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Pilot study of bempegaldesleukin in combination
with nivolumab in patients with metastatic sarcoma
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Travis Adamson 1, Lilan Ling4, Pavitra Rao4, Shreyaskumar Patel5, Jonathan A. Livingston 5, Samuel Singer8,

Narasimhan P. Agaram9, Cristina R. Antonescu 9, Andrew Koff10, Joseph P. Erinjeri11, Sinchun Hwang12,
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PD-1 blockade (nivolumab) efficacy remains modest for metastatic sarcoma. In this paper, we

present an open-label, non-randomized, non-comparative pilot study of bempegaldesleukin, a

CD122-preferential interleukin-2 pathway agonist, with nivolumab in refractory sarcoma at

Memorial Sloan Kettering/MD Anderson Cancer Centers (NCT03282344). We report on

the primary outcome of objective response rate (ORR) and secondary endpoints of toxicity,

clinical benefit, progression-free survival, overall survival, and durations of response/treat-

ment. In 84 patients in 9 histotype cohorts, all patients experienced ≥1 adverse event and

treatment-related adverse event; 1 death was possibly treatment-related. ORR was highest in

angiosarcoma (3/8) and undifferentiated pleomorphic sarcoma (2/10), meeting predefined

endpoints. Results of our exploratory investigation of predictive biomarkers show: CD8+ T

cell infiltrates and PD-1 expression correlate with improved ORR; upregulation of immune-

related pathways correlate with improved efficacy; Hedgehog pathway expression correlate

with resistance. Exploration of this combination in selected sarcomas, and of Hedgehog

signaling as a predictive biomarker, warrants further study in larger cohorts.
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Sarcomas are diverse malignancies comprising more than
100 subtypes of bone and soft tissue origin1. Each year, up
to 16,000 patients are diagnosed in the United States2. In

the metastatic setting, there are no good treatment options: front-
line chemotherapy is associated with low objective response rates
(ORR, averaging ~18%)3,4 and second-line treatments have lower
efficacy still5. In other cancers, the use of monoclonal antibodies
that block immune checkpoints such as programmed death 1
(PD-1; PDCD1) are effective alternative therapies to mobilize the
immune system6, but in sarcoma their activity has been
modest7–10. Studies that could elucidate this low response by
characterizing the tumor microenvironment in sarcoma are
limited.

High tumor mutational burden (TMB), tumor PD-L1 (CD274)
expression, and increased tumor-infiltrating lymphocytes (TIL)
are biomarkers of response to checkpoint inhibitors in multiple
cancer types that have been found to be low across most sarcoma
subtypes11,12. Prior studies in sarcoma have associated the pre-
sence of TlLs with improved clinical outcome11,13–17. These
markers correspond to an immune-sensitive phenotype labeled
“immune-hot.” In soft tissue sarcomas (STS) classified by gene
expression analysis as immune-hot, with high expression of
CD8+ T cells, tertiary lymphoid structures, and B cell markers,
patients had improved response to PD-1 blockade12.

Novel approaches are needed to improve the effectiveness of
PD-1 blockade while identifying predictive biomarkers of treat-
ment response and resistance. We recently showed that com-
bining talimogene laherparepvec via intratumoral injection with
pembrolizumab in metastatic sarcoma led to immune conversion
and correlated with improved clinical efficacy10. Bempe-
galdesleukin, a CD122-preferential interleukin-2 (IL-2) pathway
agonist, is associated with increased proliferation and activation
of TILs among patients with solid tumors, providing the rationale
to explore this agent in sarcoma18,19.

We hypothesized that bempegaldesleukin would improve the
efficacy of nivolumab PD-1 blockade. In this open-label, non-
comparative pilot clinical trial (NCT03282344), we perform an
integrated genetic, transcriptomic, and immunopathologic ana-
lysis to uncover the immune landscape in sarcoma at baseline and
after treatment to differentiate which patients are most likely to
respond. Here, we show that CD8+ T cell infiltrates and PD-1
expression correlate with improved ORR; that upregulation of
immune-related pathways correlates with improved efficacy; and
that Hedgehog pathway expression correlates with resistance.

Results
Patient cohort. A total of 84 patients with selected locally
advanced or metastatic high-grade sarcoma were enrolled from
October 6, 2017 to January 28, 2020 at Memorial Sloan Kettering
Cancer Center (MSK) and MD Anderson Cancer Center (MDA).
All patients received bempegaldesleukin 0.006 mg/kg and nivo-
lumab 360 mg/kg as an intravenous (IV) infusion every 3 weeks,
and treatment was continued until progressive disease (PD) or
toxicity.

At study entry, patients’ mean age was 52 years (standard
deviation: 17 years), 40 of 84 (48%) were female, 57 of 84 (68%) had
an Eastern Cooperative Oncology Group (ECOG) performance
status of 0, and 39 (46%) had received ≥3 lines of prior
chemotherapy. Patients were divided into 9 cohorts predefined by
histological subtype: alveolar soft part sarcoma (ASPS, n= 4),
angiosarcoma (n= 10), conventional/dedifferentiated chondrosar-
coma (n= 8; n= 2), leiomyosarcoma (LMS, n= 10), dedifferen-
tiated liposarcoma (n= 10), osteosarcoma (n= 10), small blue
round cell tumor (SBRCT) or synovial sarcoma (n= 6), undiffer-
entiated pleomorphic sarcoma or high-grade myxofibrosarcoma

(UPS/MFS, n= 10), and other (n= 14) (Table 1). Enrollment was
completed in all cohorts other than ASPS and SRBCT/synovial
sarcoma, which was terminated due to slow accrual.

At the time of the data lock, 77 patients had discontinued study
treatment and 7 patients remained on this combination; the most
common reason for discontinuation was disease progression
(Fig. 1A) while adverse events led to discontinuation in 3 (4%)
patients. Thirty-four (40%) patients were alive with a median of
5 months of follow-up at the data lock date (February 24, 2020).
Among the 50 deaths, 46 resulted from sarcoma and 4 were from
unknown causes as patients were lost to follow-up.

Efficacy analysis: response rates and survival. Seventy-seven
patients were included in the efficacy analysis as 6 had dis-
continued study treatment prior to disease reevaluation and 1 had
not reached their first response assessment at the time of data
lock. Outcomes varied by histological subtype (Table 2, Fig. 1B).
Median time to response by Response Evaluation Criteria in Solid
Tumors (RECIST) was 3.7 months and median duration of
response was 9.3 months. Median duration of treatment was
4.8 months (95% CI 3.2–6.1 months). Clinical benefit rate at
6 months ranged from 0% in osteosarcoma to 63% in angio-
sarcoma, while 67 (87%) evaluable patients experienced pro-
gressive disease (PD). Median progression-free survival (PFS)
ranged from 1.8 months in LMS to 7.3 months in angiosarcoma
(Fig. 1C, Table 2, Supplementary Fig. 1A). Median overall sur-
vival (OS) ranged from 5.9 months in the SBRCT tumor to not
reached in both cohorts of ASPS and angiosarcoma cohorts
(Supplementary Fig. 1B).

Safety analysis. There were 84 patients who received at least one
dose of therapy and were included in the safety analysis. All
patients experienced ≥1 adverse event (AE); the most common
grade 3 or 4 AEs were elevated lipase (n= 13; 10%), anemia
(n= 8; 10%), elevated serum amylase (n= 7; 8%), hypertension
(n= 6; 7%), pain (n= 6; 8%), and thromboembolic events
(n= 4; 5%.)

All 84 patients also experienced ≥1 treatment-related adverse
event (TRAE) of any grade (possibly, probably, and definitely
related). The most common were fatigue (n= 84, 100%), fever
(n= 84, 100%), rash (n= 63, 75%), pruritus (n= 60, 71%),
arthralgia (n= 52, 62%), flu-like symptoms (n= 48, 57%), and
chills (n= 41, 49%.) Grade 3 or 4 TRAEs occurred in 30 (35%)
patients; the most common were elevated lipase (n= 5; 6%),
elevated amylase (n= 3; 4%), and myalgia (n= 2; 2%) (Supple-
mentary Table 1). There was one death possibly related to
treatment. The patient stopped treatment due to disease
progression, developed immunotherapy-associated pneumonitis
shortly thereafter, and later presented with progressive dyspnea,
ultimately expiring from respiratory failure.

Immune cell populations evolve after treatment and define
better responders. Tumors from 61 patients were stained by
immunohistochemistry (IHC) for various immune markers
(Supplementary Fig. 1C, Supplementary Data 1) using matched
specimens with both baseline and on-treatment samples. PD-1
expression at baseline was associated with ORR (linear model
p= 0.031, covariate p= 4.7 × 10−4) while controlling for the
effect of sarcoma histology (Fig. 2A). There was no association for
baseline CD8, PD-L1, CD68, or FOXP3 markers (Fig. 2B, Sup-
plementary Fig. 2A–C, Supplementary Data 2). However, at the
on-treatment time point (cycle 2), both CD8 and PD-1 were
associated with ORR, suggesting a potential change in tumor
immune microenvironment in patients who attained a partial
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response (PR; linear model p= 0.01 and 0.002, covariate
p= 4.6 × 10−4 and 7.3 × 10−5, respectively; Fig. 2A, B).

The matched specimen analysis showed that changes in PD-1+
cells between these time points was predictive of PR (linear model
p= 0.020, covariate p= 4.3 × 10−4; Fig. 2C, Supplementary
Fig. 2D–G, Supplementary Data 2).

Immune cell populations were quantified via Microenviron-
ment Cell Populations (MCP)counter20 using RNA expression
from 48 patients (41 baseline and 38 on-treatment biopsies)
(Supplementary Fig. 1C). The reliability of this approach was
confirmed by comparing this quantification to IHC of
CD8+ T cells and CD68+macrophages and monocytes; marker
expression by IHC significantly correlated with MCPcounter-
calculated immune cell abundance (Spearman’s p < 10−7, rho=
0.74 and 0.75, respectively; Supplementary Fig. 2H, I).
Independent clustering across immune cell populations

quantified by MCPcounter on baseline samples classified tumors
into three distinct groups with variation in response rates and
PFS. Immune-hot tumors (Group A) were characterized by
elevated CD8+ T cells; intermediate tumors (Group B) by high
neutrophils and intermediate levels of other immune cells; and
immune-cold tumors (Group C) by low levels of all immune cells.
Patients with immune-hot tumors at baseline were significantly
enriched for partial responders (Fisher’s test p value= 0.009) and
had significantly longer PFS (logrank p= 0.025; Fig. 2D, E).
Interestingly, 4/6 patients with partial response had immune-hot
tumors at baseline. All on-treatment samples could be classified
as immune-hot or immune-cold (Fig. 2F). Patients with immune-
hot tumors in on-treatment samples also had higher response
rates (PR or stable disease [SD]: 7/9; Fisher’s test p= 0.02) and
improved PFS (Fig. 2G, logrank p= 0.017). The cell populations
in baseline and on-treatment samples varied. For instance, T cells
were consistently high at baseline and on-treatment in immune-
hot sample while macrophages were more prevalent in immune-
hot samples on-treatment versus at baseline.

Expression of immune pathways and hedgehog signaling
pathway differentiate patient response. RNA-seq analysis
identified 225 genes differentially expressed between patients with
partial response (responders) versus non-responders across time
points, of which 67 genes were upregulated (Fig. 3A, Supple-
mentary Data 3). PD-1 was nominally differentially expressed
with higher expression in patients with partial response (nominal
p= 0.002, q value= 0.08). Interestingly, tumors of patients with
SD had low PD-1 expression at baseline, similar to patients with
PD, but showed increased expression on treatment, suggesting
tumor conversion due to therapy (p= 0.014; Supplementary
Fig. 3A).

Gene set enrichment analysis (GSEA) was performed to assess
shifts in expression across genes in a pathway21. Several immune-
related pathways were upregulated in patients with PR, including
IL6/JAK/STAT3 signaling and interferon alpha response (Benja-
mini-Hochberg [BH] adjusted p= 0.0096 for both); epithelial
mesenchymal transition and Hedgehog signaling pathways were
downregulated (BH adjusted p= 0.0021 for both) (Fig. 3B). Using
hierarchical clustering of single-sample GSEA scores (ssGSEA),
we found some clustering of partial responders at baseline but
more defined clustering of patients following treatment, with one
group in which 4 of 5 patients achieved PR and another with 7 of
9 patients receiving clinical benefit (Fig. 3C). Similar pathways
were identified using an alternative differential expression model
with additional covariates (Supplementary Fig. 3B). Furthermore,
when we specifically compared patients with progressive disease
to those with clinical benefit (partial response or stable disease),
we identified similar pathways including interferon alphaT
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response (BH adjusted p= 0.0016) and Hedgehog signaling (BH
adjusted p= 0.0011) (Supplementary Fig. 3C).

Cross-validation GLM-NET of pathways and immune cell
populations showed that Hedgehog signaling and CD8+ T cells,
at baseline and on treatment, best predicted PFS; lower levels of
Hedgehog signaling and higher levels of CD8+ T cells led to
longer PFS (Fig. 3D,E). Neither measure was strongly associated
with cohort (Supplementary Fig. 3D–G). Not all Hedgehog genes
move uniformly across samples but we can see a general shift to
higher expression among patients with progressive disease. This
trend is clearer on-treatment (Supplementary Fig. 3H). Further-
more, while glioma-associated oncogene homolog 1 (GLI1), a
transcription factor involved in Hedgehog signaling, was
nominally differentially expressed in our overall model using all
samples (Fig. 3A; nominal p= 0.004, q= 0.11), its higher
expression in PD and lower expression in PR was more striking
in on-treatment samples (two-sided t-test p= 0.011 [PR vs
Others], 0.039 [PD vs Others]; Supplementary Fig. 3I).

Genomic features of sarcomas. To determine if specific genomic
alterations influenced either the immune content or expression of
various pathways, whole exome sequencing was performed on
samples derived from 67 patients, including 61 at baseline, 57 on-
treatment, and 2 additional on-treatment biopsy specimens
(Supplementary Fig. 1C). Consistent with previous sequencing
studies in sarcoma22, the most common putative drivers were
TP53 mutations (40%), amplification of CDK4 and MDM2 loci
(15%), RB1 mutations (13%), amplifications in NCOR1 or

MAP2K4 (12%) and homozygous deletions of CDKN2A (13%),
among others (Supplementary Fig. 4A). Recurrent alterations
identified were often unique to specific sarcoma subtypes;
CDK4/MDM2 amplifications were identified in all but one ded-
ifferentiated liposarcoma, ASPSCR1-TFE3 fusions in all patients
with alveolar soft part sarcoma, and fusions involving EWSR1 in
all patients with SBRCT. No significant differences in ORR or PFS
were correlated with genomic alterations.

Sequencing data were available at both baseline and on-
treatment (cycle 2) for 51 patients. A median of 78% (IQR
68–87%) of mutations were shared across paired samples, while
the majority of discordance could be explained by differences in
tumor purity (Supplementary Fig. 4B). Of 35 patients with ≥1
driver mutation, 20 shared all driver mutations across all their
samples (Supplementary Fig. 4C). Differences in the clonality of
drivers between samples was evident in 13 of the 20 patients,
likely representing tumor heterogeneity.

The 2 additional on-treatment samples were from: a palliative
surgical resection of a treatment-responding fibrosarcoma (other
cohort) in the setting of a joint infection, which shared 62% of
mutations with the baseline sample, including 2 putative drivers
in GNAS and NF2; and a progressing chondrosarcoma that
shared 36% of mutations from baseline, including a putative
oncogenic IDH2 mutation and a distinct oncogenic TP53
alteration (missense mutation at p.G334V rather than a splicing
mutation at p.T125), suggestive of convergent evolution (Supple-
mentary Fig. 4D).

Tumor mutation burden (TMB) across samples was relatively
low compared with other tumor types (median 1.22 mut/Mb,
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range 0.03–4.61 mut/Mb)23. TMB was not significantly associated
with ORR or PFS, as has been described in other solid tumors
(two-sided t-test p= 0.46, logrank p > 0.08; Supplementary
Fig. 5A, C)24–26. Not surprisingly, TMB was associated with
sarcoma subtype: osteosarcoma tended to have higher TMB
(median= 1.96, two-sided t-test p < 0.05) while liposarcoma
tended to have lower TMB (median= 0.93, two-sided t-test
p= 0.02; Supplementary Fig. 5B).

Fraction of genome altered (FGA), defined as the fraction of
the genome where the total number of alleles differs from a
balanced genome, was not associated with ORR or PFS (two-
sided t-test p= 0.55, logrank p > 0.26; Supplementary Fig. 5D, F)
but was significantly associated with sarcoma subtype, consistent
with previous observations22. UPS displayed high FGA (two-
sided t-test BH p= 0.03), while liposarcoma and SBRCT sarcoma
had significantly lower FGA (two-sided t-test BH p= 0.03 and
4.5 × 10−4, respectively; Supplementary Fig. 5E).

Neoantigen load is correlated with response to checkpoint
inhibitors in malignancies such as melanoma and non small cell
lung cancer (NSCLC)24,25,27. In this study, there was no
significant correlation between the number of expressed neoanti-
gens at baseline (predicted using NetMHC and with expression
confirmed by RNA-seq) compared to ORR (two-sided t-test,
nominal p= 0.298; Supplementary Fig. 6A). Interestingly, to the
contrary, on-treatment tumors with PR or SD expressed fewer
neoantigens (two-sided t-test, BH p= 0.01; Supplementary
Fig. 6B), which may reflect increased aberrant expression in
progressing patients, as the mutations are largely concordant
across time points. As expected, TMB is correlated strongly with
neoantigen load, before and after considering expression (r2= 0.9
and 0.7, respectively; Supplementary Fig. 6C, D).

While most HLA genotypes did not correlate with response,
patients with the HLA-A-11-01 allele had worse PFS (nominal
p= 0.013; Supplementary Fig. 6E). The significance of this
finding is unknown and may warrant further study. Of note, a
recent report in melanoma and NSCLC highlighted the role that
HLA-I genotype plays in outcomes from checkpoint inhibition28.
Although previous work has suggested that loss of heterozygosity
(LOH) at HLA loci may contribute to response to
immunotherapy28,29, we did not find that correlation. T-cell
receptors (TCRs) on antigen-presenting cells have also been
suggested to influence response to immunotherapy30. Intratu-
moral TCR clonality and diversity at baseline or on-treatment did
not correlate with clinical outcome in our study (Supplementary
Fig. 6F–M).

Discussion
There remains an unmet clinical need to optimize immunother-
apeutic strategies for patients with metastatic sarcoma. We per-
formed this clinical trial to evaluate the efficacy of
bempegaldesleukin and nivolumab in predefined histological
cohorts and obtained serial biopsy specimens to help provide
insight into predictive biomarkers of response and resistance. We
identified variations in ORR based on the cohort; there were no
responses in osteosarcoma, conventional chondrosarcomas, and
dedifferentiated liposarcomas, while 3 of 8 (38%) patients with
non-cutaneous angiosarcoma and 2 of 10 (20%) patients with
UPS obtained durable responses, thereby meeting predefined
study endpoints and suggesting that additional study may be
warranted. The clinical efficacy in non-cutaneous angiosarcoma is
surprising and interesting; efficacy seen in UPS remains con-
sistent with previously published studies7–9. The trial design
emphasized the importance of histology-specific cohorts because
of the heterogeneity of this disease; this heterogeneity also high-
lights the need for larger cohorts to better define the clinicalT
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Fig. 2 Immune cell content in on-treatment samples differentiates response. A–C Percent (A) PD-1-positive cells (Baseline n= 5 patients [PR], 12 [SD],
31 [PD]; On-Treatment n= 3 [PR], 7 [SD], 23 [PD]), (B) CD8-positive T cells (Baseline n= 4 patients [PR], 11 [SD], 32 [PD]; On-Treatment n= 3 [PR], 7
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values are nominal and derived from linear model of positive cells with ORR including sarcoma subtype as a covariate. Boxplot shows the median with
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efficacy of this therapeutic combination and validate the status of
Hedgehog signaling status as a predictive biomarker.

We sought to identify genomic and immune correlates of
clinical benefit from this combination by conducting immuno-
histochemistry, whole exome sequencing, and RNA sequencing
analyses. In our study cohorts, we did not identify any putative
genetic drivers that correlated with response or resistance. Fur-
ther, genomic markers such as TMB, neoantigen load, and loss of
heterozygosity did not correlate with clinical benefit. Elevated
TMB and resultant dominant UV signature mutations have been
found to be potential predictive biomarkers of benefit in cuta-
neous, head, and neck angiosarcomas31. Despite the low TMB
identified in our analyzed cohort, 3 of 8 (38%) patients with non-
cutaneous angiosarcoma derived prolonged clinical benefit with
this drug combination, suggesting that conventional genomic
markers alone may not suffice to identify suitable patients.

The presence of increased numbers of CD8+ T cells and
higher PD-1 expression (by IHC and gene expression) at baseline
and on-treatment were associated with improved ORR and pro-
longed PFS, consistent with previous reports in other solid
tumors32,33. At baseline, our clustering analysis identified three
groups of tumors (Group A: “immune-hot”; Group B: inter-
mediate with higher neutrophils; Group C: “immune-cold”).
Myeloid cells, including neutrophils, have been shown to suppress
T cell responses, providing a potential explanation for the pre-
dominance of response in Group A versus Groups B and C34.

On-treatment analysis identified only 2 groups, A and C. Con-
vergence into 2 groups presumably highlights the changes
induced in the immune microenvironment during treatment.
Notably, Petitprez et al. recently classified sarcomas into five
phenotypes that correlated with ORR and OS12. While the clus-
tering by Petitprez et al. was conducted in primary resected
specimens, our cohort only includes treated metastatic specimens.
Further, the variability of sarcoma subtypes and overall lower
numbers within each subtype may also explain the differences
between our results.

In sarcoma, bempegaldesleukin did not appear to improve
efficacy to checkpoint blockade; other mechanisms may be
driving resistance to immunotherapy. Our GSEA identified the
upregulation of mesenchymal transition and Hedgehog signaling
pathway expression as associated with lack of benefit. Hedgehog
signaling has been implicated in the development of resistance to
systemic therapies such as cytotoxic chemotherapy, targeted
agents, and radiation therapy35–37. The Hedgehog signaling
pathway can also regulate the immune response and aberrant
Hedgehog signaling has been shown to drive tumor growth
through a number of pathways including enhanced immuno-
suppressive mechanisms38–40. We have shown that the presence
of CD8+ T cells and the reduced expression of the Hedgehog
signaling pathway led to the best clinical outcome. Interestingly,
in basal cell carcinoma, inhibition of Hedgehog signaling with
vismodegib and sonidegib has led to reduction in tumor burden

Fig. 3 Differentially expressed pathways in partial responders. A Volcano plot of differential expression between partial responders (n= 7 patients) and
non-responders (n= 41 patients). Model included trial cohort, patient, purity, and sample time point as covariates. Points represent genes. Genes in
Hallmark hedgehog pathway are highlighted in red. B Top 10 upregulated and all 5 downregulated Hallmark pathways between partial responders (n= 7
patients) and non-responders (n= 41 patients). Analysis performed using fgsea in R. All pathways are significantly enriched (BH adjusted p < 0.05).
C Heatmap of ssGSEA scores of baseline (n= 41 patients) and on-treatment (n= 38 patients) expression in individual patients for top enriched pathways
in (B) using the leading-edge genes from the fgsea analysis. D, E. Kaplan–Meier plot of progression-free survival of patients divided into four groups
depending on the amount CD8+ T cells and ssGSEA score of hedgehog pathway enrichment across cohort (high versus low, split by median). Scores
derived from expression at baseline in (D) and on-treatment samples in (E). Note, cross-validation analysis does not output p values. Source data are
provided as a Source Data file.
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and durable clinical benefit for some patients41,42. In the setting
of tumor regressions due to Hedgehog inhibitors, favorable
changes to the immune microenvironment have been shown,
including upregulation of MHC class I expression and infiltration
of CD8+ T cells into tumors43. The interplay of Hedgehog sig-
naling and the immune microenvironment warrants further
investigation in sarcoma.

Limitations of this study include the low ORR across each
cohort, which precluded robust correlative analyses. Further, the
non-randomized nature limits the ability to identify the additive
benefit of bempegaldesleukin. Sarcoma is a complex hetero-
geneous disease and each histological subtype can have variable
behavior and response to systemic therapy, prompting the need
to enroll patients onto cohorts based on subtype. Without well-
defined biostatistical endpoints within each cohort, drawing
definitive conclusions regarding efficacy is also not feasible. The
goal instead was to identify a signal of efficacy that would
potentially lead to expansions and further study. Similarly, our
correlative studies identified interesting observations that will
require additional evaluation in larger histology-specific cohorts.

This combination has limited activity in most sarcoma sub-
types, other than in angiosarcoma where additional study may be
warranted. Our data highlights the potential role of CD8+ T cell
infiltration in driving immune responses to checkpoint inhibition,
as has been described in other malignancies32,33. While upregu-
lation of Hedgehog signaling seems to correlate with lack of
efficacy, a predictive biomarker of immune conversion remains to
be defined and further evaluation of the relevance of Hedgehog
signaling status is necessary.

Methods
Study design and participants. This was a multi-center, open-label, non-rando-
mized, non-comparative pilot trial conducted at MSK and MDA (Clinical-
Trials.gov: NCT03282344). Eligible patients were ≥12 years and had advanced or
metastatic sarcoma measurable per RECIST v1.1, ECOG performance status of 0 or
1, an estimated life expectancy of ≥3 months, previous receipt of ≥1 systemic
therapy for metastatic disease (if applicable), and adequate kidney, liver, and bone
marrow function. A sample size of 10 patients was planned for 7 of the histological
cohorts (LMS, UPS/MFS, chondrosarcoma, DDLPS, osteosarcoma, angiosarcoma
and ASPS), and a sample size of 15 patients was planned for the SBRCT/synovial
sarcoma and other cohorts to account for their heterogeneity. A minimum of
28 days was required between any previous systemic therapy and initiation of
bempegaldesleukin and nivolumab. Key exclusion criteria were active brain
metastases or history of autoimmune diseases. Prior therapy with anti-PD-1 was
permitted. The first participant enrolled on September 14, 2017, and the last
enrolled on January 17, 2020.

Study protocol (Supplementary Note 1) was approved by review boards at MSK
and MDA. The study was conducted according to the Declaration of Helsinki and
the Guidelines for Good Clinical Practice. Each participant signed an IRB-
approved, protocol-specific informed consent in accordance with federal and
institutional guidelines. This study was monitored for accrual, safety, and the
primary endpoint, at least twice annually, by the Data and Safety Monitoring
Board, a standing committee at MSK. Since RECIST remains the standard
approach to assess efficacy on therapeutic trials, in deviation from the protocol, we
opted to not perform irRECIST reads as it would not change our interpretation of
the data or alter our conclusions.

Treatment and assessments. Patients received bempegaldesleukin 0.006 mg/kg
and nivolumab 360 mg (flat dose) as an intravenous infusion every 3 weeks.
Treatment was continued until progressive disease (PD) or toxicity.

Tumor assessments were performed at baseline and every 8 weeks thereafter
and were not subject to central radiology review. Patients experiencing PD were
permitted to continue study treatment beyond initial PD if the patient had evidence
of clinical benefit and tolerated study treatment. Dose reductions were not
permitted; however, dose interruptions for up to 6 weeks were allowed. If treatment
was discontinued due to adverse events, patients were followed until disease
progression or initiation of different therapy for >30 days after the last dose of
bempegaldesleukin and nivolumab. Laboratory tests were performed at baseline
and every 2–3 weeks as per the treatment schedule. Adverse events were graded
according to the National Cancer Institute Common Terminology Criteria for
Adverse Events (NCI CTCAE) version 4.0 during treatment and ≥30 days after
treatment discontinuation. Mandatory biopsies prior to treatment and during week
3 were obtained in the same anatomic site unless not medically feasible. In

addition, research blood tests were obtained at baseline and pretreatment on day 1
of cycles 8, 16, 24, 46, and at the time of progression.

Outcomes. The primary endpoint was confirmed ORR within each histology
cohort based on RECIST v1.1 during protocol-directed treatment. Confirmation of
response was required 4 weeks following initial response. Confirmed ORR was
estimated as the number of patients with a CR or PR divided by the number of
evaluable patients. Secondary outcomes were toxicity, clinical benefit rate, duration
of response, PFS, OS, and duration of treatment. Clinical benefit rate was defined as
best objective status (CR, PR, or SD) at a given time point while receiving protocol
treatment, divided by the number of patients receiving treatment at the same time
point. Duration of response was defined as the time from first CR or PR to date of
PD. PFS was defined as the time from start of treatment to date of PD or death.
Patients who discontinued treatment for reasons other than PD, such as adverse
events, were censored at the date of their most recent disease evaluation prior to
receiving any later systemic treatment regimens. OS was calculated as the time
between start of treatment and date of death. Patients lost to follow-up were
censored for survival at the date last known to be alive. Patients remaining in active
treatment were censored for duration of treatment on their most recent date of
treatment. All analyses excluded any data collected beyond the date of withdrawal
for patients having withdrawn consent. After discontinuation of protocol treat-
ment, survival status was assessed every 3 months for a year after the last dose.

Statistical analyses of clinical outcomes. Eligible patients who had initiated
study treatment were considered evaluable for safety endpoints. Efficacy endpoints
include only patients receiving ≥1 post-treatment assessment. In the cohorts with
n= 10 patients, groups with two confirmed responses were considered worthy of
further study, while in the cohorts with n= 15 patients (SBRCT/synovial sarcoma
and other), groups with three confirmed responses were worthy of further study.
Categorical data analyses and summary statistics were used to report adverse
events. When patients were found ineligible after initiating study treatment, safety
endpoints included only data prior to the date of ineligibility. The analysis of
secondary endpoints included only eligible, treated patients. Kaplan–Meier meth-
odology was used to estimate the distributions of all time to event endpoints. All
patients included in the primary endpoint evaluation were also included in time-to-
event endpoints. For all statistical estimates, 95% confidence intervals (CIs) were
calculated. All statistical analyses were performed using statistical analysis system
(SAS) R version 4.0.2.

Whole-exome sequencing. Frozen tissues were weighed and 20–30 mg homo-
genized in RLT buffer before nucleic acids were extracted using the AllPrep DNA/
RNA Mini Kit (QIAGEN catalog # 80204) according to the manufacturer’s
instructions. RNA was eluted in nuclease-free water and DNA in 0.5X Buffer EB.
Viably frozen cells were thawed and pelleted and incubated for ≥30 min in 360 μL
Buffer ATL+ 40 μL proteinase K at 55 °C. DNA was isolated with the DNeasy
Blood & Tissue Kit (QIAGEN catalog # 69504) according to the manufacturer’s
protocol with 1 h of incubation at 55 °C for digestion. DNA was eluted in 0.5X
Buffer AE. After PicoGreen quantification and quality control by Agilent BioA-
nalyzer, 100–250 ng of DNA were used to prepare libraries using the KAPA Hyper
Prep Kit (Kapa Biosystems KK8504) with 8 cycles of polymerase chain reaction
(PCR). After sample barcoding, 100–500 ng of library were captured by hybridi-
zation using the xGen Exome Research Panel v1.0 (IDT) according to the manu-
facturer’s protocol. PCR amplification of the post-capture libraries was carried out
for 12 cycles. Samples were run on a HiSeq 4000 or HiSeq 2500 in Rapid mode in a
PE100 run, using the HiSeq 3000/4000 SBS Kit or HiSeq Rapid SBS Kit v2 (Illu-
mina). Normal and tumor samples were covered to an average of 100X and 204X,
respectively.

The resulting fastqs were aligned and processed using TEMPO44 (code for
processing whole exome sequencing data can be found at https://github.com/
mskcc/tempo). Briefly, reads were aligned using Burroughs-Wheeler Aligner
(BWA)-MEM45 to the GRCh37 reference genome. Genome Analysis Toolkit
(GATK)46 best practices were used for base recalibration. High contamination of
exome sequencing led to the removal of three samples from two patients from this
analysis.

Somatic genome variants were called using the union of Mutect247 and
Strelka248. Variants were then filtered by several measures including variant allele
frequency <0.05, tumor read depth of 20, tumor alternate read count of 3, and
normal read depth of 10, along with filtering out repeated regions from
RepeatMasker49 and variants that appear at allele frequencies >0.01 in
GNOMAD50. Variants were considered shared between samples of the same
patient if there was ≥1 supporting read in the other sample from the same patient.
Variants were then annotated using OncoKB51 for oncogenicity. Variants classified
as “predicted/likely/oncogenic” in OncoKB or that cause truncation of tumor
suppressor genes by OncoKB were considered drivers. Truncating mutations were
defined as those that create a stop codon or were an out-of-frame indel. Clonality
differences between baseline and on-treatment samples were calculated by
estimating the uncertainty of the baseline variant allele frequency using the Wilson
95% CI on the binomial probability. If the on-treatment variant allele frequency
was not within the 95% CI, it was considered discordant. TMB was calculated by
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TEMPO as the number of non-synonymous mutations in coding regions covered
by the IDT baits. TMB was considered at baseline in analyses unless otherwise
specified.

Somatic copy number alterations were called using FACETS (Fraction and
Allele-Specific Copy Number Estimates from Tumor Sequencing) v0.5.1452. Each
tumor and matched normal pair was processed in a two-pass manner: an initial run
for purity and ploidy estimation followed by a second run for focal event detection.
Each fit was manually reviewed to minimize false positives and to evaluate the
quality of the fit, leading to eight samples from seven patients being removed from
the analysis. FGA and whole-genome doubling were calculated from the resulting
FACETS using facets-suite V253. Baseline FGA was used in analyses unless
otherwise specified. In the oncoprint, amplifications in tumor suppressor genes and
homozygous deletions in oncogenes were removed as likely passenger events.

HLA typing was performed using PolySolver54. Neoantigens were identified
using NetMHC-pan55. They were considered expressed if ≥1 RNA-seq read was
identified to support the mutated base. Correlation between TMB and number of
neoantigens was performed in R using “cor.test”.

Analysis of IHC. Paraffin-embedded tumor specimen obtained prior to and during
treatment was evaluated by IHC for the following markers: PD-L1 (rabbit clone 28-
8), CD8 (mouse clone C8/144B), CD68 (mouse clone KP1), FOXP3 (mouse clone
236 A/E7), Ki67 (clone MIB-1) and PD-1 (rabbit clone EPR48772) by Mosaic
laboratories (catalog numbers in parenthesis; Mosaic labs does not supply dilu-
tions, as they are proprietary). The PD-L1 and Ki-67 assays were evaluated by
measuring the percentage of cells staining in the following fashion: 0 (no staining),
1+ (weak staining), 2+ (moderate staining) and 3+ (strong staining). To calcu-
late the H score, the following formula was used: (3 x % cells staining at 3+ ) + (2
x % cells staining at 2+ ) + (1 x % cells staining at 1+ ). Other cell types were also
evaluated using maximum staining intensity (Max SI) which included evaluation of
normal adjacent tissue, endothelia, smooth muscle, fibroblasts, stroma, inflam-
matory cells, and nerve. Not all samples were able to be tested for all markers:
84 samples were tested for PD-1 (48 baseline, 33 on-treatment, 3 progression), 93
for PD-L1 (53 baseline, 37 on-treatment, 3 progression), 81 for CD8 (47 baseline,
32 on-treatment, 2 progression), 84 for FOXP3 (48 baseline, 34 on-treatment, 2
progression). P-values were determined by linear modeling including sarcoma
subtype cohort as a covariate.

RNA sequencing. After RiboGreen quantification and quality control by Agilent
BioAnalyzer, 107–500 ng of total RNA with RIN values of 5.4–10 underwent polyA
selection and TruSeq library preparation according to instructions provided by
Illumina (TruSeq Stranded mRNA LT Kit, catalog # RS-122-2102), with 8 cycles of
PCR. Samples were barcoded and run on a HiSeq 4000 in a PE100 run, using the
HiSeq 3000/4000 SBS Kit (Illumina). An average of 43 million paired reads was
generated per sample. Ribosomal reads represented 1.9–19% of the total reads
generated and the percent of mRNA bases averaged 69%.

The resulting fastqs were processed using an in-house RNA sequencing
pipeline. Briefly, fastqs were aligned using STAR 2.7.056 to Ensembl v7557,58. The
resulting bams were used for quality control by Picard59 and to identify fusions
using the intersection of calls from FusionCatcher60 and Arriba61. Expression was
quantified using Kallisto62 and summarized at the gene level using Enembl v75.

Normalized transcripts per million (TPM) were calculated using Sleuth
(sleuth_to_martix). Immune populations were quantified using the R package
“immunedeconv”63. Within this package, we used MCPcounter20, from which
Z-scores were calculated from the quantification of each population. Correlation
between IHC values and those derived from MCPcounter was performed in R using
“cor.test”. These scores were used for hierarchical clustering of samples at each time
point using Manhattan distance and Wald D clustering to classify the overall immune
infiltration into each tumor. Differences in PFS were evaluated by log-rank test.

First model to identify differentially expressed genes in Sleuth:64

Expression � TrialCohort þ SampleTimepoint þ PatientID þ Purityþ
PartialResponder Where TrialCohort is sarcoma subtype, Sample Timepoint is
either baseline, on treatment, or progression; Patient ID allows for multiple
samples from the same patient; and PartialResponder is yes or no according to
whether the patient met criteria for partial response. Purity was derived from
FACETS (in exome data) except for four samples that did not have an acceptable
FACETS fit and for which maximum variant allele frequency was used instead.
Two samples did not have corresponding exome data and so were removed from
this differential expression analysis. This model was chosen after considering
several covariates, including cohort, sample time point, patient, purity, age at study
entry, sex, number of prior treatments, relative amount of cancer fibroblasts
(calculated from MCPcounter) and batch. To explain partial response, we used
stepwise Akaike Information Criterion (AIC) to identify the optimal covariates65;
these included batch, cohort and patient. Batch and cohort could not be modeled
together because they produced a computationally singular system. We considered
the linear model defined by stepwise AIC and found that while cohort and patient
contributed significant effects on modeling partial response (p < 0.05), batch did
not (p > 0.3).To gain further confidence in our results, we performed a linear model
using “lm” in R. We modeled the log2 of the normalized TPM that was used for the
immune deconvolution above. We limited the genes considered to those that

passed sleuth filtering, which filters genes that do not have at least five estimated
counts in at least 47% of samples. To compare partial responders and non-partial
responders, we used the model

Expression � PartialResponder þ TrialCohortþ SampleTimepointþ
PatientIDþ Purity þ TrialBatchþ AgeAtStudyEntry þ Sexþ PriorTreatmentsþ
CancerFibroblasts

We used the rank of genes from this model to perform GSEA and confirm
results from the previously discussed model that resulted from sleuth filtering
(Supplementary Fig. 3B).

A Wald test was used to identify differentially expressed genes between samples
from partial responders and those from other patients. A gene was considered
differentially expressed if q < 0.05. We utilized a similar model to compare samples
with progressive disease and those with clinical benefit (including samples with
partial response or stable disease). In this model, we replace “PartialResponder”
with “ProgressiveDisease,” such that genes with a positive effect size are more
highly expressed in samples with progressive disease.

Pathway enrichment was performed on Hallmark pathways66 pulled using R
package msigdb (version 7.2.1)65. GSEA was performed using the R package fgsea21

on genes ranked by effect size (beta) from the above model. Minimum size was set
to 15 and maximum was set to 600, and 10,000 permutations were performed.
Figure 3B shows the top 10 significant pathways with a positive or negative
normalized enrichment score. The R package GSVA67 was used to calculate
ssGSEA values for each sample to cluster samples based on expression of enriched
pathways. Heatmap shows ssGSEA calculated on only genes in the leading edge for
each pathway, as found by fgsea analysis.

The model best associated with PFS was found using cv.glmnet from glmnet R
package (version 4.1)68. Immune population quantification via MCPcounter and
ssGSEA scores shown in Fig. 3C were combined in a Cox proportional hazards
model to predict PFS for baseline and on-treatment samples, separately. The
minimum lambda was used. Figure 3D, E were created using the same values for
CD8+ cells and Hedgehog signaling as used in the model, but the high vs low
samples were identified within each time point.

TCR sequencing. After RiboGreen quantification and quality control by Agilent
BioAnalyzer, 11–259 ng of total RNA were prepared using the Immunoverse TCR-
HS α/δ/β/γ Kit, for Illumina (ArcherDX catalog # DB0219) according to the
manufacturer’s instructions. Briefly, cDNA was synthesized using TCR-specific
priming for reverse transcription. Molecular barcode adapters were ligated to
cDNA fragments and multiplex PCR with primers targeting the CDR3 sequence of
interest was used for enrichment and library preparation. Barcoded samples were
pooled equimolar and sequenced on a MiSeq, NextSeq 500, or NovaSeq 6000 in a
PE150 run, using the MiSeq Reagent Kit v3 (300 cycles), NextSeq 500/550 Mid
Output Kit v2.5 (300 cycles), or NovaSeq 6000 S3 Reagent Kit (300 Cycles)
(Illumina). Each sample yielded on average 3.2 M reads and fastq files were
uploaded to the Archer Analysis bioinformatics suite for processing.

Archer delivered trimmed and deduplicated fastqs, which were then used to
quantify TCR diversity for the 4 TCRs analyzed by the platform (α, β, γ, and δ).
The MiXCR pipeline was used to process, align, assemble, and export clones for
each TCR type separately69. Next, the VDJtools pipeline70 was utilized to calculate
basic statistics including TCR diversity. Differences in TCR diversity were
compared by two-sided t-test between each response group (PR, SD, or PD) vs.
others.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
De-identified exome sequencing data from patients treated at Memorial Sloan Kettering
Cancer Center have been deposited in the NCBI dbGaP archive under accession number
phs001783. De-identified exome sequencing data from patients treated at MD Anderson
Cancer Center and all de-identified RNA sequencing and TCR sequencing data have
been deposited in the NCBI dbGaP archive under accession number phs002852. The data
are available under controlled access, which can be obtained through dbGaP upon
request. The raw sequencing data from 3 patients are not deposited in dbGaP because
they did not consent to future use. De-identified individual participant-level clinical data
will be made available upon request to the corresponding author. Mapping of each
sample, along with IHC values, can be found in Supplementary Data 1. The study
protocol is available as Supplementary Note 1 in the Supplementary Information file. The
source data are provided in the Source Data file and can also be found at https://github.
com/mskcc/ImmunoSarc. The remaining data are available within the Article and
Supplementary Information. Source data are provided with this paper.

Code availability
Code for processing RNA-seq data and for subsequent analysis throughout the
manuscript can be found at https://github.com/mskcc/ImmunoSarc.
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