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Abstract: Congenital hypothyroidism is a genetic condition in which the thyroid gland fails to pro-
duce sufficient thyroid hormone (TH), resulting in metabolic dysfunction and growth retardation.
Xb130−/− mice exhibit perturbations of thyrocyte cytoskeleton and polarity, and develop postnatal
transient growth retardation due to congenital hypothyroidism, leading ultimately to multinodular
goiter. To determine the underlying mechanisms, we performed transcriptomic analyses on thyroid
glands of mice at three age points: week 2 (W2, before visible growth retardation), W4 (at the nadir of
growth); and W12 (immediately before full growth recovery). Using gene set enrichment analysis,
we compared a defined set of thyroidal genes between Xb130+/+ and Xb130−/− mice to identify
differentially enriched gene clusters. At the earliest postnatal stage (W2), the thyroid glands of
Xb130−/− mice exhibited significantly downregulated gene clusters related to cellular metabolism,
which continued to W4. Additionally, mutant thyroids at W4 and W12 showed upregulated gene clus-
ters related to extracellular matrix, angiogenesis, and cell proliferation. At W12, despite nearly normal
levels of serum TH and TSH and body size, a significantly large number of gene clusters related
to inflammatory response were upregulated. Early postnatal TH deficiency may suppress cellular
metabolism within the thyroid gland itself. Upregulation of genes related to extracellular matrix and
angiogenesis may promote subsequent thyroid growth. Chronic inflammatory responses may con-
tribute to the pathogenesis of multinodular goiter in later life. Some of the pathoadaptive responses
of Xb130−/− mice may overlap with those from other mutations causing congenital hypothyroidism.

Keywords: thyroid hormones; goiter; gene set enrichment analysis; mitochondrial energetics;
extracellular matrix; inflammatory response

1. Introduction

The thyroid gland synthesizes and releases thyroid hormone (TH), essential for promot-
ing cellular metabolism, tissue function, and body growth. In congenital hypothyroidism,
TH production by the thyroid gland is insufficient [1]. Causes of deficient TH synthesis
include thyroid gland maldevelopment (dysgenesis), followed by genetic defects in TH
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synthesis [2–4]. Both thyroid gland development and the function of gene products in-
volved in TH synthesis are critically dependent upon the development and maintenance of
thyroid epithelial polarity.

Disruption of thyrocyte organization leads to various thyroid disorders [5,6]. XB130,
also known as actin filament-associated protein 1-like 2 (AFAP1L2) [7], is predominantly
expressed in the thyroid gland [7–9]. This adaptor protein, which localizes in the cytoplasm
and is enriched at the apical plasma membrane, plays a crucial role in defining thyroid
polarity and cytoskeletal architecture [10]. Specifically, global deletion of Xb130 in mice
causes primary defects in thyroid gland development and function, including delayed
folliculogenesis during embryonic and early postnatal stages, along with a reduction
in thyroglobulin (Tg) release to the thyroid follicle lumen, with diminished iodination.
XB130 knockout (Xb130−/−) mice exhibit transient postnatal growth retardation because of
congenital hypothyroidism [11]. Interestingly, older Xb130−/− mice develop multinodular
goiter (MNG), characterized by an enlarged thyroid gland with focal degeneration resulting
in nodule formation [12], indicating age-related response(s) to the genetic defects of the
thyrocyte cytoskeleton, early thyroid gland development plus accompanying TH synthesis
defects.

To understand these age-related compensatory changes, we performed microarray-
based transcriptomic analysis of thyroid tissue collected at three different stages of postnatal
development, accompanied by a bioinformatic analysis of enriched gene clusters [13,14].

2. Materials and Methods
2.1. Animals

Xb130−/− mice were generated as described previously [15]. All procedures carried
out in mice were approved by the Animal Use and Care Committee of the University
Health Network (Toronto, ON, Canada). Mice were maintained in specific pathogen-free
conditions on a 12 h light: 12 h dark cycle and fed an autoclaved laboratory chow and tap
water ad libitum.

Thyroid tissue samples were collected from male mice at the ages of W2, W4, and
W12. Following carbon dioxide inhalation, their thyroid glands were harvested under a
surgical microscope (Leica M651, Leica Microsystems, Mannheim, Germany). Two groups
(Xb130+/+ and Xb130−/− mice) of thyroid tissue samples, consisting of four biological
replicates, were prepared for each age point. The numbers of biological replicates were
based on our previous experience in microarray studies with animals [16].

2.2. RNA Extraction and Microarray Analyses

Total RNA was extracted from the collected thyroid tissues using an RNeasy kit
(Qiagen, Valencia, CA, USA). Equal amounts of RNA from each group were used for
microarray. cDNA was synthesized using high-capacity cDNA reverse transcription kits
(Applied Biosystems, Foster City, CA, USA). The RNA integrity number, determined by
the Agilent Bioanalyzer 2100 (Agilent Technologies, Inc., Santa Clara, CA, USA), was used
as a measure of the quality of the RNA. Mouse gene ST 2.0 chips (35,240 spotted genes)
from Affymetrix (Santa Clara, CA, USA) were used.

Probe-level data were preprocessed, including background correction, normalization,
and summarization, using robust multiarray average analysis. Data normalization was
performed across all arrays using quantile normalization. The background-adjusted, nor-
malized values were then compiled, or summarized, using the median polish technique,
to generate a single measure of expression. Gene expression was centered and scaled
to generate principal component analysis plots and heatmaps. Significant differentially
expressed genes were selected at an FDR < 0.05. Original data are available from the Gene
Expression Omnibus database (GSE197052).
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2.3. Gene Set Enrichment Analysis

To create ranked lists for pathway analysis, genes were ranked based on a gene score.
A pre-ranked gene set enrichment analysis (GSEA) was conducted on each ranked list [13].
Enriched pathways, which met the cut-off of false discovery rate (FDR) p < 0.001 and
p < 0.005, were plotted together and clustered to group highly similar pathways using the
EnrichmentMap and AutoAnnotate Cytoscape apps (Figure 1) [17,18].
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Figure 1. Transcriptomic profiling of gene expression in the thyroid glands of Xb130−/− mice and
their littermates. Gene set enrichment analysis is the major method that compares gene sets between
the two different groups.

3. Results
3.1. Transcriptomic Profiling of Thyroid Gland during Postnatal Development

Xb130−/− mice exhibit transient postnatal growth retardation with a nadir at around
W4, which is fully recovered by W14 (Figure 2a, upper panel). In euthyroid Xb130+/+ mice,
serum TH levels increase rapidly after birth and peak at W2, followed by a gradual decline
to a relatively constant level around W14. In contrast, the serum TH levels in hypothyroid
Xb130−/− mice are exceedingly low, and gradually catch up with those of Xb130+/+ mice
around W14 (Figure 2a, mid panel). As a result, Xb130−/− mice have a dramatically higher
level of serum TSH than Xb130+/+ mice, with a peak at W2 followed by a subsequent
gradual decline, although it remains higher than that of Xb130+/+ mice through adulthood
(Figure 2a, lower panel) (see detailed data [11]). To understand the adaptive responses of
the thyroid gland to Xb130 deficiency and the consequent hypothyroidism, we performed
microarray-based transcriptomics analyses on thyroid tissues collected at three age points:
W2 (before visible growth retardation); W4 (at the nadir of growth); and W12 (immediately
before full growth recovery).
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Figure 2. Differentially expressed genes in the thyroid glands between Xb130+/+ and Xb130−/−

mice (a) Transient growth retardation of Xb130−/− mice due to congenital hypothyroidism and
experimental design. See original data in [11]; (b) Principal Component Analysis (PCA) of all genes
from each microarray shows distinct differences in gene expression profiles between the thyroid
glands of Xb130+/+ and Xb130−/− mice at each age point, with circles representing 2 weeks, triangles
representing 4 weeks, and squares representing 12 months; (c) Venn diagram showing the overlap of
differentially expressed genes (FDR < 0.05) among all 3 timepoints; (d) Heatmaps showing top 10 up-
and down-regulated genes at each timepoint.

Principal Component Analysis (PCA) shows distinct separation of overall gene expres-
sion profiles between thyroid glands of Xb130−/− (Figure 2b; labeled in red) and Xb130+/+

mice (Figure 2b; labeled in blue), and among the three age points (labeled with different
symbols), indicating that the deletion of Xb130 gene causes major gene expression changes
in the mouse thyroid glands in an age-dependent manner (Figure 2b). The number of
differentially expressed thyroidal genes between WT and KO increased from 1076 at W2
to 1250 at W4, and to 3565 at W12 (Figure 2c). The top up- and down-regulated genes
showed distinct biological functions (Figure 2d). Genes related to TH biogenesis show
a normal response to TSH stimulation in hypothyroidism, including Tpo, Pendrin, Tshr,
Nis, Mct8, Duox1, Duox2, Duoxa1, and Duoxa2 (Figure 3). These genes were validated by
RT-qPCR [11].

The dynamic changes in the gene-expression profiles were further demonstrated by
GSEA [13]. Compared with thyroid glands from Xb130+/+ mice, those from Xb130−/−

mice show enrichment of eight downregulated and two upregulated gene clusters at W2,
as well as six downregulated and four upregulated gene clusters at W4. The number of
upregulated gene clusters increased to 47, with no downregulated clusters, at W12 (Table 1).



Cells 2022, 11, 975 5 of 12

Cells 2022, 11, x FOR PEER REVIEW 5 of 13 
 

 

 

Figure 3. Gene expression of TH biosynthesis-related genes in thyroid glands at W2, W4 and W12 

from microarray data (N = 4 in each group). Data are expressed as the Mean values. * p < 0.05, ** p < 

0.01, *** p < 0.001. 

The dynamic changes in the gene-expression profiles were further demonstrated by 

GSEA [13]. Compared with thyroid glands from Xb130+/+ mice, those from Xb130−/− mice 

show enrichment of eight downregulated and two upregulated gene clusters at W2, as 

well as six downregulated and four upregulated gene clusters at W4. The number of up-

regulated gene clusters increased to 47, with no downregulated clusters, at W12 (Table 1). 

  

Figure 3. Gene expression of TH biosynthesis-related genes in thyroid glands at W2, W4 and W12
from microarray data (N = 4 in each group). Data are expressed as the Mean values. * p < 0.05,
** p < 0.01, *** p < 0.001.

Table 1. Differentially expressed gene-set clusters in thyroid glands between Xb130+/+ and Xb130−/−

mice. Gene-set clusters enriched in Xb130+/+ group. Gene-set clusters enriched in Xb130−/− group.

Week 2

Lipid catabolic process Fatty acid metabolism Coenzyme metabolic process

Electron transport chain and ATP
metabolic process

Tricarboxylic and dicarboxylic acid
metabolic process Pyruvate metabolism and TCA cycle

Cellular response to interferon-beta Triglyceride metabolic process

Signal unattached Mad2 Generation messenger molecules

Week 4

Coenzyme metabolic
process Oxidative phosphorylation TCA cycle and electron transport chain

Mitochondrial translation tRNA aminoacylation process Intracellular transmembrane protein

Collagen metabolic process Cell junction assembly Integrin–cell-surface interaction

HS-GAG biosynthesis PLK1 signaling Blood coagulation and wound healing

Negative adaptive immune

Week 12

Negative regulation of immune response Antigen receptor-mediated
signaling Regulation of adaptive immune response

Regulation of inflammatory
response Activation of T cell and leukocyte Proliferation of T cell and leukocyte

Leukocyte mediated
immunity IFN-γ production IL-1 production

Regulation of cytokine production Leukocyte neutrophil migration Cell chemotaxis
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Table 1. Cont.

Week 12

Exogenous peptide antigen FC-epsilon receptor signaling Integrin-linked kinase signaling

Integrin–cell-surface interactions Integrin 2 pathway Organization of extracellular structure

Integrin 5 pathway TGF beta Organization of extracellular matrix

Integrin 3 pathway Cell junction assembly Elastic fiber formation

O-linked glycosylation Collagen formation Collagen biosynthesis

uPA signaling HS-GAG diseases metabolism Vasculature development

Blood vessel morphogenesis Wound healing response Cell–cell adhesion

FOXM1 pathway Aurora A signaling Aurora B signaling

Chromosome segregation E2F pathway DNA replication

Mitosis FRA1/2 transcription factor Chromatid separation

PLK1 signaling Semaphorin interactions ATR pathway

TCR signaling

3.2. Downregulated Gene Clusters in Xb130−/− Thyroid Glands at Early Postnatal Stages Are
Related to Mitochondrial Energetics

Although the thyroid gland expresses TH receptors, there is a relative paucity of
information about the impact of TH on the thyroid gland itself. Nevertheless, TH is a
major endocrine regulator of metabolic rate, with a profound impact on mitochondria
responsible for the majority of cellular ATP production, particularly on mitochondrial
energetics and oxidative phosphorylation [19]. In fact, we found that most of the gene
clusters downregulated at W2 and W4 in thyroid glands of Xb130−/− mutant mice are
related to mitochondrial energetics, including the coenzyme metabolic process (Figure 4a),
as well as lipid catabolic process and fatty acid metabolism (Figure 4b), indicating reduced
utilization of glucose and fatty acids for cellular metabolism. Downregulation of gene
clusters regulating the TCA cycle and dicarboxylic acid metabolism, in addition to those
related to pyruvate metabolism, was also observed (Figure 4c), as well as downregulation of
the electron transport chain and ATP metabolic processes that affect respiration (Figure 4d).

As with W2, the thyroid glands of Xb130−/− mice at W4 showed downregulated
gene-clusters of the coenzyme metabolic process (Figure 4e), TCA cycle and electron
transport chain (Figure 4f), and oxidative phosphorylation (Figure 4g), all of which favors
reduced cellular metabolism in the thyroid gland. Additionally, gene clusters of tRNA
aminoacylation and mitochondrial translation processes were downregulated (Figure 4h).
As these processes are all associated with the biogenesis of mitochondria and mitochondrial
mass, they seem compatible with the reported actions of hypothyroidism in other thyroid
hormone target tissues.

3.3. Upregulation of Gene Clusters Related to Tissue Development in Xb130−/− Thyroid Glands at
W4 and W12

While downregulation of gene-clusters related to mitochondrial energetics in the
thyroid glands of Xb130−/− mice tend to resolve in parallel with an increase in circulating
TH as a function of age, interestingly, other gene clusters become progressively upregulated
through development (Figure 5). At W4, processes associated with extracellular matrix
(ECM), including collagen metabolic process, cell junction assembly, integrin–cell-surface
interactions, and heparan sulfate/glycosaminoglycan (HS-GAG) biosynthesis, begin to
become upregulated in the thyroid glands of Xb130−/− mice (Figure 5a). Moreover, the
thyroid glands exhibit a small number of upregulated gene clusters related to maturation
of centrosomes (PLK 1 pathway) (Figure 5b) [20]. Given the relationship of centrosomes as
the microtubule organizing center, and the critical role of cell junctions as well as cell–ECM



Cells 2022, 11, 975 7 of 12

interactions in epithelial function, these responses appear to represent successful thyroidal
compensation to overcome the defective epithelial polarity brought about by loss of XB130.
The pathway known as blood coagulation and wound healing (Figure 5c) also appears to
be linked to ECM structure and function.
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mice at W4 and W12. Pathways associated with extracellular matrix at W4 (a) and W12 (d). Pathways
associated with cell cycle regulation at W4 (b) and W12 (f). Pathways associated with angiogenesis,
blood coagulation and wound healing at W4 (c) and W12 (e). Red nodes represent upregulated gene
sets in Xb130−/− mice.
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Noticeably, upregulation of these processes continued to be further elevated at W12,
including organization of ECM (collagen formation and biosynthesis), integrin function
(integrin-linked kinase, integrin–cell-surface interactions, integrin 2, 3, and 5 pathways),
HS-GAG, O-linked glycosylation, and cell junction assembly (Figure 5d). Gene clusters
related to wound healing, and cell–cell adhesion were also upregulated (Figure 5e).

Consistent with our previous observation that the thyroid glands of Xb130−/− mice
exhibit elevated cell proliferation and growth at W4 and W14 [11], gene clusters related to
cell cycle regulation, such as chromatid separation, DNA replication, chromosome segrega-
tion, and mitosis, became highly upregulated at W12 (Figure 5f). Upregulation of processes
related to cell-cycle regulations (FOXM1, E2F, FRA1/2, ATR) and maturation of centro-
somes (PLK1, Aurora A, Aurora B) were also observed. Interestingly, two gene-clusters
related to immune function (semaphorin interactions and TCR) showed interactions with
mitosis-related gene clusters (Figure 5f). Further, gene clusters in the thyroid glands of
Xb130−/− mice supporting angiogenesis (vasculature development, blood vessel morpho-
genesis), as well as cell proliferation, likely contribute to compensatory enlargement of
the entire thyroid gland (i.e., a goiter comprised not only of thyrocytes but also of blood
supply) stimulated by TSH, leading to increased TH production.

3.4. Elevated Inflammatory Response-Related Pathways in Xb130−/− Thyroid Glands at W12

Interestingly, many gene clusters related to inflammatory responses were found to be
upregulated in the thyroid glands of Xb130−/− mice at W12 (Figure 6), a time when the
serum TH and TSH levels in the circulation are nearly normal (Figure 2a). These included
negative regulation of immune response, antigen receptor-mediated signaling, regulation
of adaptive immune response, and regulation of inflammatory response (Figure 6a), in
addition to elevated activation and proliferation of T cells and leukocytes (Figure 6b). Our
analysis also showed upregulation of gene clusters related to the regulation of cytokine
production, especially interferon-gamma and IL-1 (Figure 6c). Furthermore, processes of
leukocyte and neutrophil migration and cell chemotaxis were upregulated (Figure 6d).
These results indicate that even though the hypothyroidism in Xb130−/− mice is almost
fully recovered by W12 through TSH-related compensatory growth of the thyroid gland,
the gland remains abnormal, as chronic inflammation persists, which may contribute to the
MNG formation at later stages of life [12].
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4. Discussion

In this study, our transcriptomic analyses revealed dynamic changes in the thyroid
glands of mice adapting to Xb130 deficiency. At early postnatal stages, while congenital
hypothyroidism delays the growth of the whole body, the thyroid gland suffers from
impaired cellular metabolism that seems to suggest the effect of insufficient TH on the
thyroid gland itself. Subsequently, after the nadir of growth, the thyroid gland begins to
enlarge under TSH stimulation with upregulated genes related to ECM, cell proliferation
and angiogenesis. These data support recent studies demonstrating that thyroid gland
growth is needed to help to alleviate TH deficiency in congenital hypothyroidism [21], and
this can eventually help to reverse the reduction in cellular metabolism in the thyroid gland
and throughout the body.

4.1. Effects of TH Deficiency on Cellular Metabolism in the Thyroid Glands at Early
Postnatal Stages

Many studies thus far have demonstrated the metabolic effects of TH on virtually all
organs in the body, including the heart, brain, and liver [22], but reports of the metabolic
consequences of TH deficiency in the thyroid gland itself are scarce. The present study
suggests that the reduced levels of TH production that are known to downregulate genes
related to cell metabolism in other hypothyroid cell and tissue types [23,24] also bring
about similar effects in the thyroid gland. Specifically, our analyses revealed downregu-
lation of gene clusters associated with glycolysis, fatty acid and lipid metabolism, TCA
cycle, and oxidative phosphorylation in the thyroid glands of Xb130−/− mice at W2 and
W4 (Figure 4a–g). In addition, decreased pathways of mitochondrial protein synthesis
observed in their thyroid glands at W4 (Figure 4h) indicate that not only cellular respiratory
capacity but also mitochondrial biogenesis is reduced in Xb130−/− thyroid glands, which
is consistent with reports that TH acts directly on mitochondrial protein synthesis [25,26].
Thus, given the inability of Xb130−/− thyroid glands to produce enough TH for growth
(Figure 2a) [11], these observations seem quite likely to reflect the consequences of TH
deficiency on the thyroid gland itself.

4.2. Compensation for Defects in Thyroid Epithelial Polarity

Congenital hypothyroidism with dysgenesis/dyshormonogenesis may be caused by
a number of monogenic defects, to which XB130 is a recently identified member [10,11].
Lack of XB130 in thyrocytes interferes with the normal crosstalk between the microtubule
network and the actin cytoskeleton, leading to disturbances in thyroid epithelial polar-
ity [10]. Thus, lack of XB130 is one of the few single gene mutations so far identified that is
genetically linked to both a thyroid developmental defect (dysgenesis) and deficiency of
thyroid function, as detected by diminished Tg secretion and iodination (dyshormonogene-
sis). We hypothesize that some of the compensation in Xb130−/− mice represents a specific
adaptive response to the perturbation of epithelial polarity in the thyroid gland. With this
in mind, we note transcriptomic upregulation associated with ECM as early as postnatal
W4 and strengthening with age, including centrosomal maturation, collagen formation and
biosynthesis, integrin–cell-surface interactions, HS-GAG biosynthesis, O-linked glycosy-
lation, cell junction assembly, and cell–cell adhesion (Figure 5). Each of these pathways
appear to be part of the successful compensation of thyroid tissue architecture [27] in the
setting of defective epithelial polarity brought about by loss of XB130.

4.3. Thyroid Gland Growth and Remodeling

The enlargement of the thyroid gland, or goiter, is an established compensatory mech-
anism for defective TH production, and it often occurs gradually over time. We have
previously reported on compensatory growth of thyroid glands in Xb130−/− mice [11],
and our transcriptomic analyses of Xb130−/− thyroid glands show the emergence of tissue
development-related pathways at W4 (including activation of cell-cycle regulation and
angiogenesis (Figure 5a–c)) that are only further enriched by W12 (Figure 5d–f). TH de-
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ficiency is known to trigger the production of TSH in the pituitary, and TSH stimulates
the compensatory growth of the thyroid gland with an increase in cell proliferation. The
intracellular signaling of TSH through its receptor is mediated through the cAMP pathway.
XB130 is involved in cAMP-dependent potentiation of IGF-1-induced DNA synthesis in
rat FRTL-5 thyroid cells [28]. Angiogenesis is essential for all tissue growth and occurs in
the thyroid under goitrogenic stimulation [29–31]. Presumably, the stimulatory activity of
TSH receptors occurs primarily on thyrocytes, which may themselves secrete factors that
stimulate angiogenesis locally. Further investigation of these processes is needed to under-
stand the underlying molecular and cellular mechanisms of compensatory enlargement
and remodeling in the thyroid glands under hypothyroidism.

4.4. Early Hypothyroid-Triggered Inflammatory Responses in Thyroid Glands

One of the most interesting and unexpected findings in the present study is the
overwhelming number of differentially regulated genes (Figure 2c) and enrichment of
gene-clusters related to inflammation in the thyroid glands from Xb130−/− mice at W12
(Figure 6), at an age when their serum TH and TSH levels approach closer to euthyroidism
(Figure 2a) [11]. Although enlarged thyroid follicles were observed in Xb130−/− mouse
thyroid glands at this gestational stage using morphometric analysis, we found no obvious
infiltration of leukocytes and lymphocytes in the thyroid tissue [11]. However, their thyroid
glands at this age were found to have elevated expression of genes related to inflammatory
response, featured by upregulated gene clusters in activation of T cells and leukocytes and
neutrophil migration, which may contribute to the pathogenesis of MNG observed in aged
Xb130−/− mice [12].

The immune system plays a central role in tissue repair and remodeling. Upon wound
injury, inflammation attempts to repair tissue damage and to restore tissue homeostasis
by recruiting various immune cells to the site of injury [32,33], but chronic or uncontrolled
inflammation can lead to pathological tissue remodeling or fibrosis [34]. Thus, the activation
and elevation of the inflammatory response in the thyroid glands of Xb130−/− mice,
occurring concomitantly with enrichment of genes related to tissue remodeling (Figure 5),
appears to be a pathoadaptive response. This raises important questions for future study
of the underlying molecular triggers for the enhanced inflammatory response that has
been observed as a common pathological characteristic exhibited in patients with thyroid
disorders [35]. Despite many years of work internationally, the pathogenesis of MNG
remains ill-defined. As in many disease states, there are likely to be both environmental
and genetic influences. One long-term consequence of inflammation can be increased local
fibrosis, and this is observed histologically in many individuals with MNG.

Even though XB130 is highly expressed in the thyroid gland [7–9], it is also moderately
expressed in other organs. The lack of XB130 enhances lipopolysaccharide-induced septic
responses and acute lung injury [36], and carcinogen-induced skin tumorigenesis that is
mediated through chronic inflammation [37]. The role of XB130 in mediating inflammatory
responses should be further investigated.

4.5. Limitations of the Present Study

In the present study, we only studied transcriptomic profiles in male Xb130+/+ and
Xb130−/− mice, as the transient postnatal growth retardation was found in both male and
female Xb130−/− mice [11]. We also did not see differences in MNG formation between
male and female mice [12]. However, in carcinogen-induced skin tumors, the numbers of
tumors were increased only in male Xb130−/− mice [37]. The growth of Xb130+/− mice
was compatible with WT mice in both males and females [11]. However, even though
the incidence of MNG in Xb130+/− mice is very low, it is statistically higher than that in
Xb130−/− mice [12]. Moreover, in carcinogen-induced skin tumorigenesis, male Xb130+/−

mice showed similar increased tumor numbers to that in Xb130−/− mice [37]. The effects
of sex and “gene dose” could be dependent on different clinical situations and should be
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further studied. Furthermore, the results from the bioinformatics study should be validated
with functional studies.

5. Conclusions

In the present study, we exploited congenitally hypothyroid Xb130−/− mice to visual-
ize dynamic changes in gene expression that occur in their thyroid gland through postnatal
stages. The transcriptomic profiles observed in this study may be shared with those of
thyroid dysfunction caused by other genetic mutations or functional defects. This deserves
further investigation in other animal models and in humans, as such studies may lead to
the discovery of pathways that promote the development of thyroid disease in adulthood,
such as multinodular goiter.
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