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Abstract: Osteoporosis is one of the major health issues associated with menopause-related estrogen 
deficiency. Various reports suggest that the hormonal changes related to menopausal transition may 
lead to the derangement of redox homeostasis and ultimately oxidative stress. Estrogen deficiency and 
oxidative stress may enhance the expression of genes involved in inflammation. All these factors may 
contribute, in synergy, to the development of postmenopausal osteoporosis. Previous studies suggest 
that estrogen may act as an antioxidant to protect the bone against oxidative stress, and as an anti-
inflammatory agent in suppressing pro-inflammatory and pro-osteoclastic cytokines. Thus, the focus of 
the current review is to examine the relationship between estrogen deficiency, oxidative stress and 
inflammation, and the impacts of these phenomena on skeletal health in postmenopausal women.�
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1. INTRODUCTION 

 Progressive bone loss and skeletal fragility caused by 
osteoporosis is an emerging public health problem in a world 
experiencing a rapid increase in the elderly population. The 
primary risk factor for bone loss in midlife women is 
menopause [1, 2]. A high level of estrogen is present in 
women from the onset of menstrual periods during puberty 
until menopause, which marks the termination of 
reproductive age. Most estrogen is produced in the ovaries, 
released into the circulation and exert their effects on target 
tissues through endocrine signalling. After menopause, the 
circulating estrogen levels fall drastically when estrogen 
production from the ovaries ceases [3]. Approximately 50% 
of trabecular bone and 30% of cortical bone diminish during 
the course of a woman’s lifetime, of which half is lost during 
the first 10 years after menopause [4].  

 The pleiotropic effects of estrogen indicate that its 
deficiency will impact many signalling pathways in the body 
[5]. For example, metabolic changes due to menopause, like 
the accumulation of adipose tissue in the body, is associated 
with chronic low-grade inflammation and oxidative stress, 
leading to diseases like cancer [6]. The effects of menopause 
on oxidative stress and inflammation are also of particular 
interest in the field of osteoporosis because all of them are 
contributors to bone loss [7-9].  
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 Therefore, this review aims to provide an overview of the 
relationship between estrogen deficiency, oxidative stress 
and inflammation and their combined effects on bone loss in 
women. The information obtained will be instrumental in 
planning preventive strategies against postmenopausal bone 
loss.  

2. ESTROGENS AND ESTROGEN SIGNALLING 
PATHWAY  

 Estrogen is a group of steroid hormones governing the 
development of secondary female sex characteristics and 
regulating the female reproductive system. It also has other 
non-reproductive physiological roles. Estrogen is produced 
primarily in the ovaries through the stimulation of follicle-
stimulating hormone, and in small amounts by the adrenal 
glands, breasts, adipose and liver. Endogenous estrogen is 
converted from androgens in women via a series of 
enzymatic reactions, which produce estrone (E1), estradiol 
(E2) and estriol (E3). In the ovary, androstenedione is 
produced from cholesterol and converted immediately into 
either E1 or testosterone. Aromatase, a cytochrome P450 
enzyme in the endoplasmic reticulum of estrogen producing 
cells, then converts androstenedione and testosterone into 
E2. Estradiol is the potent and predominant estrogen present 
before the first period until the menopause. The strong 
potency of E2 is attributed to its high affinity towards 
estrogen receptors compared to other estrogen forms. 
Estrone is a weak estrogen found in women after menopause, 
which can be converted to E2 and vice versa. Estriol is the 
weakest estrogen produced in abundance during pregnancy 
and cannot be converted to E2 nor E1 [10].  

 Estrogen is a chemical messenger, which can travel 
through the circulatory system and interact with cells by 
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binding to estrogen receptors. Estrogen signalling occurs via 
specific nuclear receptors by acting as ligand-activated 
transcription factors of two isomers of estrogen receptors 
(ERs), i.e. ER-alpha (ER-α) and ER-beta (ER-β) [11-14]. ER-
α is found predominantly in the uterus, bone, adipose, liver, 
kidney, heart [12, 15, 16], whereas ER-β is found 
predominantly in the ovary, bladder, prostate, gastrointestinal 
tract, central nervous system and hematopoietic cells [12, 16]. 
Estrogen binds to its receptors in the nucleus, causing the 
receptor to dimerize and bind to estrogen response elements 
located in the promoters region of target genes. Subsequently, 
expression of these genes will be modulated, resulting in the 
biological actions of estrogen. In addition, ERs also regulate 
gene expression by influencing protein-protein interactions 
with other DNA-binding transcription factors in the nucleus. 
Estrogen also acts via nongenomic action through the 
activation of protein-kinase cascades via membrane-associated 
ERs [17].  

3. DIRECT EFFECTS OF ESTROGEN ON BONE 

HEALTH 

 Estrogen exerts a strong influence on skeletal growth and 
homeostasis. During bone growth, estrogen is responsible for 
the proper closure of epiphyseal plates [18]. In bone, 
estrogens act directly via ERs on osteoblasts, osteocytes, 
osteoclasts, immune cells and other cells in maintaining bone 
mass [19-23]. Bone is being constantly remodelled via the 
actions of these bone cells [24]. Osteoblasts perform bone 
formation by laying down the new bone matrix and 
mineralize it, while osteoclasts break down the bone during 
bone resorption. The balance between both of these 
processes is crucial for sustaining bone mass and 
maintaining systemic skeletal homeostasis [25]. During 
puberty, estrogen increases bone mass through increasing 
number and activity of osteoblast, as well as decreasing 
osteoclast activity [26]. Estrogen also prevents apoptosis of 
osteocytes by preserving their autophagy function [27]. The 
inverse occurs during menopause, whereby the rate of bone 
resorption overwhelms bone formation, resulting in a 
decrease in bone mass [28].  

 Differential expression of ERs has been reported in 
osteoblasts and osteoclasts. In general, ERα mediates most 
actions of estrogen on bone cells. Activation of ER 
signalling pathway stimulates osteoblast differentiation and 
suppresses osteoclast activity [29]. Estrogen deficiency 
increases osteoclast formation and prolongs their lifespan. 
Estrogen deficiency activates the inflammatory cascades, 
leading to increase production of macrophage colony-
stimulating factor (M-CSF) and receptor activator of nuclear 
factor kappa-Β ligand (RANKL), which is an 
osteoprotegerin (OPG) ligand, by stromal-osteoblast lineage 
cells [30, 31]. The binding of RANKL to RANK receptors 
stimulates osteoclast differentiation and activity and prevents 
their apoptosis. The binding of M-CSF to its receptor also 
stimulates the proliferation and survival of osteoclast 
precursors and the mature osteoclasts [32]. OPG produced by 
the stromal-osteoblast lineage cells binds to RANKL and 
prevents the activation of the RANK-RANKL signalling 
pathway [33]. Estrogen is reported to increase both OPG and 
RANKL expression, but the OPG expression sustains for a 

longer period compared to RANKL, giving rise to a larger 
OPG/RANKL ratio [34-36]. ERα-knockout mice had less 
apoptotic osteoclasts than wildtype mice when estrogen was 
supplemented, suggesting that ERα is needed to upregulate 
the pro-apoptotic factor Fas ligands in osteoclasts [37]. 
Lower bone mass and strength developed in osteoblast-
specific ERα-depleted mice, showing that estrogen acts on 
ERα in osteoblasts to achieve its skeletal protective effects 
[38].  

 The mechanical properties of bone are determined by its 
structural and material characteristics [39]. The deterioration 
of bone mass, macro and micro-architecture of the bone 
induced by estrogen deficiency will lead to a reduction of 
bone strength and increased risk of fracture. Ovariectomized 
(OVX) rats showed lower femoral or tibial bone volume, 
trabecular number (Tb.N), and trabecular thickness (Tb.Th) 
and higher structural model index and trabecular separation 
(Tb.Sp) compared to the sham group as evaluated by micro-
computed tomography or bone structural histomorphometry 
analysis [40-46]. These degenerative changes result in 
increased porosity of the bone [47]. Similar changes were 
observed in OVX model of mice and rabbits [48, 49] The 
OVX rats also showed a significant reduction in density of 
the maxillary bone after 12 weeks, which could cause tooth 
loss [41].  

 The mineralizing activity of the bone in vivo can be 
measured by dynamic histomorphometry parameters. OVX 
rats are reported to have a lower double-labelled surface 
(sites of bone mineralization), bone formation rate and 
mineral appositional rate compared to the sham group [45, 
50]. In bone cellular histomorphometry, lower osteoblast 
surface, osteoid surface and osteoid volume were observed in 
OVX rats, suggesting reduced osteoblast number and bone 
formation activity [41, 45, 51]. On the other hand, OVX rats 
experienced increased bone resorption as evidenced by 
increased osteoclast surface and eroded surface (sites of bone 
resorption) [41, 45, 51]. Alternatively, changes in bone 
remodelling activities were illustrated by circulating 
markers. Some studies reported increased bone resorption 
markers (like C-terminal cross-linking telopeptide type I 
collagen/CTX-1) and reduced bone formation markers (like 
alkaline phosphatase/ALP and osteocalcin) in OVX rats [41, 
52]. However, examples of concurrent evaluation of both 
bone formation and resorption markers, suggestive of high 
bone turnover, are also common [53].  

 Ultimately, all of these structural and mineral 
degenerative changes result in a reduction in bone 
biomechanical strength in OVX rats. Reduced 
maximum/ultimate force to break the bone, elastic modulus 
and stress were observed in OVX rats compared to the sham 
group [40-49, 54].  

 Estrogen deficiency renders postmenopausal women 
vulnerable to osteoporosis [55]. Bone mineral density 
(BMD) by dual-energy X-ray absorptiometry (DXA) is 
considered the gold standard in determining osteoporosis 
[56]. Based on the World Health Organization (WHO), os-
teoporosis is defined by a BMD T-score � -2.5. In multiple 
studies, DXA assessment revealed that osteoporosis preva-
lence was higher among the postmenopausal women com-
pared to their men counterparts [57-60]. Decreased BMD 
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was found to be significantly associated with age, meno-
pause age and the year since menopause [57]. 

 Mederle et al. reported that the decrease of E2 level in 
postmenopausal women was associated with a significant 
decrease in BMD at the lumbar spine and femoral neck [61]. 
Concurrent reduction of BMD and high bone turnover 
indicated by high circulating bone turnover markers, such as 
ALP, osteocalcin and CTX-1, are commonly observed 
among postmenopausal women [62]. Thompson et al. 
revealed that within 5 years of menopause, alveolar bone 
density loss was associated with elevated circulating levels 
of matrix metalloproteinase-2 (MMP-2) indicative of 
osteoclastic bone resorption [63]. Menopausal women were 
observed to have a higher level of bone resorption markers, 
like N-terminal propeptide of type I procollagen and CTX-l, 
and lower trabecular bone score, which correlated with 
skeletal microarchitecture deterioration [64].  

4. ESTROGEN DEFICIENCY AND OXIDATIVE 

STRESS 

 Oxidative stress is defined as a disparity between the 
generation of reactive oxygen species (ROS) from various 
oxidation pathways and the antioxidant defence system in 
the body. The excess free radicals overwhelm the normal 
antioxidant capacity of the body, leading to damage of 
cellular macromolecules, such as enhanced lipid 
peroxidation, protein modification and DNA breakage, 
ultimately affecting cellular functioning [65].  

 Generally, ROS are short-lived but highly reactive 
chemical species containing oxygen [66]. The nicotinamide 
adenine dinucleotide phosphate (NADPH) oxidase is a 
membrane-bound enzyme complex that generates ROS, 
including oxygen-derived free radicals like superoxide anion 
(O-) and the hydroxyl radical (H-), or non-radical molecules 
like hydrogen peroxide (H2O2) [67]. Free radicals react with 
oxygen to produce O-, which react with nitric oxide (NO) to 
produce peroxynitrite. The oxygen singlet also undergoes 
dismutation in a process catalysed by superoxide dismutase 
(SOD) to produce H2O2, which is detoxified into a water 
molecule by antioxidants enzymes such as catalase (CAT) 
and glutathione peroxidase (GSH-Px/GPX). GPX neutralizes 
H2O2 by taking hydrogens from two glutathione (GSH) 
molecules, thus forming two water molecules and one 
glutathione disulfide (GSSG). An increase in oxidative stress 
will cause intracellular GSSG accumulation and a decrease 
in GSH/GSSG ratio level [68, 69]. Therefore, the ratio of 
reduced GSH and oxidize GSSG is important in determining 
redox status and serves as useful indicators of oxidative 
stress markers. Glutathione-S-transferase (GST) catalyzes 
the conjugation of glutathione (GSH) to form endogenous 
and exogenous electrophilic compounds. GST plays a 
regulatory role in the mitogen-activated protein (MAP) 
kinase pathway involved in cellular survival and death 
signals [70-72]. 

 In the culture of human bone marrow cells, H2O2 was 
shown to stimulate a significant increase in the formation 
and activity of osteoclast-like cells expressing tartrate-
resistant acid phosphatase (TRAP). H2O2 also increased the 
expression of M-CSF, RANKL and RANKL/OPG ratio. 

Treatment with CAT significantly suppressed the formation 
of TRAP multinucleated cells as well as M-CSF and 
RANKL expression [73]. A study conducted by Lean et al. 
demonstrated that 17β-estradiol increased the expression of 
GPX in osteoclasts and antiestrogen ameliorated this effect. 
Overexpression of GPX in RAW 264.7 cells suppressed 
osteoclastic differentiation associated with inhibition of 
NFκB-activation mediated by RANKL [74]. In MLO-Y4 
osteocyte-like cells, 17β-estradiol significantly increased the 
total glutathione S-transferase P expression and suppressed 
RANKL and sclerostin expression, RANKL release, and 
RANKL/OPG ratio [75]. Therefore, these studies 
demonstrated that estrogen can regulate the activity of bone 
cells by altering their redox status.  

 In animal studies, OVX rats exhibited a significant 
decrease in the activity of SOD, CAT, GPX, GST and GSH 
level, as well as an increase in malondialdehyde (MDA) 
level [76-78]. A previous study showed that estrogen 
deficiency compounded the effects of ageing on the 
oxidative status in rats, wherein LPO and NO level, as well 
as inducible NO synthase protein expression, were increased 
in the old rats compared to the young animals, and the 
changes were more prominent in the OVX group [79]. 
Mitochondria are a major source of ROS. Estrogen 
deficiency was shown to inhibit mitochondrial β-oxidation of 
fatty acid and increase ROS production. As evidence, the 
liver mitochondrial and peroxisomal H2O2 generation in 
OVX mice increased significantly, while the antioxidant 
enzyme activities decreased [80]. In OVX rats fed with high-
fat diet, the expressions of antioxidant enzymes SOD and 
GPX were significantly suppressed whereas the expression 
of pro-oxidative enzyme NADPH oxidase was elevated 
compared to the control group. The resultant oxidative 
stress-activated mitogen-activated protein kinases (MAPK) 
pathway and upregulated ERK 1/2 and p38, leading to 
metabolic derangement of the rats in conjunction with high-
fat diet [81]. Additionally, ovariectomy also increased the 
level of homocysteine (an indicator of cardiovascular 
disease), along with elevated oxidative stress markers MDA, 
oxidized-low density lipoprotein and GSSG levels in the rats 
[82]. A study by He et al. reported that lower BMD was 
associated with lower SOD and GPX levels and OPG 
expression in OVX rats compared to the control group. 
Ovariectomy also increased serum osteocalcin, ALP, MDA 
levels and RANKL expression in the rats [83]. Estrogen 
treatment was shown to normalize redox stress and preserve 
the bone health of the OVX rats [84]. In a study by Yang et 
al., the depleted antioxidant status due to ovariectomy was 
associated with declined autophagy and increased apoptosis 
of osteocytes. Treatment with estrogen was able to reverse 
these changes [85].  

 The link between oxidative stress and estrogen deficiency 
has been demonstrated by several human studies. Oxidative 
stress is hypothesized as one of the causes of physiological 
changes due to postmenopausal and ageing [86, 87]. 
Signorelli et al. reported that postmenopausal women (n=51, 
aged 52.1±1.3 years old) experienced a higher level of 
oxidative stress compared to fertile women (n=50, 32.5±1.1 
years old), indicated by higher serum MDA, 4-
hydroxynonenal and oxidized lipoprotein levels [7]. Another 
study also demonstrated that serum GSH levels decreased 
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significantly while serum MDA and γ-glutamyltransferase 
levels increased significantly in the postmenopausal women 
group (n=16) compared to the premenopausal women group 
(n=17) [88]. Increased hydroperoxide (ROOH) level, a 
marker of lipid peroxidation, was negatively and 
independently associated with decreased BMD and increased 
bone resorption rate marked by CTX-1 levels in 
postmenopausal women [89]. Other studies showed that 
hormone replacement therapy (tibolone [90], oestradiol alone 
or in combination with medroxyprogesterone [91]) was able 
to reverse the decline in GSH, GPX and non-enzymatic 
antioxidants (alpha-tocopherol) while suppressing the level 
of lipid peroxidation markers in postmenopausal women [90, 
91].  

5. ESTROGEN DEFICIENCY AND INFLAMMATION 

 Inflammation involves the coordinated action of many 
cell types and mediators in response to various harmful 
stimuli, such as damaged cells, pathogens, and toxicants, 
leading to the elimination of the insult and restoration of 
homeostasis [92]. Interleukins (ILs) are the most well-
profiled inflammation markers in diseases. Some of the 
examples include IL-6, a proinflammatory cytokine 
produced in response to tissue injury [93], tumour necrosis 
factor-alpha (TNF-α), an important mediator of the 
inflammation [94] and interferon-gamma (IFN-γ), produced 
by activated T lymphocytes in response to inflammation 
[95]. Intracellular signalling pathways, including MAPK, 
NF-κB, Janus kinase (JAK)-signal transducer and activator 
of transcription (STAT) are involved in the regulation of 
inflammation in disease state [96, 97]. Toll-like receptors 
(TLR) mediated immune response through the induction of 
MMPs or inhibiting the expression of certain structural 
proteins. Animal studies showed that inhibition of TLR4 
signalling is a pharmacological avenue for retarding the 
progression of osteoporosis [98]. 

 In animals, T cells harvested from OVX mice produced 
insufficient TNF-α to induce RANKL-independent 
osteoclastic formation, but sufficient to increase 
osteoclastogenesis caused by M-CSF and RANKL through 
the engagement of TNF-α receptor p55 [99]. Reports showed 
that 17β–estradiol caused a 1.7 to 3.2-fold increase in 
osteoclast apoptotic proportion [100]. Incubation of normal 
human osteoblastic-like cells with 17β–oestradiol revealed a 
significant increase in tumour growth factor-beta (TGF-β) 
level after 24 hours [101]. The effects of TGF-β on 
osteoclasts suggest the involvement of estrogen in the direct 
inhibition of osteoclast resorption activity [102]. A study 
also showed that estrogen hastened the resolution of 
inflammation in RAW 264.7 cells through SOCS3 and 
STAT3 signalling pathways [103]. Thus, this could be one of 
the mechanisms estrogen prevents chronic inflammation in 
the body.  

 In vivo studies indicated that estrogen deficiency caused a 
significant increment in serum TNF-α and IL-6 levels in 
OVX animals compared to the sham group [104-106]. 
Ovariectomy also caused increased expression of cell 
adhesion molecules in blood vessels and circulating 
proinflammatory cytokines in rats [107, 108]. Since estrogen 
deprivation is associated with an increase in cytokine level, 

administration of estrogen is expected to decrease cytokine 
level. Estrogen administration significantly reduced IL-6, 
TNF-α and IL-1β expression while increasing IL-10 level in 
OVX rats [79]. OVX also enhanced inflammation at the 
visceral adipose tissue, as evidenced by reduced IL-10 level 
(an anti-inflammatory cytokine) and increased TNF-α level 
[109]. Estrogen replacement improved the inflammatory 
status of OVX rats by decreasing the TNF-α concentration 
level by 18% [109].  

 The pro-inflammatory effects of estrogen deficiency are 
mediated by multiple mechanisms. A study by Xu et al. 
showed that ovariectomy caused neuroinflammation by 
significantly increasing TLR-2 and TLR-4, active NF-κB, 
pro-IL-1β and pro-IL-18 level in the hippocampus of rats 
[110]. OVX and ER-α knockout mice demonstrated the 
deregulation of TLR2 signalling in the heart, resulting in a 
5.7-fold increase in IL-6 and a 4.7-fold increase in phospho-
Stat3 levels. This observation suggests an over-activation of 
the JAK/STAT3 pathway [111]. ArKO mice suffering from 
estrogen deficiency expressed significantly higher serum IL-
6, TNF, MCP-1 and IFN-γ induced by LPS. These changes 
were significantly abrogated by the administration of 
selective agonists of ER-α [112]. TNF-overexpressing 
transgenic mice showed a dramatic loss of metaphyseal 
trabecular bone mass marked by significant decreases in both 
Tb.N and Tb.Th and cortical thickness bone compared to 
wild type (WT). These skeletal alternations corresponded to 
higher gene expression of TNF, IL-1β and RANKL in the 
transgenic mice compared to the WT [113]. In contrast, 
chronic E2 administration in OVX mice markedly increased 
the expression of IL-1β, IL-6 and IL-12p40 by 
lipopolysaccharides-stimulated resident peritoneal 
macrophages in vivo. This effect was attributed to inhibition 
of phosphoinositide 3-kinase (PI3K) pathway, which acts as 
a negative regulator to TLR4 signalling [114].  

 A large body of evidence suggests estrogen deficiency in 
postmenopausal women is related to an altered immune 
profile. Hot flash commonly experienced by postmenopausal 
women was associated with low-grade systemic 
inflammation indicated by a higher level of circulating IL-8 
and TNF-α [115]. Modest weight gain among 
postmenopausal women was associated with a pro-
inflammatory state indicated by increased intercellular 
adhesion molecule-1 (ICAM-1) and TNF-α [116]. 
Postmenopausal women free from any pro-inflammatory 
conditions had higher levels of IL-1, IL-6, and TNF-α 
compared to premenopausal women [117]. High levels of 
cytokines (IFN-α2, IFN-γ, IL-12p70, IL-33) and MCP-1 in 
apparently healthy postmenopausal women were associated 
with a decrease in hip BMD [118]. In vitro studies showed 
that TNF-α promotes RANKL-induced osteoclast formation 
through activation of PI3K/ protein kinase B (Akt) 
signalling, which ultimately contributes to bone loss in 
postmenopausal women who possessed an increased level of 
TNF-α [119].  

CONCLUSION 

 The current literature supports the multifaceted role of 
estrogen in preserving bone via direct binding to ERα 
primarily and ERβ, regulating redox status and 
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inflammation. Estrogen deprivation due to menopause brings 
physiological challenges to women as the skeletal protective 
effects of estrogen are lost. The upswing in the ROS level 
and the release of pro-inflammatory cytokines adversely 
affect the survival and activity of osteoblasts but promote the 
formation and activity osteoclasts (Fig. 1). The 
corresponding unfavourable changes in bone remodelling 
skewing towards bone resorption, structural and mineral 
alternations are the main factors of postmenopausal 
osteoporosis. These mechanisms are potential avenues for 
interventions. For instance, phytoestrogens with antioxidants 
and anti-inflammatory activities may be used to prevent 
further bone loss of women, in conjunction with sufficient 
calcium and vitamin intake, as well as other lifestyle 
interventions. These approaches, however, should not 
supplant proper pharmacological agents for osteoporosis if 
the patients are at high risk of fracture. The use of hormone 
replacement therapy (HRT) is a rational approach to counter 
osteoporosis induced by estrogen deficiency [120, 121]. 
Estrogen replacement therapy is the Food and Drug 
Administration (FDA)-approved treatment to prevent 
osteoporosis in postmenopausal women. Studies showed that 
HRT can preserve BMD at all skeletal sites in 
postmenopausal women [122, 123]. The controversial 
Women's Health Initiative raised safety concerns of HRT, 
whereby an association between HRT and cardiovascular 
diseases and breast cancer was reported [124, 125]. 
Nonetheless, the data have been re-analysed and it was 
revealed that the HRT is effective and appropriate to prevent 
osteoporosis related-fracture [126, 127]. Even so, the choice 
of different approaches to rehabilitation and therapy still 
needs to be considered based on treatment feasibility, patient 
risk, and treatment cost-effectiveness. 
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