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The lung is a vital mucosal organ that is constantly exposed to the external environment,
and as such, its defenses are continuously under threat. The pulmonary immune system
has evolved to sense and respond to these danger signals while remaining silent to
innocuous aeroantigens. The origin of the defense system is the respiratory epithelium,
which responds rapidly to insults by the production of an array of mediators that initiate
protection by directly killing microbes, activating tissue-resident immune cells and
recruiting leukocytes from the blood. At the steady-state, the lung comprises a large
collection of leukocytes, amongst which are specialized cells of lymphoid origin known as
innate lymphoid cells (ILCs). ILCs are divided into three major helper-like subsets, ILC1,
ILC2 and ILC3, which are considered the innate counterparts of type 1, 2 and 17 T helper
cells, respectively, in addition to natural killer cells and lymphoid tissue inducer cells.
Although ILCs represent a small fraction of the pulmonary immune system, they play an
important role in early responses to pathogens and facilitate the acquisition of adaptive
immunity. However, it is now also emerging that these cells are active participants in the
development of chronic lung diseases. In this mini-review, we provide an update on our
current understanding of the role of ILCs and their regulation in the lung. We summarise
how these cells and their mediators initiate, sustain and potentially control pulmonary
inflammation, and their contribution to the respiratory diseases chronic obstructive
pulmonary disease (COPD) and asthma.

Keywords: pulmonary inflammation, airway inflammation, obstructive lung disease, COPD, asthma, NK cells, innate
lymphoid cells (ILC)
CHRONIC INFLAMMATORY LUNG DISEASES ARE
AN ESCALATING GLOBAL HEALTH ISSUE

COPD is an irreversible chronic inflammatory lung disease that is the third leading cause of death
worldwide (1). Patients with COPD exhibit airflow limitation, progressive deterioration in lung
function and experience exacerbations; an acute worsening of their symptoms, often driven by lung
infection (2). The major risk factor for COPD is cigarette smoking, although other risks such as
environmental pollution or premature birth increasingly contribute to COPD susceptibility (3).
COPD is underpinned by chronic inflammation, resulting in lung pathologies such as emphysema
due to alveolar tissue destruction, and chronic bronchitis arising from goblet cell metaplasia and
mucus overproduction (4). Inducible bronchus-associated lymphoid tissue (iBALT) often develops
in COPD, particularly in advanced disease (5). COPD is heterogeneous and various disease
processes, inflammatory cells (macrophages, neutrophils, cytotoxic T cells, T helper (Th)-1/17
cells) and cytokines are involved (6).
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Asthma is a mostly reversible inflammatory airway disease
affecting around 300 million people worldwide, where
exaggerated swelling and narrowing of the conducting airways
(airway hyperresponsiveness; AHR) is triggered in susceptible
individuals by the inhalation of environmental particles (7–9).
Asthma is differentiated into subtypes―allergic or non-
allergic, and by severity―mild-intermittent, mild, moderate, or
severe or by the dominant inflammatory response―eosinophilic
or neutrophilic. The most common type of asthma is allergic or
eosinophilic asthma, which is characterised by a type 2 immune
response (driven by cytokines IL-4, IL-5 and IL-13) and IgE-
mediated hypersensitivity (10). Conversely, during non-type 2
asthma, neutrophils, alongside a Th1/Th17 skewed response,
predominate (11, 12). Severe asthma, which is predominantly
neutrophilic, affects 5-10% of patients and is often unresponsive
to standard corticosteroid-based therapies (13, 14). Asthma-COPD
overlap (ACO) is a syndrome where patients exhibit characteristics
of both asthma and COPD (15), complicating the study of
inflammatory lung diseases.

This review will focus on ILCs and their involvement in
COPD and asthma.
THE EMERGENCE OF ILCs IN IMMUNITY

ILCs are a somewhat newly identified family of innate immune
cells that have garnered intense recent attention and our
understanding of their biological roles is rapidly progressing.
ILCs are mainly tissue-resident (16) and enriched at mucosal
sites such as the respiratory, gastrointestinal and reproductive
tracts, where they act as first responders to pathogens, aiding the
innate immune system to launch a rapid defence, in addition to
having roles in tissue repair and homeostasis (17). ILCs closely
resemble Th cells in their development and function (18). They
lack conventional antigen receptors, instead recognising non-
specific danger signals, microbial compounds and cytokines (18),
yet can also develop immunological memory (19). While ILCs
and T cells have overlapping functions, ILCs perform additional
non-redundant roles in priming adaptive immune responses
(20). Like their T cell counterparts, ILCs are implicated in
chronic inflammation, autoimmunity, and cancer (21–23).

The ILC family comprises five main subsets, which include
natural killer (NK) cells, lymphoid tissue inducer (LTi) cells
(which play a key role in the development of lymphoid tissues),
ILC1, ILC2 and ILC3. ILCs have characteristics and functions
that resemble adaptive CD4+ Th cell subsets. ILCs are classified
into three main groups: group 1 (ILC1 and NK cells), group 2
(ILC2) and group 3 (ILC3 and LTi cells), which correspond to
Th1 (NK cells correspond to CD8+ cytotoxic T cells), Th2 and
Th17 cells respectively (24), based on similar transcription
factors and functional profiles (25–27). ILCs derive from the
common lymphoid progenitor and primarily develop in the
foetal liver or in the bone marrow after birth (28). ILC1, ILC2
and ILC3, but not conventional NK cells, develop from Id2+

common helper-like innate lymphoid precursor cells (29),
whereas conventional NK cells likely branch off earlier in
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development (30). Tissue-resident ILCs can be replenished
from bone marrow or lymphoid organ precursors however,
they are predominantly maintained through local self-renewal
and expansion at tissue sites (16). While little is known about
how ILC1s populate the lung, ILC2s and ILC3s arise in the lung
shortly after birth, with ILC2 seeding dependent on production
of IL-33 by type II alveolar epithelial cells (31) and ILC3s on
insulin-like growth factor 1 from alveolar fibroblasts (32). ILCs
are lineage-negative, lacking common lymphoid and myeloid
lineage markers, and this feature is used to distinguish them by
flow cytometry. ILCs are highly plastic and can change their
phenotype and function depending on environmental signals,
and their identification can also be complicated by their
maturity (33).
PHENOTYPIC FEATURES OF
ILC SUBSETS

ILC1s and NK cells require the transcription factor T-bet for their
development; however, NK cells additionally utilise Eomes (34).
ILC1s and NK cells secrete interferon-gamma (IFN-g) and
tumour necrosis factor alpha which are key in the defence
against intracellular pathogens. NK cells employ both a
cytotoxic (CD56dim subset) and cytokine (CD56bright subset)
response (35, 36). Both ILC2s and ILC3s have the potential to
differentiate into ILC1 or ILC1-like cells (37, 38). Indeed, STAT-1,
a key transcription factor activated during bacterial and viral
infections, has been found to skew the differentiation of ILCs
toward ILC1 while suppressing ILC2 and ILC3 responses (39).

ILC2s are dependent on the transcription factor GATA-3 and
support Th2 immune responses via production of type 2 cytokines
such as IL-4, IL-5, and IL-13 (40), which are essential for defence
against extracellular parasites but can also drive allergic responses.
ILC2s are the predominant ILC subset in the steady-state lung,
where they secrete amphiregulin to promote pulmonary wound
healing after infection, suggesting a homeostatic function (41). In
mice, two distinct ILC2 populations have been characterized:
natural ILC2s that are identified as Lineage-ST2+KLRG1int and
classified as homeostatic, tissue-resident and IL-33-responsive; and,
inflammatory ILC2s, which are undetectable at the steady-state but
expand in response to IL-25 and can be distinguished as Lineage-

ST2-KLRG1hi cells (42). ILC2s are activated by IL-33, IL-25, thymic
stromal lymphopoietin (TSLP) and other danger signals produced
by the airway epithelium (43, 44), with further support from
prostaglandin D2 signalling through the CRTH2 receptor (40).
Additionally, p38 MAPK has been found to positively regulate
ILC2 function (45) while TGF-b is thought to program
development via induction of ST2 expression in ILC2
progenitors (46). IL-1b is critical for ILC2 plasticity by inducing
T-bet expression and promoting conversion into ILC1s in response
to the Th1 cytokine IL-12 (47).

ILC3s and LTi cells require the transcription factor RORgt for
their induction, and generate Th17-like responses, producing the
cytokines IL-17, IL-22, and GM-CSF (24, 48). LTi cells also play
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an important role in lymphoid organogenesis in foetal
development (49–51). ILC3s can be further sub-grouped by the
expression of Natural Cytotoxicity Receptors (NCRs) such as
NKp46 (NCR- or NCR+) (52, 53); while the expression of CCR6
and T-bet distinguishes effector cytokine profile (NCR-CCR6+T-
bet- produce IL-17, NCR+CCR6-T-bet+ produce IFN-g) (54). IL-
18 can induce ILC3 proliferation and IL-22 production through
NF-kB (55), while RANKL expression on ILC3s negatively
regulates ILC3 cytokine production (56). Interestingly, the Th2
transcription factor GATA-3 is also critical for the induction and
maintenance of ILC3s (57, 58) and therefore unsurprisingly,
ILC2s have the potential to differentiate into IL-17-producing
ILC3-like cells (59–61).
ILC SUBSETS IN COPD AND ASTHMA

ILC1 and NK Cells
ILC1 and NK Cells Are Indicators of
COPD Severity
Recent studies suggest that an increased frequency of ILC1s in
the peripheral blood of COPD patients correlates with disease
severity and increased exacerbation risk (37, 62), and therefore
Frontiers in Immunology | www.frontiersin.org 3
may be utilised as a biomarker for disease progression.
Furthermore, ILC1s as well as ILC3s are expanded in the lung
of severe COPD patients (63). ILCs tend to localise to lymphoid
aggregates in the lungs of COPD patients and smokers, whereas
they are found in the parenchyma in healthy individuals (62).
Cigarette smoke induces pulmonary ILC1s in a mouse model of
COPD (62). ILC1s, alongside Th1 and CD8+ T cells can produce
IFN-g which is implicated in COPD pathogenesis by inducing
elastolytic proteases and nitric oxide production by alveolar
macrophages, leading to emphysema (64–66) (Figure 1).
Furthermore, human ILC2s exhibit plasticity in vitro as well as
in vivo when transferred to humanised mice, where they
differentiate into ILC1s in the presence of IL-1b and IL-12
during pulmonary inflammation (63) and this is implicated in
COPD exacerbations (37) (Figure 1).

On the other hand, NK cell-mediated destruction of lung
tissue is implicated in COPD as NK cell cytotoxicity is enhanced
in the lung of COPD patients, correlating with worsened lung
function and emphysema (68) (Figure 1). Lung dendritic cells, via
IL-15Ra signalling, prime NK cell cytotoxicity in the COPD lung,
which may represent a therapeutic target (73). NK cell cytokine
production is also implicated; in mice, cigarette smoke triggers
NK cell pro-inflammatory cytokine release (74) by promoting
their expression of the IL-33 receptor, ST2, while inhibiting type 2
FIGURE 1 | ILC involvement in COPD. COPD is caused by cigarette smoking and insults such as air pollutants. COPD patients exhibit increases in group 1 and
group 3 ILCs, which correlate with severity and exacerbations, whereas ILC2 numbers are reduced (63). 1) ILC1 and NK cells produce the pro-inflammatory cytokine
IFN-g, which activates alveolar macrophages causing the release of inflammatory mediators (67). Macrophages secrete proteases (MMPs, cathepsins) inducing the
destruction of the lung parenchyma thereby contributing to emphysema (67). 2) NK cell cytotoxic activity through secretion of granzyme and perforin induces death
of lung tissue, furthering emphysema (68). NK cells also inhibit the production of ILC2 through downregulation of their ST2 receptor (69). 3) ILC2s promote Th2
inflammation during COPD exacerbations or differentiate into ILC1-like cells in the presence of IL-1b and IL-12 during lung inflammation (37, 63, 70). They potentially
also differentiate into ILC3s (59–61). 4) ILC3 and LTi cells produce IL-17 and IL-22, which are elevated in COPD patients, driving pathogenesis (71, 72). 5) IL-17
induces the maturation and recruitment of neutrophils, which are expanded in COPD patients, and via their release of proteases (neutrophil elastase, cathepsin G,
proteinase-3), contribute to mucus secretion and alveolar destruction (6). 6) ILC3 and LTi cells contribute to the formation of iBALT, which is a feature of advanced
COPD (5) and is the site of ILC localisation in COPD lungs (62). ILCregs are yet to be understood in the regulation of COPD pathogenesis.
September 2021 | Volume 12 | Article 733324
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responses through downregulating ILC2 expression of ST2 (69)
(Figure 1). Therefore, NK cells likely contribute to lung
emphysematous destruction and inflammation in COPD.

NK Cells Have an Ambiguous Role
in Asthma
While the contributions of ILC1s in asthma are currently
unknown, ILC1s may be relevant to neutrophilic asthma or
ACO, which warrants investigation. Meanwhile, NK cells can
be both beneficial and detrimental in allergic and severe asthma.
NK cells promote resolution of inflammation via inducing
apoptosis of eosinophils and protecting against viral-induced
inflammation (75, 76) (Figure 2). Furthermore, the
immunomodulatory role of NK cells is impaired in severe
asthma, with NK cells showing reduced lipotoxin A4-mediated
clearance of eosinophils (84). Additionally, NK cell-mediated
eosinophil clearance is inhibited by corticosteroids, implicating
the loss of NK cell cytotoxicity in severe and steroid-resistant
asthma (85). Conversely, NK cells can drive asthma-like
allergic airway inflammation by inducing type 2 cytokine
production (86–90). However, NK cells played neither a
positive nor negative regulatory role in a house dust mite
(HDM) model (91). Given that most human studies implicate
immunomodulatory rather than pro-inflammatory NK cell
functions, it is speculated that this may not be directly
recapitulated in mouse models, so further clarification is needed.
Frontiers in Immunology | www.frontiersin.org 4
ILC2s
ILC2 Involvement in COPD and Exacerbations
ILC2s can convert to ILC1s in the setting of COPD, suggesting
skewing towards type 1 inflammation in this disease (37)
(Figure 1). However, ILC2s themselves have also been
implicated in COPD by promoting type 2 inflammatory
responses (92), although it is unclear if ACO patients, who
exhibit an intermediate type 2 cytokine profile (93), were
included in this cohort. Interestingly, ILC2s have been shown
to mediate neutrophil recruitment in a model of cigarette smoke-
induced COPD and their deficiency protected against
emphysema yet promoted fibrosis through elevation of IL-13
and IL-33 (94). Furthermore, ILC2s have been implicated in
promoting Th2 adaptive responses during acute COPD
exacerbations (70) (Figure 1).
ILC2s Are Major Players in Allergic Asthma
In allergic asthma, which is commonly associated with type 2
inflammation, there are increases in ILC2s in the peripheral
blood compared to healthy individuals or those with allergic
rhinitis (95–97), and ILC2s are expanded in the lung of patients
with severe asthma and associated eosinophilia (84, 98). In
sputum analyses of eosinophilic asthma patients, ILC2s are
strongly induced alongside alternatively-activated ‘M2’
macrophages, whereas numbers of alveolar macrophages are
FIGURE 2 | ILC involvement in asthma. Upon allergen detection by airway epithelium, 1) ILC2s are activated by signals released by the airway epithelial cells and
other activated immune cells, producing type 2 cytokines such as IL-4, IL-5, and IL-13 in allergic asthma. 2) IL-5 is key for eosinophil recruitment and activation in
the lung (77) and 3) IL-13 mediates dendritic cell migration to the lymph nodes, promoting T cell differentiation into effector Th2 cells, which mediate B cell class-
switching and IgE production (78). 4) ILC2-derived IL-13 also acts on the airway epithelium to induce airway hyperresponsiveness, mucus overproduction and
disruption of barrier integrity (43, 79, 80). 5) ILC2-derived IL-4 may potentially inhibit Treg production in asthma (81). 6) NK cells play an ambiguous role in asthma
with both disease-driving and disease-modulatory activity shown. 7) ILC3s/LTi cells and possibly ILC1s contribute to obesity-related asthma and potentially non-
allergic, severe asthma or ACO through production of IL-17 (82). 8) ILCregs may regulate asthma by inhibiting eosinophil recruitment through IL-10 (83).
September 2021 | Volume 12 | Article 733324
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unchanged (99). Meanwhile, neutrophilic asthma patients
exhibit increases in ILC1s and ILC3s along with inflammatory
‘M1’ macrophages (99) (Figure 2). ILC2s are critical in allergic
airway inflammation, driving pathology alongside and
independent of the adaptive immune system (100). Eosinophil
recruitment is induced by ILC2 production of IL-5 (77) whereas
their production of IL-13 triggers AHR, mucus overproduction
and disruption of epithelial integrity (43, 79, 80) (Figure 2).
ILC2-derived IL-13 also promotes dendritic cell migration and
subsequent Th2 cell induction (78). ILC2 production of IL-4
blocks Treg induction in food allergy responses (81), however this
has yet to be shown in asthma. Interestingly, a subset of CCR10+

ILC2s that exhibit ILC1-like characteristics and have the capacity
to produce IFN-g, were protective in both allergic and non-
allergic severe asthmatic patients by limiting Th2 cytokine
secretion and downregulating type 2 responses (101),
demonstrating a protective function.

Numerous studies have explored the mechanisms of ILC2
regulation in allergic asthma. The neuropeptide neuromedin U,
has been found to powerfully induce an asthma-like response
and activate ILC2s (102), suggesting involvement of the
neuroimmune axis. IL-1b, arginase 1, lipotoxin A4, maresin 1,
Nrf2, FABP5, IL-35, IFN-g and PD-1 have all been shown to
restrict ILC2 responses and promote resolution of allergic lung
inflammation or prevent AHR through various mechanisms (79,
103–109). Furthermore, in allergic asthma, ILC2s are controlled
by the transcription factor IRF7, a key regulator of anti-viral
responses (110). On the other hand, neutrophils are reported to
control allergic airway inflammation in a mouse HDM asthma
model through the inhibition of ILC2 responses and G-CSF
modulation (111). Collectively, this suggests that ILC2s may be a
viable therapeutic target in asthma.

ILC3 and LTi Cells
Increased Il-17 Levels Implicate Group 3 ILCs in
COPD Pathogenesis
In COPD, proportions of lung ILC subsets are skewed toward
NCR- ILC3s/LTi cells whereas non-COPD individuals have
balanced proportions, with ILC2s and NCR- ILC3s in greatest
abundance (112) (Figure 1). NCR- ILC3s are also enriched in
severe COPD patients (63). In COPD patients and smokers, a
highly migratory subset of ILC3s expressing neuropilin-1 receptor
is found within the lung and associates with iBALT via induction of
ICAM-1 and VCAM-1 on mesenchymal stromal cells (113)
(Figure 1). In mice, ILC3s and ILC1s are increased in response
to cigarette smoke exposure, whereas ILC2s are diminished (94).
ILC3s are early producers of IL-17 and IL-22, which are implicated
in COPD pathogenesis. IL-17 is elevated in the peripheral blood of
COPD patients (114, 115) and steroid-resistant COPD (116), and
COPD exacerbations have been associated with IL-17 and
neutrophilic infiltration (71). IL-22 meanwhile, is elevated in
COPD patient lungs and contributes to experimental COPD
(72). Additionally, improvements in lung outcomes and
comorbidities have been observed in cigarette smoke-exposed IL-
17-deficient mice (117, 118). Given the association between ILC3
and IL-17 production, it is surprising that this link has not been
addressed in COPD but could be a promising therapeutic avenue.
Frontiers in Immunology | www.frontiersin.org 5
Group 3 ILCs May Be a Player in Neutrophilic
Asthma and ACO
Currently, there are limited reports on ILC3s and LTi cells in
asthma, however, ILC3-mediated production of IL-17 may
contribute (Figure 2). IL-17 is implicated in severe asthma,
neutrophilic asthma, asthma exacerbations and airway
remodelling involving the recruitment of neutrophils (119, 120)
and may contribute to ACO given that IL-17 levels are increased
in ACO patients (121). Furthermore, the development of AHR in
obesity-related asthma in mice relied on IL-17-producing ILC3s
and the NLRP3 inflammasome, and ILC3s were expanded in the
BAL of severe asthma patients (82). Therefore, via IL-17, ILC3s
have a potential role in distinct asthma endotypes, although
further studies are warranted in human disease.

ILCregs
Regulatory ILCs and Anti-Inflammatory Cytokine
Production
Recently, a novel group of regulatory ILCs (ILCreg) have been
identified in gut, characterised by expression of the
immunoregulatory cytokines IL-10 and TGF-b (122). While
ILCregs share mechanistic similarities with regulatory T cells
(Treg), they exhibit a unique transcriptome profile and lack the
typical Treg transcription factor FoxP3 (122). Furthermore,
ILCregs are transcriptionally distinct from typical ILCs, lacking
common ILC transcription factors and can be distinguished as
Lineage-CD45+CD127+ cells and by production of IL-10 (122).
Moreover, recent reports show that ex vivo human ILC1s and
ILC2s can also potently produce IL-10 (123). In mice, an induced
ILCreg population derived from ILC2s, likely in response to
retinoic acid, was observed in the lungs in HDM-induced
allergic airway inflammation, with a similar population of cells
also detected in human airway tissue (124). Likewise, a subset of
ILC2s that produces IL-10 (ILC210) has been directly implicated
in decreasing eosinophil recruitment to the injured lung (83)
(Figure 2). While there is evidence that immunoregulatory ILC
subsets are implicated in asthma, this has yet to be reported
in COPD.
THE EFFECTS OF THERAPIES ON
ILC RESPONSES

Recent guidelines recommend that adults with asthma receive a
combination therapy comprising inhaled corticosteroids and
long-acting b-agonists (125), and for severe asthma, inclusion
of biologicals targeting type 2 responses (126). In COPD, while
corticosteroids are ineffective, the recommendation for COPD
exacerbations is a triple inhaled therapy containing
corticosteroids, long-acting b2-agonists, and long-acting
muscarinic antagonists (127). Studies are beginning to reveal
how these agents regulate ILC activity.

Dexamethasone is reported to inhibit type 2 cytokine
production from ILC2s (128–131); however, IL-7 and TSLP
induce resistance via IL-7Ra and STAT5 (129). Conversion
of resting CD45RA+ ILC2s to inflammatory CD45RO+
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ILC2s is suppressed by corticosteroids; however, once present,
inflammatory ILC2s are resistant (132). Furthermore,
inflammatory ILC2s are increased in the lung and blood of
patients with chronic asthma correlating with disease severity
and corticosteroid-resistance (132). In paediatric patients with
severe therapy-resistant asthma, ILC2s, eosinophils and Th2 cells
are increased, whereas Th17 cells and IL-17+ ILCs are unchanged.
Systemic but not inhaled corticosteroids reduced ILC2s and Th2
cells as well as symptoms, despite persistence of IL-17+ cells and
eosinophils (133). Collectively these studies suggest that ILC2
activity can be controlled by steroid therapy, but the
inflammatory environment may alter steroid responsiveness.
Anti-IL-5Ra therapy in patients with severe steroid-dependent
asthma reduced blood and sputum eosinophils and IL-5Ra+
ILC2 but not total ILC2. While the functional relevance of IL-
5Ra+ ILC2 is unclear, these changes were associated with
improved asthma control and lung function (134).

ILC2s express the gene encoding b2-adrenergic receptor, with
deficiency of this gene in mice inducing ILC2s and inflammatory
responses (135). Furthermore, IL-33-induced ILC2 expansion
and IL-5 and IL-13 production in lung were reduced by b2-
agonist treatment, suggesting that b2-adrenergic receptor
signalling limits the proliferation and function of ILC2s (135).
With respect to cholinergic pathways, neuromedin U strongly
activates ILC2s and amplifies IL-25-dependent lung
inflammation (102, 136, 137). Moreover, the NMUR1
neuromedin U receptor is expressed on ILC2 and its deficiency
attenuates ILC2 number and function in allergic airway
inflammation (102). While little is known of the effects of
muscarinic antagonists on ILCs or whether they express the
receptors, in a papain-induced model of airway inflammation,
the long-acting muscarinic antagonist tiotropium indirectly
suppressed ILC2 activation by reducing IL-4 production from
basophils (138). Clearly more studies are required to determine
how therapies affect ILC phenotype and function, with these
likely providing new insights into the regulation of these cells in
chronic lung inflammation.
CONCLUSION

Innate lymphoid cells are an incompletely understood
accomplice in the maladapted inflammatory environment that
Frontiers in Immunology | www.frontiersin.org 6
promotes chronic respiratory diseases. They potentially play a
significant role in disease pathogenesis given their rapid response
to pathogenic or environmental stimuli and may be the missing
gap where conventional cell-based therapies have failed.
However, the identification of ILCs is complex, making their
study difficult, and their phenotype may be further complicated
by their plasticity, microenvironment, and stages of
differentiation. Although ILC manipulation in chronic
respiratory diseases represents a significant challenge,
understanding the intricacy of ILC regulation and the signals
used by other tissue-resident cells to control their responses may
provide a means of targeting them indirectly. The emergence of
regulatory ILCs suggests another level of disease control,
however these cells may be impaired or overwhelmed in
chronic inflammatory settings. Nonetheless, ILCs represent a
developing field in disease research. Understanding the role of
ILCs during chronic inflammatory airway diseases like COPD
and asthma will provide insight into the complexity of these
diseases, how they are initiated and the manner in which they
transition into a chronic state. Additionally, understanding how
ILCs are regulated, how they respond to conventional treatments
and furthermore how they regulate immune responses may allow
us to devise strategies to switch their disease-driving capabilities
into disease-modulatory actions.
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