidative changes and unfolding of the protein [18,19,21,22]. To investigate the effect of
βK82D mutation on the pulmonary endothelial stress response, we incubated the Hb proteins carrying
βK82D at equimolar concentration (100 µM) with cultured HPAECs for 24 h. HO-1 and ferritin proteins
are the most potent indicators of heme release from Hbs and subsequent iron load within the cellular
compartment, respectively [23,24]. Therefore, we first monitored the expression of the levels of these
proteins in HPAECs. Exposure to either HbA or HbS (βV6E) caused a robust increase in HO-1 and ferritin
expression in HPAECs (Figure 3A,C). However, HbS induced significantly higher levels of HO-1 over the
corresponding HbA (Figure 3A,B). On the other hand, the βK82D mutant at equimolar concentration also
caused induction of HO-1 and ferritin proteins, but at a significantly lower degree than HbA and HbS.
In contrast, rHb0.1/βK82D caused no expression of ferritin and a very low level of HO-1 expression. This is
consistent with the negligible levels of βCys93 oxidation in this protein (Table 1). Surprisingly, introduction
of βK82D in oxidatively susceptible βE6V/βK82D caused a significant reduction in the expression of both
HO-1 and ferritin compared to native HbS (Figure 3A–C). To verify this finding, we used an orthogonal
approach for a visual comparison of the expression pattern of HO-1 induced by HbS and HbS carrying the
βK82D mutation. As seen in our immunoblotting experiment, HbS induced stronger expression of HO-1
(indicated by red fluorescence) than corresponding HbA in HPAECs (Figure 4). Whereas, βE6V/βK82D
caused much lower levels of HO-1 expression than βE6V (Figure 4).

We also monitored TLR4 expression since, TLR4 is the primary site of activation for signaling
cascade mediated by free heme [22]. We found slightly higher levels of TLR4 in both HbA and
HbS-treated HPAECs, compared to the untreated controls. However, βE6V/K82D failed to show any
further improvement over native HbS under similar incubation conditions. Higher expression of
endothelial adhesion molecules (VCAM-1 and ICAM-1) were documented before as a response to the
presence of Hb/heme [25]. Therefore, we analyzed HPAEC lysates following treatment with different
Hb proteins for VCAM-1 expression. No noticeable difference in VCAM-1 expressions were observed
with any of the mutant Hbs used in this study (Figure 3C).
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Figure 3. Effect of hemoglobins carrying Providence mutation on human pulmonary arterial endothelial
cells. HPAECs were exposed to ferrous forms of either HbA, Providence (βK82D), HbS, HbS Providence
(βE6V/βK82D), or crosslinked Providence (rHb0.1/βK82D), at equimolar concentration (100 µM) for
24 h. (A,C) Cell lysates were immunoblotted with primary antibodies against HO-1, ferritin light
chain (L-ferritin), toll-like receptor 4 (TLR4), and vascular cell adhesion molecule 1 (VCAM). Equal
loading was confirmed by re-probing the blots against β-actin. All immunoblot panels shown are
representatives of three separate independent experiments. (B) Densitometric analysis was done for the
HO-1 expression vs. corresponding β-actin levels and the values represent the average ratio of band
intensities (HO-1:β-actin), n = 3. * p < 0.05 vs. untreated control; # p < 0.05 vs. corresponding HbS.
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Figure 4. Immunohistochemistry of HO-1 expression in HPAECs. HPAECs were grown on
coverslips and incubated with or without HbA, Providence (βK82D), HbS, HbS Providence
(βE6V/βK82D), or crosslinked Providence (rHb0.1/βK82D), at equimolar concentration (100 µM),
for 12 h. Immunohistochemistry was done in paraformaldehyde fixed HPAECs, using antibody
against HO-1, as described in the Methods section. Representative fluorescence microscopic images
of HPAEC shows HO-1 expression (red fluorescence, AlexaFluor 595). Cell nuclei appear as blue
(4′,6-diamidino-2-phenylindole, DAPI). Fluorescence images were merged onto the corresponding
phase contrast views to indicate cellular structures. All images are representative of several similar
fields obtained from two separate experiments. White line indicates 100 µm.
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2.4. Impact of Providence Mutation on the Bioenergetic Impairment in HPAECs

To assess the energy utilization in Hb-treated HPAECs, we monitored mitochondrial bioenergetics
and glycolytic proton flux by XF assay using the Seahorse XF24 Extracellular Flux Analyzer (Agilent,
Santa Clara, CA, USA) in real time. Oxygen consumption rate (OCR) was obtained as a direct indicator
of mitochondrial respiration in HPAEC. Figure 5A shows the bioenergetic profiles of different Hb-treated
HPAECs, by plotting OCR data obtained in real time. Basal mitochondrial respiration before addition of
oligomycin and maximal respiration in uncoupled state (following FCCP injection) were calculated from
the OCR plot (Figure 5B). Basal OCR was not affected by any of the Hb proteins. Maximal respiration is a
result of a collapse of the proton gradient induced by the uncoupling agent FCCP, where an uninhibited
flow of electrons occurs through the electron transport chain complexes and allows maximum oxygen
consumption by cytochrome c oxidase (complex IV). Exposure to HbA and βK82D did not cause any
significant changes in maximal respiration compared to the untreated controls (Figure 5B). However,
βE6V treated cells showed mild but non-significant uncoupling over the untreated control cells, perhaps
mediated by TLR4 activation and induction of HO-1 expression [21]. In contrast, this uncoupling effect
was not seen in HPAECs treated with the HbS carrying βE6V/βK82D mutation.
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Figure 5. Effect of mutant hemoglobin proteins on pulmonary endothelial bioenergetics. HPAECs
were exposed to ferrous forms of HbA, Providence (βK82D), HbS, HbS Providence (βE6V/βK82D), or
crosslinked Providence (rHb0.1/βK82D) at an equimolar concentration (100 µM) for 24 h. Mitochondrial
oxygen consumption rates (OCR) and extracellular acidification rates (ECAR) were measured by
Agilent Seahorse (XF24) extracellular flux analyzer in real time. (A) Bioenergetic profile indicating
average OCR values from four similar wells treated with Hb mutants. (B) Bar diagrams showing basal
and maximal respiration (OCR) calculated from the OCR plots (A), following exposure to Hb (N = 4).
(C) Glycolytic lactate production was measured as ECAR and plotted as the average of four similar
wells treated with Hb mutants. (D) Basal glycolysis rate and glycolytic capacity were calculated from
the ECAR plots of HPAEC, following exposure to Hb (N = 4). Representative OCR and ECAR plots
were obtained from an individual set of experiment repeated three times. * p < 0.05 vs. the untreated
control; # p < 0.05 vs. corresponding HbS.
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In a similar experimental setup, the glycolytic rate was assessed by measuring ECAR in different
Hb-treated HPAECs (Figure 5C). Basal glycolysis induced by the addition of glucose was not affected
by any of the Hb proteins used in the study, except HbS (Figure 5D). βE6V caused a ~30% loss in basal
glycolysis, compared to the untreated controls. More pronounced inhibitory effects of βE6V were
seen in glycolytic capacity after addition of oligomycin, where βE6V caused more than a 40% loss in
glycolytic capacity over the untreated control cells (Figure 5D). In contrast, HbA, Hb Prov, and rHb0.1
Prov had no noticeable effect on glycolytic capacity. Alternatively, HbS Prov (βE6V/βK82D) partially
reversed the HbS-induced loss of glycolytic capacity (Figure 5D).

3. Discussion

Our laboratory recently investigated several naturally occurring mutant human Hbs that were
oxidatively stable and were able to withstand extreme oxidative pressures [15]. Mutant Hbs are
described as “Experiments in Nature”, as they provide an experimental platform to investigate why
some mutants evolutionarily evolved into oxidatively stable molecules, while others develop into
circulatory disorders [26,27]. In most cases, the mutation involves a single, or at the most several amino
acids in key functional areas of the Hb molecule.

To control Hb’s oxidative side reactions, we focused primarily on the reduction of ferryl Hb
directly, by genetically re-engineering key stabilizing amino acid(s) in the protein [17,28]. In particular,
we studied how an evolutionary stable Providence mutation (βK82D) can provide oxidative resistance
when constructed in oxidatively unstable crosslinked and sickle cell Hbs, by reducing the ferryl heme
content and subsequent irreversible oxidation of βCys93 to cysteic acid [15,16]. In addition to its
well-established role in allosteric mechanisms, βCys93 is involved in the transport of nitric oxide (NO)
and detoxification of superoxide ions (O2

−) [1]. Several studies from our laboratory and others showed
that βCys93 (positioned on the surface near an F helix located at the β = β subunit interface) is an
endpoint for free-radical-induced Hb oxidation, which occurs as a consequence of oxygen binding and
concomitant H2O2 (and O2

−) production [13,17,29]. βCys93 is readily and irreversibly oxidized in the
presence of a mild oxidant, H2O2 to cysteic acid, which leads to the destabilization of Hb, resulting
in improper protein folding and the loss of heme. Oxidized βCys93 is therefore a useful reporter
on the oxidative status of Hb in RBCs intended for transfusion, or within RBCs, from patients with
hemoglobinopathies [1]. Accordingly, site-specific mutation of redox active amino acid(s) to reduce
the ferryl heme, or direct chemical modifications that can shield βCys93, were proposed to improve
oxidative resistance of Hb and might offer a protective therapeutic strategy [28,30].

We used two constructs containing the βK82D mutation, a sickle cell Hb and a wild-type
crosslinked Hb construct. Our aim was to correlate the oxidative resistance of these βK82D containing
mutants (as indexed by βCys93 oxidation) on oxygenation, and the overall redox state of the cultured
endothelial cells. As seen in Table 1, the presence of the βK82D substitution provided a considerable
oxidative protection to both sickle cell and more so to the crosslinked Hb, by minimizing the levels
of irreversible oxidation of βCys93. Oxidation of βCys93 to cysteic acid is known to perturb the
extensive network of hydrogen bonding and salt bridges at the interface between the β2 FG corner.
The substitution of the native βLys82 for Asp82 (located ~18.3 Å away from the β-heme) is not known
to be engaged in electron transfer with the heme [16]. However, the higher oxidative stability caused by
the βK82D mutation was attributed to changes in reactivity of the βCys93 side chain, which might be
due to either indirect electrostatic effects or alterations to the local dynamics of the protein structure [15].
Hydrogen-peroxide-dependent oxidation reactions of the oxy form of the βK82D mutant might also
reveal additional mechanistic insights into differences in the kinetics of ferryl heme formation and
reduction and the potential role of Asp82 in the protein redox transitions.

The impact of a βK82D mutation on tissue oxygenation and mitochondrial function is not known.
Anecdotal reports on patients with βK82D mutations showed, for example in one case, mild anemia
and erythropoiesis, likely due to the alteration in the oxygen-binding properties of patients’ blood [31].
Oxygen affinity in red cells from another patient with the βK82D mutation was also reported to be
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higher than normal subjects (i.e., P50 = 21.1 mm Hg vs., control P50 = 29.0 mm Hg) [32]. In another
reported case of an SCD patient with a coexisting βK82D mutation, suffered from only mild symptoms
from this disease [33]. The impact of the βK82D mutation on the course and the severity of the disease
in this SCD patient might not be entirely due to a small left shift in the oxygen equilibrium curve
(smaller P50), but might actually be due to an overall improvement in patient’s resistance to oxidative
stress [34].

Heme released from oxidized Hb proteins, especially from HbS (due to its higher autoxidation
rate over HbA), is known to cause an inflammatory response, vasoconstriction, and other vascular
complications, e.g., endothelial dysfunction [21,22]. In hemolytic conditions like SCD andβ-thalassemia,
lung endothelial cell-dysfunction is considered as one of the major factors leading to pulmonary
arterial hypertension (PAH) [35,36]. Vascular injury and inflammation initiated by the activation of
TLR4 of the innate immune system is triggered by DAMP (damage-associated molecular pattern)
molecules, including heme [22,35]. Using an in vitro experimental set-up exploiting human pulmonary
endothelial cells, we previously demonstrated the cellular oxidative stress response and impact on
energy homeostasis inflicted by HbS and other mutants [21]. Endothelial cells are generally more
dependent on glycolysis than mitochondrial oxidative phosphorylation as their source of ATP, but many
studies showed the importance of mitochondrial signal-transduction and bioenergetics in preserving
normal vascular endothelial function [37,38]. Although basal mitochondrial respiration was not
affected, only HbS among all other Hb mutants caused more pronounced uncoupling over untreated
healthy HPAECs. This effect can be attributed to heme released from oxidatively unstable HbS causing
activation of TLR4, inducing HO-1, and thus producing carbon monoxide (CO) (byproduct of heme
degradation), since, activated TLR4 and CO are both known to cause uncoupling of mitochondrial
respiration [39–41].

It is possible that introduction of βK82D mutation into HbS protein also effectively blunted
the HbS-mediated uncoupling effect, by substantially lowering heme mediated HO-1 and ferritin
expression. Moreover, this heme or CO-mediated mitochondrial uncoupling could have another
impact on the vascular endothelial cells, i.e., exhaustive loss of glycolytic capacity, leading to inhibition
of glycolysis, as seen in some cancer cells [42]. Earlier, we also showed that uncoupled respiration in
endothelial mitochondria by HbS was associated with concomitant increase in lipid peroxidation and
mitochondrial oxygen radical production [21]. Since endothelial glycolysis can be impacted by reactive
oxygen radicals and other oxidation end-products, therefore, the HbS-mediated loss of glycolytic
capacity observed in our study could possibly be contributed by ROS or lipid peroxidation end
products, generated by dysfunctional mitochondrial bioenergetics [43]. In this context, failure to show
any glycolytic inhibition by HbS carrying βK82D mutation further supports the oxidative stability
of the mutation. Rates for heme loss from chemically and genetically crosslinked Hbs investigated
here were previously shown to be several magnitudes lower than heme loss rates determined for other
modified and unmodified Hbs [44]. Supported by the mass-spectrometric results (βCys93 oxidation)
and (HO-1 expression) in cells, rHb0.1/K82D was not surprisingly the least damaging to cells among
the βK82D mutants, which might explain the additional protection afforded by this protein to cells.

In summary, we set out to examine the mechanistic link between irreversible oxidation of a key
amino acid in the β subunit of Hb, Cys93, oxidative toxicity, cellular redox homeostasis, and energy
metabolism, in the cultured endothelial cells. Moreover, we tested whether the construction of a
naturally occurring antioxidative mutation in oxidatively unstable proteins can reverse the oxidative
side reactions of Hb and subsequently the cellular and subcellular oxidative responses. Oxidative
modifications triggered by βCys93 oxidation to cysteic acid and subsequent heme loss from normal
and sickle cell Hbs caused impairment of pulmonary endothelial glycolysis, which were effectively
blunted by βK82D mutation into HbS and crosslinked human Hb. Construction of βK82D mutation
in otherwise oxidatively susceptible Hbs might therefore provide an intervention strategy that can
be applied in gene-editing therapies for sickle cell disease, and in the design of safe and effective
oxygen therapeutics.



Int. J. Mol. Sci. 2020, 21, 9453 10 of 15

4. Materials and Methods

4.1. Recombinant Hemoglobins

Recombinant mutant Hb proteins were expressed using the pSGE1702 plasmid 35 and were kind
gifts from Dr. JS Olson (Rice University). All amino acid substitutions were made using the Stratagene
PCR-based QuikChangeTM site-directed mutagenesis kit (Stratagene, La Jolla, CA, USA). The E. coli
strain JM109 was used for the mutagenesis and expression of Hb proteins. Large-scale Hb expression
was done in a Biostat C20 bioreactor (B Braun Biotech International, Melsungen, Germany), as described
in [15,45]. The full biochemical and biophysical characterization of mutant Hbs investigated here were
published in [15,16].

4.2. Oxidation Reactions of Mutant Hemoglobins

Autoxidation as well as chemically-induced oxidation experiments were carried out by aerobically
incubating Hb samples in 50 mM phosphate buffer, pH 7.4, at 37 ◦C for 24 h, or by adding bolus
amount of H2O2. Absorbance changes for both experiments in the range of 350–700 nm due to
oxidation of oxyHbs (60 µM in heme) were recorded in a temperature-controlled photodiode array
spectrophotometer (HP 8453). Multicomponent analysis was used to calculate the oxyHb and metHb
concentrations based on the extinction coefficients of each species [46]. The spectra of reaction mixtures
of ferrous Hbs (60 µM) with molar excess H2O2 (150, 300, and 600 µM) were monitored every 20 s, for
30 min, in a photodiode array spectrophotometer (HP 8453).

4.3. Mass Spectrometry Analysis of Recombinant Hemoglobins

Mass spectrometry (MS) experiments were performed with 60 µM (heme) native HbA, HbS
(βE6V), Hb Providence (K82D). We previously reported similar MS analysis on HbS Providence
(βE6V/K82D) and cross-linked Providence (rHb0.1/βK82D) (see Table 1) [15,16]. To study the impact
of the βK82D mutation on H2O2-mediated βCys93 amino acid oxidation, the above proteins were
incubated in PBS buffer that was treated with increasing (2.5×, 5× and 10×) molar excess of H2O2 per
heme. All oxidation reactions were carried out in phosphate buffer saline (PBS), pH 7.4, at an ambient
temperature for 30 min. A total of 1 µL of 1 unit/µL catalase was added to remove excess H2O2 to
quench oxidation in the Hb samples.

4.4. LC/MS/MS Analysis

All Hb samples were tryptically digested, desalted, and analyzed by mass spectrometry,
as previously described [47]. Briefly, tryptic peptides were analyzed by reverse phase liquid
chromatography mass spectrometry (RP LC/MS/MS) using an Easy nLC II Proxeon nanoflow HPLC
system coupled online to a Q-Exactive Orbitrap mass spectrometer (Thermo Fisher Scientific, Waltham,
MA, USA). Data were acquired using a top 10 method (for 60 min), dynamically choosing the most
abundant precursors (scanned at 400–2000 m/z), from the survey scans for HCD fragmentation.

All samples were searched against the Swiss-Prot Human database (release 2014_03, containing
542,782 sequence entries) supplemented with the porcine trypsin sequence, using the Mascot (version
2.4) search engine (Matrix Sciences, London, UK), as described previously [47]. Variable modifications
including cysteine trioxidation (+48 Da), methionine oxidation (+16) were included for identifying
the oxidative modifications. Carbamidomethylation of cysteine (+57) was also included as a static
modification for all unoxidized cysteines. Mascot output files were analyzed using the software
Scaffold 4.2.0 (Proteome Software Inc., Portland, OR, USA). In addition, αHb peptide identifications
were accepted if they could be established at greater than 99.9% probability and contained at least 2
identified peptides. Probabilities were assigned by the Protein Prophet algorithm [48]. Each peptide
was further validated by retention time reproducibility.
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4.5. Quantitative MS Analysis

All quantitative experiments were performed in triplicates and the standard deviations were
obtained by averaging relative abundance data from three different experiments. Extracted ion
chromatograms (XICs) were generated from the most abundant monoisotopic peak of isotopic profiles
representing the charged states of each peptide (oxidized and unoxidized). To construct XICs,
the Xcalibur (version 2.4) software (Thermo Fisher Scientific, Waltham, MA, USA) was used with
a designated mass tolerance of 0.01 Da, and mass precision was set to three decimals. For relative
quantification, the ratio of each isoform was calculated based on the sum of the XIC peak area from all
forms, which was normalized to 100% and included all charge states and versions that result from
different cleavage sites (more details can be found in [17]).

4.6. Endothelial Cell Culture

Cryopreserved human pulmonary artery endothelial cells (HPAEC) (Thermo Fisher Scientific,
Waltham, MA, USA) were cultured in a specially formulated media (Medium 200) containing 2% fetal
bovine serum (FBS), supplemented with Low Serum Growth Supplement (LSGS) (Thermo Fisher
Scientific, Waltham, MA, USA). For all experiments, HPAEC were used between passages 5–10.

4.7. Treatment of HPAECs with Hemoglobin Variants

HPAECs were grown to 80–90% confluency in complete media, before any treatments. Cells
were then serum starved for 12 h in an FBS-free medium composed of Medium 200, supplemented
with all other components of the LSGS Kit except FBS (Thermo Fisher Scientific, Waltham, MA, USA).
The cells were exposed to various Hb variants at equimolar concentrations (100 µM) in their ferrous
form (HbFe2+) for 24 h in an FBS-free growth media. After incubation, the cells were washed with
pre-warmed phosphate buffered saline (PBS) for three times, to remove any residual Hb proteins in the
media. Cells were then lysed with RIPA lysis and extraction buffer (Thermo Fisher Scientific, Waltham,
MA, USA) containing the protease inhibitor for further studies.

4.8. Gel Electrophoresis and Immunoblotting and Fluorescence Microscopy

HPAEC lysate proteins were resolved by SDS–PAGE using precast 4–20% NuPAGE bis-tris gels
(Thermo Fisher Scientific, Waltham, MA, USA) and then transferred to nitrocellulose membranes
(BioRad, Hercules, CA, USA), by the standard immunoblotting technique. Nitrocellulose membranes
were processed with different specific primary antibodies and appropriate secondary antibodies.
Mouse monoclonal antibodies against HO-1 (ab13248), beta actin for loading control (ab8226), rabbit
polyclonal antibodies against light chain of ferritin light chain (ab69090), TLR4 (ab13556), VCAM1
(ab134047) were purchased from Abcam (Cambridge, MA, USA). Appropriate HRP-conjugated goat
anti-mouse IgG (ab97040) and anti-rabbit IgG (ab205718) secondary antibodies were also obtained
from Abcam (Cambridge, MA, USA).

We also employed immunohistochemistry to detect and visualize intra-cellular HO-1 expression in
Hb-treated endothelial cells. HPAECs were grown up to 50% confluency on collagen I coated coverslips
placed on 12-well plates and then incubated with various Hb mutants for 12 h. Following incubation,
the cells were thoroughly washed in PBS to remove traces of Hb proteins. Immunohistochemistry
was done as described earlier, following fixation of cells in 4% paraformaldehyde solution and
permeabilization with PBS containing 1% BSA and 0.1% Triton X-100 [18]. HO-1 expression in the
cells were detected with mouse anti-HO-1 (ab13248) antibody and visualized under a fluorescence
microscope (EVOS, Thermo Fisher Scientific, Waltham, MA, USA), using a secondary goat anti-mouse
AlexaFluor595 conjugated antibody and mounting with Prolong-Gold antifade mountant containing
DAPI (Thermo Fisher Scientific, Waltham, MA, USA).
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4.9. Endothelial Bioenergetic and Glycolytic Flux Measurements

Cellular oxygen consumption and glycolytic rate were assessed in real-time, using an
Agilent-Seahorse XF24 Extracellular Flux analyzer (Agilent, Santa Clara, CA, USA), as described
before [21]. In brief, 80,000 cells/well were cultured in collagen I-coated 24-well XF-V7 cell culture plate
(Agilent, Santa Clara, CA, USA) for 24 h. Cells were then serum-starved for 12 h, prior to Hb treatment for
24 h. Following the incubation, the Hb containing media was gently washed once with PBS and replaced
with 500 µL of the XF-assay media (Agilent, Santa Clara, CA, USA), supplemented with 10 mM glucose,
5 mM pyruvate, and 2 mM glutamate. Mitochondrial oxygen consumption rate (OCR) was assessed
under different bioenergetic states, e.g., coupled, uncoupled, and inhibited states, created by automated
sequential injections of oligomycin (1 µM), carbonyl cyanide-p-trifluoro-methoxyphenylhydrazone
(FCCP, 1 µM), and a combination of mitochondrial inhibitors (rotenone, 1 µM and antimycin A,
1 µM), respectively [21]. Similarly, endothelial glycolytic capacity was assessed by measuring the
extracellular acidification rate (ECAR). For the ECAR experiments, glucose-free XF-assay media were
used. Real-time glycolytic profile was obtained by sequential addition of glucose (10 mM), oligomycin
(1 µM), and glycolytic inhibitor 2-deoxyglucose (2-DG, 100 mM) to the wells.

The OCR and ECAR values were plotted using the XF24 software, version 1.8. To eliminate any
background OCR or ECAR, few blank wells with Hb variants were also run. Various bioenergetic
and glycolytic parameters were calculated following the manufacturer’s protocol and as described
earlier [49]. In brief, basal respiration was considered as the difference between maximum OCR
obtained before oligomycin addition and non-mitochondrial OCR obtained after rotenone/antimycin
A, whereas the maximal respiration was the difference between maximum OCR induced by FCCP
and non-mitochondrial OCR. Similarly, glycolysis was considered as the maximum ECAR obtained
after addition of glucose and the glycolytic capacity was the maximum ECAR achieved by oligomycin
addition that shuts down ATP generation oxidative phosphorylation.

4.10. Statistical Analysis

Plotting of data and statistical calculations were done with GraphPad Prism 7 software. All values
are expressed as mean ± SEM. A p-value of <0.05 was considered to be statistically significant.
The difference between two means were compared using unpaired Student’s t-test.
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