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Abstract: In this paper, we calculated the electronic and optical properties of the harmonic oscillator
and single and double anharmonic oscillators, including higher-order anharmonic terms such as
the quartic and sextic under the non-resonant intense laser field. Calculations are made within the
effective mass and parabolic band approximations. We have used the diagonalization method by
choosing a wave function based on the trigonometric orthonormal functions to find eigenvalues and
eigenfunctions of the electron confined within the harmonic and anharmonic oscillator potentials
under the non-resonant intense laser field. A two-level approach in the density matrix expansion
is used to calculate the linear and third-order nonlinear optical absorption coefficients. Our results
show that the electronic and optical properties of the structures we focus on can be adjusted to obtain
a suitable response to specific studies or aims by changing the structural parameters such as width,
depth, coupling between the wells, and applied field intensity.

Keywords: harmonic oscillator; anharmonic oscillator; absorption spectrum; intense laser field

1. Introduction

The harmonic oscillator (HO) potential is one of the most important model potentials
in quantum mechanics used to describe a molecular vibration in the very close neighbor-
hood of a stable equilibrium point and one of the few quantum-mechanical systems with
exact and analytical solutions. Adding anharmonic oscillator (AHO) potentials to the HO
potential better describes molecular vibrations, certainly. The AHO potential defines an
oscillator that is not oscillating in simple harmonic motion. Namely, the restoring force is
no longer proportional to the displacement. Adding the higher-order anharmonic terms
such as the cubic, quartic, and sextic to the HO further improves the HO approximation,
especially under greater displacement from the equilibrium position.

The transport of heat along a chain of particles interacting through anharmonic po-
tentials consisting of quartic terms in addition to harmonic quadratic terms and subject
to heat reservoirs at its ends have been reported by Landi and Oliveira, showing that
the introduction of the energy conserving stochastic noise leads to Fourier’s law [1]. In
the theoretical work of N. H. Fletcher, it is concluded that the term “inharmonic” is an
appropriate descriptor for classical oscillators, such as metal bars, that have nonharmonic
vibrational spectra even in the linear limit of small vibrations [2]. By using an exact and
perturbative form, the repulsive harmonic oscillator and an extension of this system, with
an additional linear anharmonicity term, have been studied [3]. The authors compared the
perturbative solution up to second order with the exact solution when the system is initially
in coherent and a Schrödinger-cat states. Panek and co-workers proposed an algorithm
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for the localization of normal modes in suitable subsets that are chosen to strictly limit the
errors introduced by the harmonic couplings while still leading to maximally localized
modes [4]. By a suitable choice of coordinates and by using their proposed algorithm, the
computational effort required for calculations of anharmonic vibrational spectra can be
reduced significantly. Sharma and Sastri reported the numerical solution of the quantum
anharmonic oscillator by using the matrix diagonalization technique [5]. In their work,
where the interaction potential consists of quadratic and quartic terms, it was embedded
within an infinite square well potential of appropriate width, and its sine eigenfunctions
were used as basis functions for the employed diagonalization matrix method.

The AHO is one of the most important problems, which cannot be solved analytically
in contrast to the HO. So, it has been extensively studied both perturbatively and non-
perturbatively [6–19]. Bender and Wu [6] showed that the perturbation series for the AHO
with a quartic anharmonicity term diverged for all values of the coupling parameter (λ) by
direct calculation. Most of the non-perturbative methods were used after these results. P.
K. Patnaik [10] developed Rayleigh–Schrödinger (RS) perturbation theory, which consists
of two steps for the AHO with a quartic anharmonicity term. The perturbation series is
shown to be convergent. The theory allows for the correct limit in both large and small
anharmonicity. Additionally, why standard RS perturbation theory does not work for
an AHO is explained in detail in this paper. The AHO potentials with sextic, octic, etc.,
terms have also been studied extensively [20–28] since these potentials play an important
role in the quantum tunneling time problems, and in the spectra of molecules. In this
context, the electronic and optical properties of the HO and single and double anharmonic
oscillators, including higher-order anharmonic terms such as the quartic and sextic under
the non-resonant intense laser field, are investigated in this paper by changing the structural
parameters and field intensity.

2. Theory

In the effective mass approximation, the Hamiltonian for the confined electron is given by

H =
~p2

2 m∗
+ V(x) , (1)

where ~p is the momentum operator, m∗ is the electron effective mass, V(x) is the confine-
ment potential that includes harmonic and anharmonic potentials of different order, and its
functional form before the applied intense laser field (ILF) as follows

V(x) = V0

[
λ1(x/k)2 + λ2(x/k)4 + λ3(x/k)6

]
, (2)

where, V0 is depth of the quantum well, the k-parameter is related to the well width, and
λ1 is known as the coupling parameter, which is also related to the width of the well. As
the λ1-parameter increases the well width becomes narrow. Depending on the choice of
the λ2- and λ3-parameters, the confinement potential turns into the single or double AHO
potential. For λ1 6= 0 and λ2 = λ3 = 0 the potential is called HO, for λ1 6= 0 (λ1 < 0),
λ2 6= 0 (λ2 > 0) and λ3 = 0 the potential becomes single (double) quartic AHO potential,
and for λ1 6= 0 (λ1 < 0), λ3 6= 0 (λ3 > 0), λ2 = 0 the potential becomes single (double)
sextic AHO potential.

In the presence of the x-linear polarized incident non-resonant ILF, the potential in
Equation (2) turns into the form called laser-dressed potential [29–32], which is given by

〈
V(x, α0)

〉
=

Ω
2π

∫ 2π/Ω

0
V(x + α0 sin Ωt)dt , (3)

where α0 = eA0/m∗Ω, A0 and Ω are the laser-dressing or ILF parameter, the magnitude
of the vector potential, and the angular frequency of the non-resonant intense laser field,
respectively. The details of the equations given above for dressed potentials and the
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nonperturbative approach based on the Kramers–Henneberger translation transformation
developed to describe the atomic behavior in intense high-frequency ILF can be found in
Refs. [33,34]. By substituting Equation (3) into Equation (2), the bound-state energies of
the electron are obtained from the numerical solution of the time-independent Schrödinger
equation by using the diagonalization method [35]. Immediately after the energies and
related wavefunctions are acquired, for transitions between any two electronic states, linear
and non-linear absorption coefficients are found by using the perturbation expansion and
the density matrix methods.

Using the relevant approaches mentioned before, expressions of the linear, third-order
nonlinear, and total absorption coefficients (ACs) for the optical transitions are found as
follows [31–35], respectively

β(1)(ω) = ω

√
µ0

εr

|Mij|2σν h̄Γij

(∆Eji − h̄ω)2 + (h̄Γij)2 , (4)

β(3)(ω, I) = −2ω

√
µ0

εr

I
nr ε0 c

|Mij|4σν h̄Γij[
(∆Eji − h̄ω)2 + (h̄Γij)2

]2 , (5)

β(ω) = β(1)(ω) + β(3)(ω, I) , (6)

where, εr = n2
r ε0 is the real part of the permittivity, σν is the carrier density in the system, µ0

is the vacuum permeability, ∆Eji = Ej − Ei is the energy difference between two impurity
states, Mij = 〈ψi|e x|ψj〉, (i, j = 1, 2) is the transition matrix element between the eigenstates
ψi and ψj for incident radiation polarized in the x-direction, Γij(= 1/Tij) is the relaxation
rate, Tij is the inverse relaxation time, c is the speed of the light in free space, and I is the
intensity of incident photon with the ω-angular frequency that leads to the intersubband
optical transitions. It should be noted that Mjj = Mii = 0 due to the even symmetry of the
confinement potential.

3. Results and Discussion

The parameter values in our numerical calculations are ε = n2
r = 12.58, m∗ = 0.067m0

(where m0 is the free electron mass), V0 = 228 meV, T12 = 0.2 ps, µ0 = 4π × 10−7 Hm−1,
σν = 3.0 × 1022 m−3, and I = 5.0 × 108 W/m2. These parameters are suitable for
GaAs/GaAlAs heterostructures [32].

In the absence and presence of the ILF, the HO potential and the squared wave
functions of the first four energy levels in relevant energy values for k = 5 nm and λ1 = 0.2
as a function of x-growth direction coordinate are given in Figure 1a,b for α0 = 0 and
α0 = 5 nm, respectively. As seen in both figures, the spacing of energies is equal; only the
HO potential shifts towards higher energies with the effect of ILF.

In the absence (α0 = 0), and the presence of the ILF (α0 = 5 nm), the variations of the
first four energy levels of the HO potential versus the width parameter-k for different λ1
values are given in Figure 2a,b, respectively. The increase in the value of the k-parameter
(λ1-parameter) causes to increase (decrease) in the well widths and to decrease (increase) in
all energies in the absence and the presence of the ILF. In the absence of the ILF, the energies
of the excited levels increase in the form of consecutive odd multiples of the ground state
energy such as E2 = 3 E1, E3 = 5 E1 and E4 = 7 E1 for all considered λ1-values. However,
this behavior between the energies is not observed in the presence of ILF.
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Figure 1. In the absence and presence of the ILF, the HO potential and the squared wave functions
of the first four energy levels in relevant energy values in the values of k = 5 nm and λ1 = 0.2 as a
function of x-growth direction coordinate: α0 = 0 (a) and α0 = 5 nm (b), respectively.
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Figure 2. In the absence and presence of the ILF, the variations of the first four energy levels of the
HO potential versus the width k-parameter for different λ1 values: α0 = 0 (a) and α0 = 5 nm (b),
respectively.

To see the changes better in the amplitudes and positions of the total ACs related to the
intersubband transitions, the variations of the energy difference among the first four energy
levels of an electron confined in the HO potential, and the squared reduced transition
matrix element corresponding to the stated levels as a function of the width parameter are
given in Figure 3a,b, respectively. It should be noted that the reduced transition matrix
element equals Mij/e(=ηij). Furthermore, total ACs versus the resonance photon energy
for different values of the laser-dressed parameter and λ1-parameter is given in Figure 3c.
The energy difference-∆Eji between any two levels is decreasing function of the well width,
and it has the same value regardless of the ILF value. As λ1 increases ∆Eji increases just
like energy values since the geometric confinement becomes stronger. The parameter η2

ij is

an increasing function of the width parameter. For λ1 = 0.2, the parameters η2
ij are smaller
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than those of λ1 = 0.5. As seen in Figure 3c, for each λ1 value, there is an absorption
peak for all allowed transitions between the first four energy levels considered since the
energy difference between any two levels is the same. Due to equal spacing of energy,
all transitions occur at the same frequency, which is called single line spectrum [36]. For
λ1 = 0.5, the absorption peak position shifts towards the blue due to the increment in ∆Eji.
The increase in the amplitudes of the peaks belonging to the transitions between the upper
levels is quite high due to the great η2

ij parameter values.
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Figure 3. The variations of the energy differences between specified energy levels such as ∆E21, ∆E32,
and ∆E43 of the electron confined in the HO potential as a function of the width k-parameter (a), the
squared reduced transition matrix element corresponding to the stated levels as a function of the
width parameter (b), and the total ACs versus the resonance photon energy for different values of
laser-dressed α0-parameter and λ1-parameter (c).

In the absence (α0 = 0-solid lines) and presence of the ILF (α0 = 5 nm-dashed
lines), the quartic single AHO potential, V(x) = V0

[
λ1(x/k)2 + λ2(x/k)4], and squared

wave function of the first four levels in relevant energy values versus the x-coordinate for
k = 5 nm and λ1 = λ2 = 0.5 values are given in Figure 4a. The quartic single AHO potential
also narrows under the influence of ILF and shifts towards higher energies. Figure 4b,c
are shown the variations of the first four energy levels as a function of the k-parameter
for a constant λ1 value and two different λ2 values in the absence and presence of ILF,
respectively. For quartic single AHO potential, the variation of energies according to the
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mentioned parameters are as in HO, but the energy levels are not equally spaced. In the
strong confinement regime, while the energies are quite sensitive to λ2 and α0 parameters,
they are almost independent in weak confinement. In the absence and presence of the
ILF, the energy difference between two indicated levels of the first four energy levels for
the single quartic AHO and the variation of squared reduced transition matrix elements
corresponding to the relevant levels versus the k-parameter, as well as the total absorption
peaks as a function of the incident photon energy, are given in Figure 5a–c for λ1 = 0.2
and λ2 = 0.5, respectively. The results of Figure 5c are for k = 5 nm. As also seen in
Figure 5a,b, an increase in the peak amplitudes slightly, and the ILF-induced blue shift at
the total absorption peak positions due to the increment in the energy difference between
any two energy levels are observed in Figure 5c. The total absorption peak positions
of the quartic single AHO potential shift towards higher photon energies than the HO
potential considerably.
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Figure 4. The quartic single AHO potential and squared wave functions of the first four levels in
relevant energy values versus the x-coordinate for k = 5 nm and λ1 = λ2 = 0.5 (a). Results are for
α0 = 0 (solid lines) and α0 = 5 nm (dashed lines). In the absence of ILF, the variations of the first four
level energies as a functions of the width k-parameter for a constant λ1 value and two different λ2

values (b). In the presence of ILF, the variations of the first four level energies as a functions of the
width k-parameter for a constant λ1 value and two different λ2 values (c).
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Figure 5. The energy difference between two indicated levels of the electron confined in the quartic
single AHO versus the k-parameter (a), the squared reduced transition matrix elements corresponding
to the relevant levels versus the k-parameter (b), and the variation of total absorption peaks as a
function of the incident photon energy for k = 5 nm (c). The results are for λ1 = 0.2, λ2 = 0.5,
α0 = 0 (solid lines) and α0 = 5 nm (dashed lines).

For λ1 < 0 (λ1 = −1), λ2 > 0 (λ2 = 0.2), and k = 5 nm, the quartic double AHO
potential and squared wave functions belonging to the first four levels of the electron
confined in this potential in the absence and presence of ILF are given in Figure 6a,b,
respectively. As seen in these figures, when there is no ILF, the two wells are decoupled,
and the solution to the Schrödinger equation gives rise to a double-fold degenerate ground
state with even wave functions for the ground state and odd one for the first excited
state. With the effect of ILF, a two-fold degenerate energy level is split. As known, energy
splitting plays a primary role in the tunneling phenomenon. As λ1 increases towards
the large negative values, the depths of the wells become deeper and deeper, and quartic
double AHO behaves like decoupled two identical single wells for energies lower than the
central barrier height. The potential and also energies shift towards higher energies with
the effect of ILF, and at the same time, ILF causes a decrease in the central barrier height,
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and the energies approach the energy values of a single well whose width is increased by
two times.
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Figure 6. The quartic double AHO potential and squared wave functions of the first four levels in
relevant energy values versus the x-coordinate for k = 5 nm, λ1 = −1.0, and λ2 = 0.2. Results are
for α0 = 0 (a) and α0 = 5 nm (b). The variations of the first four level energies as a functions of the
width k-parameter for a constant λ2 value and two different λ1 < 0 values: α0 = 0 (c), α0 = 5 nm
(d), the variation of total absorption peaks as a function of the incident photon energy for k = 5 nm:
α0 = 0 (e), α0 = 5 nm (f).

Figure 6c,d show the variations of the first four energy levels as a function of the
k-parameter for a constant λ2(=0.2) value and different two values of λ1, ILF free and
ILF induced, respectively. As mentioned earlier, the increase in parameter-k causes an
increase in the well width and decreases energies in all potential types considered. With
the combined effect of k and λ1, the energies lower-lying in the deep and wide well are
two-fold degenerate (E1 = E2); for the higher levels, the degeneracy starts at larger k-values.
In the shallow wells, degeneracy begins in the weaker confinement regime. In Figure 6e,f,
the total absorption peaks as a function of the incident photon energy for quartic double
AHO are given in the absence of ILF (solid lines) and the presence of ILF (dashed lines),
respectively. Results are for a constant λ2(=0.2), k = 5 nm, λ1 = −0.5, and λ1 = −1.0.
Total absorption peaks shift to higher photon energies with increasing amplitudes for the
shallow quartic double AHO.

It should be kept in mind that the explanations above about the role of both energy
differences between the two energy levels for the transitions which we considered and
the transition matrix elements on the peak positions and amplitudes of the total ACs are
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valid in the analysis of the absorption spectrum. In the absence of ILF, the absorption peak
belonging to the (1–2) transition is not observed since the first two levels are degenerate
(see Figure 6a), and the total AC corresponding to the transition (2–3) is observed at higher
incident photon energy than that of the transition (3–4) due to ∆E43 < ∆E32. Degenerate
levels split due to the shift towards energies from the central barrier height to higher
energies with the effect of ILF, and an absorption peak for related (1–2) transition is also
observed (see Figure 6b).

In the absence (α0 = 0-solid lines) and presence of the ILF (α0 = 5 nm-dashed lines),
energy differences between any two energy levels for both sextic single AHO potential,
V(x) = V0

[
λ1(x/k)2 + λ3(x/k)6], for λ1 = λ3 = 0.2, and sextic double AHO potential

for λ1 = −0.5, λ3 = 0.2 as a function of the width k-parameter are given in Figure 7a,b,
respectively. The energies for both sextic single and double AHO and, therefore, the
difference between any two energy levels mentioned are very sensitive to ILF in the strong
confinement regime. In the absence of ILF, the energies are lower because the effective
width of the double AHO compared to a single AHO is larger. After ILF is applied, due to
the shift of energies from the central barrier height to higher energies, the energy and energy
difference have almost the same values as the sextic single AHO. Finally, for the sextic
single and double AHOs, ILF free (solid lines) and ILF induced (dashed lines), the total
absorption coefficients as a function of the incident photon energy are given in Figure 8a–c.
Figure 8a,b belong to the sextic single AHO for λ1 = λ3 = 0.2 and λ1 = 0.2, λ3 = 0.5,
Figure 8c belongs to the sextic double AHO for λ1 = − 0.5, λ3 = 0.2. Results are for
k = 5 nm. As also mentioned before, absorption peaks shift towards the higher photon
energies (blue-shift) with increasing amplitudes due to the increasing transition matrix
elements with the effect of the ILF. Furthermore, for both sextic single and double AHOs,
besides the ILF effect, a blue-shift at the absorption peak positions is observed at large
values of λ3 that causes more strong confinement.
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Figure 7. The variations of the energy differences between specified energy levels such as ∆E21,
∆E32 and ∆E43 as a function of the width k-parameter: for the electron confined in the sextic single
AHO potential (λ1 = λ3 = 0.2) (a), and for the electron confined in the sextic double AHO potential
(λ1 = −0.5, λ3 = 0.2) (b). Results are for α0 = 0-solid lines and α0 = 5 nm-dashed lines.
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Figure 8. The variations of total absorption coefficients as a function of the incident photon energy
for k = 5 nm: the sextic single AHO for λ1 = λ3 = 0.2 (a), λ1 = 0.2, λ3 = 0.5 (b), and to the sextic
double AHO for λ1 = − 0.5, λ3 = 0.2 (c), respectively.

4. Conclusions

As known, harmonic and anharmonic oscillators are used to explain the vibrational
spectra of diatomic molecules. Due to equal spacing of energy of the HO, all transitions
occur at the same frequency, called the single line spectrum. However, many other lines
are observed, called overtones, experimentally. Discrepancies between the theoretical and
experimental results are resolved by considering the diatomic molecule as an AHO. Fur-
thermore, these potentials play an important role in the quantum tunneling time problems
and the spectra of molecules. So, due to the importance of these potentials, we investigated
the electronic and optical properties of quantum wells that have harmonic, single, and
double AHO potentials by changing the structural parameters and field strength. From our
results, it has been seen that the coupling parameters (λ1, λ2, λ3) and ILF have significant
effects on the electronic and optical properties of all considered quantum wells. Coupling
parameters and ILF cause a significant blue shift in the absorption spectrum.
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