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Meta-modeling on detailed 
geography for accurate prediction 
of invasive alien species dispersal
Nick Pepper   1*, Luca Gerardo-Giorda2,3 & Francesco Montomoli1,3

Invasive species are recognized as a significant threat to biodiversity. The mathematical modeling of 
their spatio-temporal dynamics can provide significant help to environmental managers in devising 
suitable control strategies. Several mathematical approaches have been proposed in recent decades 
to efficiently model the dispersal of invasive species. Relying on the assumption that the dispersal of 
an individual is random, but the density of individuals at the scale of the population can be considered 
smooth, reaction-diffusion models are a good trade-off between model complexity and flexibility for 
use in different situations. In this paper we present a continuous reaction-diffusion model coupled with 
arbitrary Polynomial Chaos (aPC) to assess the impact of uncertainties in the model parameters. We 
show how the finite elements framework is well-suited to handle important landscape heterogeneities 
as elevation and the complex geometries associated with the boundaries of an actual geographical 
region. We demonstrate the main capabilities of the proposed coupled model by assessing the 
uncertainties in the invasion of an alien species invading the Basque Country region in Northern Spain.

The spread of invasive species is responsible for severe ecological damage and economic losses and is recognised 
as a significant threat to biodiversity1,2. Its management is a challenging problem due to the uncertainty sur-
rounding the species characteristics and the usually limited resources allocated to control. Firstly, measures to 
protect the native species of a region from invasive species are costly for the local government. For example, the 
Basque water agency (URA) budgets an average of €1.4 million a year for activities related to the elimination of 
invasive species and the restoration of habitats. In addition to this figure, the Biodiversity Strategy of the Basque 
Autonomous Community 2030 calls for €1,119,470 to be spent on the protection and restoration of habitats in 
2019 alone3. Moreover, the management often starts long after the appearance of the invasive species, when the 
ecological damage is already visible and the species well-established, taking an additional financial toll. Control 
strategies may aim at extirpation or rely on forcing a component Allee effect by bringing the population below a 
threshold4, for instance by increasing the abundance of predators, by culling or inducing habitat fragmentation5.

Another important consideration is the need to account for the temporal dynamics of the invader population. 
Managers have to optimize their choices not only for the present, but must also take into account possible future 
scenarios. The introduction of cane toad to Australia from Hawaii in 1935 in an attempt to control the native 
grey-backed cane beetle and its subsequent, uncontrolled, spread throughout the continent is a cautionary tale in 
this respect6. On the other hand, if the understanding of population persistence and competitive outcomes can 
provide long-term information, then short-term predictions of spread are often more important in the manage-
ment of invasive species as fast responses can potentially save public administrations sizeable amounts of money7. 
Optimal management strategies generally rely on the coupling of biological models with optimization procedures 
and are reviewed in Epanchin-Niell and Hastings8. Within such a framework, the modeling of invasive species 
and the dynamics of their dispersal can be of great help to environment conservation agents and policy makers.

A number of works have appeared in recent decades which have aimed to mathematically model invasive spe-
cies at different levels of accuracy. A popular technique in devising predictive models has been Spatially Explicit 
Population dynamics Models (SEPMs). Introduced by Rushton and collaborators in 19979 in the study of red and 
grey squirrel distribution at landscape scale, SEPMs are models that combine GIS data and a population dynamics 
approach on separated habitat blocks. These models have been used quite effectively to study the invasive expan-
sion10 and control11 of the grey squirrel in northern Italy. The major drawback of SEPMs is that their performance 
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is sensitive to the accuracy of the estimates of the life-history parameter input. As a consequence, SEPMs can only 
be used for species for which detailed data of population parameters (fecundity, mortality, dispersal distance, 
density) in different types of habitat are available. Expanding on the ideas of SEPMs, Jones et al.12 recently used a 
Gis-Grass based deterministic model with stochastic rates13 to study control strategies to protect native red squir-
rels from invasive grey squirrels on the island of Anglesey in the UK. Catford et al.14 used boosted regression trees 
to identify areas within a region of interest that are the most susceptible to invasion by non-native plant species. 
The model is not species specific and uses a set of 18 uncorrelated variables to classify the most vulnerable regions, 
which can be prioritized in conservation efforts. Gassó et al.15 studied the distributions of native and invasive 
plant species in Catalonia, Spain and found that human influence on the landscape had a greater influence on 
the species richness of the invasive species than climatic variables. Campos et al.16 used a statistical approach on 
patches to investigate the effect of environmental factors on the invasion patterns of 89 invasive plants species 
in the Basque Country, concluding that the spatial structure of alien plant invasions in the region are strongly 
environmentally induced. A common trait of these works is that the impact of geography on the distribution of 
invasive species is recognised, even if the exact nature of the complex link between the landscape and the abun-
dance of an invasive species is not completely understood17.

Accounting for the heterogeneities of the landscape in invasive species modeling is not a trivial task. Forests, 
plains and mountains present different levels of hospitability to the invasive species, whilst strong natural barriers 
such as motorways, lakes and major waterways can reduce, if not stop completely, the spread of the species18. 
Different approaches have been used in the literature to cope with the spatial component of heterogeneities, from 
data-driven statistical modeling to deterministic systems of differential equations. Lohr et al.19 investigated the 
effect of various land management options on local biodiversity via a system of ordinary differential equations for 
the abundance of two competing species, one local and one invasive, on an island. Although able to account for 
several important factors such as growth rate, carrying capacity, species interaction, efficacy and cost of manage-
ment, their method is spatially lumped on each type of habitat. While on the one hand such a model can be very 
effective in the management of an already established population, it lacks the spatial accuracy required to predict 
an invasion and thus is of limited use in devising early interventional strategies.

Meier et al.20 combined species distribution models21 (SDMs) with population spread models22 (models which 
cover meta-population dynamics) to evaluate the effectiveness of control actions on three widespread invasive 
alien plants for different spending scenarios and management goals in a complex landscape on the Swiss plateau. 
They showed how control actions under a restricted budget are more effective if spatially prioritized and, at the 
same time, that applying intensive control at early stages generally increased the effectiveness of control. In a 
recent paper, Maciel and Lutscher23 studied the coexistence of two competitive species in dependence of habitat 
preference, diffusion rates and carrying capacity. In order to perform their analysis, based on homogenization 
techniques and a multi-scale approach, they needed to consider an idealized situation where the two species are 
very similar and located in a one-dimensional, patchy, infinite landscape where the distribution of habitat patches 
is periodical and alternates between strongly favourable and mildly favourable to the species. As a consequence, 
although this approach provides interesting insight on the competing dynamics, it cannot be immediately trans-
lated to a realistic landscape.

Since observational data is in general collected according to the geopolitical structure of a region, the intuitive 
idea behind the works presented above is to subdivide the region of interest into discrete units either geopolit-
ically or territorially. A geopolitical subdivision follows administrative subdivisions at various levels such as at 
the levels of townships, counties or provinces, whilst a territorial subdivision divides the landscape into regular 
territorial patches and considers the species movements from one unit to another. Geopolitical decompositions 
have been used extensively in epidemiology, for example in Smith et al.24 where the spatial propagation of rac-
coon rabies in Conneticut, USA is modelled. Although a priori well adapted to observational data, a geopolitical 
approach suffers from significant limitations when considering wildlife. On the one hand, animals do not in gen-
eral move at the geopolitical scale, nor do their movements fit the shape of geopolitical units. On the other hand, 
plants do not move and their diffusion is driven by the dispersal of seeds that can be transported by climate agents 
such as wind or rivers, but in general do not move very far from the plant that generated them. As a consequence, 
several scientists have applied continuous reaction-diffusion models based on Fisher’s equation25 to problems in 
ecology. Reaction-diffusion models rely on the implicit assumption that the dispersal of an individual is random 
but at the scale of the population the density of individuals is smooth and the invasion front is somewhat regu-
lar26. Recently, Bonneau et al.27 applied a reaction diffusion model to simulate the effect of management efforts on 
the distribution of Burmese pythons in the Everglades (Florida, USA). The reaction-diffusion method was shown 
to yield better prediction accuracy than the more established Constant Effort Harvesting model. A limitation of 
the study is that the region of interest was treated as an isolated environment with zero flux boundary conditions 
imposed. This is a common feature to many works (not only in reaction-diffusion models), where the considered 
environment is either an island or a region bounded by impenetrable borders and where the effect of migration 
from neighboring domains is not considered12,19,28–30.

Although reaction-diffusion models are a good trade-off between model complexity and flexibility for use 
in different situations, their limited application resides in the technique used in their numerical approximation. 
Common reaction-diffusion models are approximated in space by means of finite differences methods (FD, see, 
e.g.31). The natural framework of FD requires the use of a Cartesian discretization grid. As the latter cannot 
adapt to the complex geometries that represent the boundaries of a real geographical region, researchers using 
reaction-diffusion models have limited themselves to either idealized geometries (one dimensional intervals23 or 
rectangles27,32) or covered the land under study through lattices composed of rectangular patches with sizes that 
are too large to cover smaller heterogeneities. As an example, Hooten and Wikle33 used, in a Bayesian setting, 
a finite difference approach on a lattice to approximate the latent process for the logarithm of the intensity of a 
Poisson process describing the abundance of the Eurasian Collared dove in the South East of the USA. In his PhD 
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Thesis, Arab34 suggested an extension to this approach by using finite elements in the approximation of the latent 
process, but both his derivation and implementation never went past a one-dimensional interval.

In this paper, we consider a continuous, time-dependent, nonlinear reaction-diffusion model for the species 
density that arises from a generalization of the Fisher equation. Following an idea introduced in Keller et al.35, 
in which the spread of rabies among raccoons in New York State was studied, landscape heterogeneities are 
accounted for by including in the computational domain the significant geographical features of the area by acting 
directly on the coefficients of the model that are both spatially and temporally dependent. In particular, we show 
how the model can account for elevation in a natural way. Elevation is a major trait in landscape heterogeneity, 
pretty much overlooked in the literature, despite the fact that quite often species’ habitats are bounded by it18. 
Moreover, recent studies focusing on the impact of climate change in modifying the habitat of species have found 
that increased temperature and changes in humidity have rendered higher altitudes suddenly hospitable for new 
species that might pose a threat to indigenous ones (see e.g.22,36–39). From this perspective, the simplicity with 
which the model proposed here is able to account for elevation can become a major asset. The reaction-diffusion 
model is numerically approximated by the finite element method, which is able to treat arbitrarily shaped bound-
aries, like the ones of a geographical region40. Moreover, finite elements can easily be employed on adaptive 
grids that feature finer resolution in specific regions of interest, for instance co-localized with peculiar landscape 
characteristics.

For a tool aimed at supporting management strategy in environmental conservation it is necessary to provide 
not only responses on suitable quantities of interest commonly used in the decision process, but also confidence 
intervals. To cope with how the uncertainty in the data and the characteristics of the species are propagated by the 
proposed model, we couple the reaction-diffusion equation with arbitrary Polynomial Chaos (aPC, see, e.g.41). 
Quantifying uncertainty is important for predictive models, and may become paramount if conservation agencies 
are faced with the threat from a species about which very little is known. Arbitrary Polynomial Chaos, being very 
efficient in its handling of scarce data, appears a natural choice.

This paper is organized as follows. In Section 2 we introduce a deterministic continuous 
advection-diffusion-reaction term model for the dispersal of an invasive species in an heterogeneous environ-
ment; describe the way it accounts for geographical characteristics and present the simulation protocol. In Section 
3 the deterministic model is demonstrated by its application to an alien species invading the Basque Country 
region in Northern Spain. Section 4 introduces the arbitrary Polynomial Chaos (aPC) method used to propagate 
parametric uncertainties through the model. The method is then applied to assess uncertainty on the test case 
introduced in Section 3 using synthetic data.

Methods
A general distributed model for species dynamics.  The spread of an invasive species in a region 
denoted by Ω ⊂ 2 can be modeled by a modified Fisher’s equation for the density →u x t( , ) of individuals in loca-
tion →x  at time t (see42 for an introduction to diffusion in ecological problems). In the more general form the 
model is a nonlinear advection-diffusion-reaction equation of parabolic type:

ν γ∂ − ∇ + ⋅ ∇ + − = Ω × .
→ → → →

u x t u x t u u u x t f x t Tbdiv ( ( , ) ) ( , ) ( ( , )) ( , ) in [0, ] (1)t

In Eq. (1) the diffusion coefficient ν →x t( , ) accounts for the static landscape heterogeneities such as inhospita-
ble regions and the presence of natural or artificial barriers within the computational domain. Examples of such 
barriers include major waterways and roads. The carrying capacity γ →x t( , ) expresses the birth and death rates of 
the species at a given spatial and temporal location. Their spatial dependence allows the inclusion of peculiar 
landscape characteristics in terms of the classification of the terrain (town, meadow, rock, wood, elevation). The 
convective term → ⋅ ∇x t ub( , )  allows for transport effects within the region to be modeled. In the case of terres-
trial amphibious animals, the transport effects are associated with the presence of rivers that can act both as an 
accelerator or as a contrasting agent according to their flow direction with respect to the direction of the propa-
gation front; outside of waterways the transport effects vanish. The temporal dependence of the coefficients allows 
for various types of seasonality: variations in the level of water and flow velocity of rivers, breeding for animals or 
sprouting for plants. Considering seasonality can be very important since, as shown by Meier et al.20, the most 
effective spatial treatments against invasive species prioritize small populations in the case of the seasonal species 
and large populations in the case of the perennial species.

Equation (1) is completed by a suitable initial value →u x( )0  and boundary conditions on ∂Ω43. In general, 
homogeneous Neumann boundary conditions are used to model an isolated environment, but other boundary 
conditions can be considered as well: a homogeneous Dirichlet boundary condition would model an hostile envi-
ronment, while a Robin boundary condition would model migratory dynamics27,42. Finally, let us point out that 
long distance dispersal could be included in the model by adding a stochastic term to the reaction-diffusion 
equation, but this goes beyond the scope of this paper.

Geographical accuracy of the model.  Elevation.  A geographically detailed description of the region of 
interest should not only include evident landscape heterogeneities such as rivers, lakes or urban areas, but also 
elevation. The latter can play a crucial role in characterising the hospitality of an area for a given species. 
Commonly both animal and plant species are suited to habitats in a bounded region of elevation and this aspect 
should be taken into account. The NASA Shuttle Radar Topography Mission (SRTM, February 11 to 22, 2000) 
produced a near-global covering of land on Earth, although limited to latitudes between 60S and 60N. Files con-
taining the elevation data have been made publicly available (the elevation data has been collected in files availa-
ble at http://dds.cr.usgs.gov/srtm/version2_1). Elevation values are integers (INT16 class): sea level values are 0, 
unknown values equal −32768 (there is no NaN for INT class). Each file corresponds to a tile of 1 × 1 degree of a 
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square 1201 × 1201 grid, consisting of latitude, longitude, and elevation values (SRTM3 = 3 arc-seconds). For 
territories within the USA the tiles feature a higher resolution of 3601 × 3601 grid (SRTM1 = 1 arc-second). By 
using this data, a three dimensional grid may be generated for a given region of interest that lies between 60S and 
60N. In what follows, we will denote by = →z z x( ) the elevation at point → ∈ Ωx .

Extended heterogeneities and carrying capacity.  Strong, extended heterogeneities may significantly affect the 
dynamics of the dispersal across a whole region. To cope with such features we take advantage of the temporal 
and spatial dependence of the carrying capacity and the diffusion coefficient in Eq. (1). In general, we consider 
the carrying capacity to be naturally dependent upon the elevation of the ground, however, different levels of 
hospitality can occur at a given elevation due to the landscape heterogeneities and such features can be taken into 
account. Less hospitable regions are modeled by lowering the carrying capacity to reduce the population density 
at equilibrium (see also23). The diffusion coefficient is also reduced to minimize the dispersal towards such inhos-
pitable regions. Lakes are included in the model by setting the carrying capacity to 0 in their interior.

Treatment of boundary condition artifacts.  Geographical regions are usually characterized by fairly irregular 
boundaries. Few approaches in the literature use real geographical boundaries or impose no-flux boundary con-
ditions in the cases that do, modeling the region of interest as an isolated environment. Whilst this may be a 
reasonable assumption if the region of interest is an island, in the case of a territory continuous with surrounding 
areas the choice of restricting the modeling to the actual region of interest could trigger unrealistic features in 
the vicinity of its boundary. To avoid such an effect, a computational domain larger than the region of interest is 
considered. This approach is commonly used in Computational Fluid Dynamics (CFD) simulations in aeronaut-
ics44: if the computational domain is sufficiently large, a zero flux boundary condition can be imposed without 
impairing the simulation in the region of interest.

Numerical approximation.  The finite element method (FEM, see40 for an introduction to the subject) is 
particularly suitable for complex geometries like the ones represented by real geographical regions. We thus dis-
cretize Eq. (1) in space by means of finite elements, while a classical finite difference discretization is carried out 
for the time discretization.

Spatial discretization.  For a regular triangulation (also called mesh) of the domain Ω, a finite element space of 
order k consists of globally continuous functions that are locally a polynomial of degree at most k on every trian-
gle of the mesh. Each function of a finite element space can be represented as a linear combination of a suitable 
finite basis. In the numerical simulations presented in this paper we will use first order elements. Although higher 
order polynomials can be considered40, linear ones feature a sufficient level of accuracy for the applications being 
considering here. A generic element of the first order basis, denoted with ϕ →x( )j  (j = 1, …, N, N being the total 
number of mesh points), is the piecewise linear function equal to 1 on the jth node of the mesh and equal to 0 in 
all the other nodes. The finite element approximation of the solution of Eq. (1) is given by

∑ ϕ→ → = → .
=

u x t u t x( , ) ( ) ( )
(2)

h
j

N

j j
1

The unknown time-dependent vector → = …u t u t u t( ) [ ( ), , ( )]N
T

1  solves the N-dimensional nonlinear ordi-
nary differential system


→

+ → + → = →d u t
dt

u t u t u tM ( ) A ( ) B ( ) ( ( )), (3)

where M, A, and B are the mass, stiffness and transport matrices, whose (i, j)-th entries are

∫ ∫ ∫ϕ ϕ ν ϕ ϕ ϕ ϕ= → = → ∇ ∇ → =
→ → ⋅ ∇ →

Ω Ω Ω

d x x d x b x d xM , A ( ( ) ) , B ( ( ) ) ,
(4)

ij j i ij j i ij j i

while  ∫ γ ϕ= − ⋅
→

Ω

→ → → →
u t x t u t u dx( ( )) ( ( , ) ( ))h h i  is the discretization of the nonlinear term. All of the above 

integrals are computed by means of suitable quadrature rules.

Time discretization.  Let Δt be a time step and tn = nΔt be the discretization of the time interval under study. We 
denote by = = …tu u[ ( )]n

l
n

l N1, ,  the vector of the nodal values at time tn. The incremental ratio (un+1 − un)/Δt is an 
approximation of the time derivative either in tn+1 or tn, with an associated numerical error proportional to Δt. 
As a good trade-off between numerical stability and computational efficiency, Eq. (3) is advanced in time by a 
mixed implicit/explicit (IMEX) approximation scheme, where the stiffness and the transport are treated implicitly 
while the nonlinear term is treated explicitly. Knowing the approximation un of the solution at time step tn, the 
solution at time step tn+1 is obtained by solving

+ Δ + Δ = + Δ .+t t tu u u(M A B) M F( ) (5)n n n1

Equation (5) is a linear system of dimension N, where the right hand side is easily built since un is known. For 
a more extensive discussion and application of the IMEX method see31.
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Simulation protocol.  The numerical simulations of Eq. (1) are performed with a self-developed code in Matlab 
(MathWorks Inc., Natick, MA) with a uniform time step of Δt = 0.1 months. Several techniques to efficiently 
solve linear systems like (5) are available based on iterative methods: at every time step we solve (5) with the con-
jugate gradient method, preconditioned by an incomplete Cholesky factorization (see, for instance the book by Y. 
Saad45). The Matlab source code is available as supplementary material to this paper.

Data driven mesh generation.  The computational domain is discretized by a triangular mesh to exploit its higher 
accuracy (compared to a typical cartesian grid for finite differences approximations) in representing both com-
plex boundaries and peculiar structures in the interior of the domain. Adaptive grids are used in order to har-
ness the best approximation properties of the finite element method. These feature smaller triangles in the areas 
that require higher levels of accuracy in the landscape, like the region of interest and the heterogeneities of the 
landscape. The geographical details described in the previous sections can be effectively implemented on a mesh 
whose generation is outlined by the following procedure:

	 1.	 Identify the region of interest in the computational domain and its main geographical features (e.g. rivers, 
lakes, urban areas)

	 2.	 Generate an initial grid 0, uniformly refined over the region of interest.
	 3.	 Include elevation information from NASA SRTM data by interpolation on the grid 0 .
	 4.	 Refine 0 in the surroundings of the main geographical features identified in step (1).
	 5.	 Implement a gradient-driven refinement of 0  where the elevation gradients are steeper (like along the 

sides of a valley).

Basque Country Test Case
To illustrate the characteristics of our method, we simulate the dispersal of an invasive species in the territory 
of the Basque Country in Northern Spain. The region itself is an excellent testbed, as the heterogeneity of its 
landscape encompasses various types of environment from the sea shores of the Bay of Biscay along the Atlantic 
Ocean to the mountainous region in the interior, to the higher peaks of the nearby Pyrenees range. The computa-
tional domain Ω is the region comprised between 4°W and 1°W in Longitude, and between 42°N and the Bay of 
Biscay (or 44°2′N) in Latitude (see Fig. 1, panel A). The domain Ω contains the region of interest and is triangu-
lated according to Steps (1–5) described in the previous Section. The mesh consists of 78,832 points and 155,478 
triangular elements. Note that throughout the rest of the paper co-ordinates will be expressed in Longitude and 
Latitude.

In the simulated scenario the invasive species is initially absent from the region of interest and is concentrated 
in a circle of radius 0.5 centred in the Aquitaine region in south-western France (−1.2349, 43.8631). From the 
perspective of environmental conservation, the natural interest is in the population density and speed of propaga-
tion. Some more specific quantities of interest may be the arrival time to specific, sensitive locations (like a natural 
reserve). As an example we consider the three major cities in Basque Country: Vitoria, Bilbao and San Sebastian. 
Their locations and the initial position of the invasive species are highlighted in Fig. 1, panel A, that also shows the 
elevation of the region. As this is an illustrative case, for numerical simplicity the impact of rivers was assumed to 
be negligible compared to the extended geographical heterogeneities induced by the mountain ranges. We assume 
a constant diffusion coefficient ν = 5 × 10−4 deg2 years−1 while the carrying capacity for the species is assumed to 
depend solely on elevation:

γ → =



 −

→ 



.x t z x( , ) 10 ( )

100 (6)

The carrying capacity is thus maximum at sea level and is linearly decreasing with elevation. The species is 
assumed to be unable to survive at elevations greater than 1000 meters above sea level. Results of the dispersal 
simulation are shown in Fig. 1, panels B to F. As expected, higher densities are observed along the coastline. At the 
same time, the impact of elevation is evident. In particular, the barrier effect played by the Pyréneens ridge run-
ning along the 43rd parallel significantly affects the dispersal and forces the species to move west (panel B and C) 
until the presence of a valley in the N-S direction allows the species to move south as well (panel D and E). Panel 
G in Fig. 1 shows the arrival time (tarrival) of the species in the whole computational domain: tarrival is defined in any 
point →x  of the domain Ω as the time at which the population density reaches 1 i.e. → =u x t( , ) 1arrival . Black areas 
are inhospitable for the species due to their elevation and will not be invaded. Finally, panel H in Fig. 1 shows the 
temporal evolution of the population density in the three cities of interest. Naturally, San Sebastian is the first city 
reached by the species. Nevertheless, Bilbao is reached before Vitoria, despite the second one being closer to the 
initial distribution of the invasive species. Finally, the population density in Vitoria is significantly lower than in 
Bilbao and San Sebastian due to Vitoria’s higher elevation (as can be inferred from Fig. 1, panel A).

Uncertainty Quantification
Propagating model uncertainty using arbitrary polynomial chaos.  As the invasive species disper-
sal model is intended to be an aide in decision-taking processes for policymakers, it is necessary to quantify the 
model uncertainties in order for its predictions to be trustworthy. It is likely that the exact values of the coeffi-
cients in Eq. (1) are not known precisely but perhaps are known in distribution form. An arbitrary Polynomial 
Chaos (aPC) method is used to quantify how the variation in the values of the model coefficients affect the 
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predictions of the spread of the invasive species. A summary of data driven aPC is provided here, for a fuller 
description the reader is referred to the work of Oladyshkin41.

Data driven aPC has two advantages over the more traditional Monte Carlo sampling technique: firstly, it is far 
less computationally expensive than Monte Carlo sampling and secondly, the method is able to handle scarce 
data. The computational efficiency of the method comes from the construction of a sparse grid for sampling using 
Smolyak’s rule. For each input distribution the optimal Gaussian quadrature points and weights are computed 
using the distributions’ statistical moments. Repeating this process for all Nd input distributions will produce a 
sequence of one dimensional quadrature rules = …U{ }i

j N1
j

d
 with collocation points ξk

i j and weights ωk
i j:

Figure 1.  Basque Country test case. Panel (A) Computational domain with elevation, initial location of the 
invasive species and location of the three cities under study. Panel (B to F) Density of the invasive species at 
different times of the invasion process. The temporal dynamics highlights how extended heterogeneities due to 
the mountain ranges favors dispersal to the West. Panel (G) Invasion time in the whole computational domain. 
Black areas are inhospitable for the species and will not be invaded. Panel (H) Temporal dynamics of the 
population density →u x t( , ) for Bilbao (solid blue), Vitoria (dashed red) and San Sebastian (dot-dashed green).
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∑ ξ ω=
=

U w( ) ,
(7)

i

k

m

k
i

k
i

1

j

ij
j j

where ∈ …m j N{1, }i uj
 is the maximum adaptive order for each quadrature rule and ξw( )k

i j  refers to a model 
evaluation at the collocation point ξk

i j. Through the application of Smolyak’s rule it is possible to find a sparse grid 
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Increasing the level of the quadrature increases the accuracy of the result as more points are added to the grid, 
but at increased computational cost. Having obtained a sparse grid with Nsp points from Smolyak’s rule the data 
driven arbitrary Polynomial Chaos representation of the model output is approximated as:
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where ψk refers to the kth order polynomial in a family of orthogonal polynomials, while ηi and θi represent the 
sparse grid collocation points and weights. Through Monte Carlo simulation of the PCE representation of the 
model output it is possible to build an output probability distribution function (PDF) for the model.

Uncertainty analysis for the Basque Country test case.  An uncertainty analysis was performed for 
the Basque Country test case. As an illustrative example we explored uncertainty in both diffusion (affecting 
propagation, thus the speed of the invasion) and carrying capacity (playing a key role in the settling of the species 
in a given location). To this end, we considered a modified version of the carrying capacity, scaled by a random 
parameter α:

γ α→ =



 −

→ 



.x t z x( , ) 10 ( )

100 (10)

The uncertain parameters are thus the diffusion coefficient, ν, and the scaling factor α. Histograms for the two 
uncertain parameters were generated synthetically and are shown in panel A of Fig. 2. The histogram for ν was 
generated from a normal distribution N(5 × 10−4, 1.2 × 10−4), while α was sampled from the uniform distribution 
U(0, 2). Having generated synthetic histograms for ν and α, data driven aPC was used to propagate the uncertain-
ties in these parameters through the invasive species model. The aPC technique was implemented in 
self-developed code following the procedure described in46. The simulation code can be made available by con-
tacting f.montomoli@imperial.ac.uk. Panel A in Fig. 2 shows also the locations of the 1D collocation points for the 
two input distributions. Having found the collocation points and weights from the data, Smolyak’s rule is applied 
to generate a level 1 grid. In this case the resulting grid consists of 5 points, shown in panel B of Fig. 2. The invasive 

Figure 2.  Panel (A) Histograms for the uncertain parameters ν and α, and the 1D collocation points for the 
input distributions. Panel (B) The sampling grid calculated through application of Smolyak’s rule at level 1.
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species model was evaluated at each of the points and based on the results, PDFs of → →u x t( , ) were calculated, at 
each time step, in the whole computational domain. Figure 3 collects the results. Panels A to D show the mean (μ, 
A and C) and the standard deviation (σ, B and D) of the PDFs on the whole region at different time steps. The 
bottom row of Fig. 3 show the results for Bilbao, Vitoria and San Sebastian. Panel E represent uncertainty in the 
arrival times of the species in the three cities, while panel F shows the temporal dynamics of the standard devia-
tion of the population density. Panels B, D, and F highlight how uncertainty is mainly concentrated in the vicinity 
of the propagation front and drops significantly in its wake.

Conclusions
Predictive modeling of the spatio-temporal spread of an invasive species is a very useful tool to help environmen-
tal conservation policymakers in their decision-making process for devising appropriate countermeasures. As 
model parameters for invasive species are often inferred form field measurements, they are imbued with uncer-
tainty. If the species is poorly understood then the uncertainty may be so significant that it affects the reliabil-
ity of the model predictions. A continuous reaction-diffusion model for the population density of an invasive 
species has been presented in this paper, which has been coupled with an arbitrary Polynomial Chaos (aPC) 
method to assess how the uncertainty of poorly known parameters affects the predictions of the deterministic 
model. The coupled model has several strengths. Firstly, aPC is far less computationally expensive compared to a 
classical Monte Carlo sampling method. More importantly, aPC is able to handle scarce data and in this respect 
the proposed model is far more effective than SEPMs (which require very detailed data about the population 
parameters to achieve good performance)9–12, and can be employed to estimate the initial stages of the invasion. 
Secondly, accurate geographical modeling can be easily included in the proposed framework since the continuous 

Figure 3.  Uncertainty analysis for the Basque country test case. Panel (A to D) Temporal dynamics of mean and 
standard deviation of the population density in the whole computational domain highlights the higher level of 
uncertainty in the surrounding of the wavefront. Panel (E) Uncertainty in arrival time in Bilbao, Vitoria and San 
Sebastian. Panel (F) Temporal dynamics of the standard deviation for the population density in Bilbao (solid 
blue), Vitoria (dashed red) and San Sebastian (dot-dashed green) shows how uncertainty drops significantly in 
the wake of the propagation wavefront.
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reaction-diffusion model has been implemented using a Finite Element formulation. Such an approach allows 
the treatment of general geometries like a real geography and its actual boundaries. At the same time, it allows 
landscape heterogeneities to be treated in a natural way, differentiating it from other works in the literature which, 
relying on Finite Differences, have lacked spatial accuracy by considering species dispersal on simplified or ideal-
ised landscapes (either one-dimensional or cartesian)23,27,32. The deterministic model presented here is equipped 
with a data-driven mesh generator that allows added refinement in the region of interest and in heterogeneities in 
the landscape. Finally, the individual runs of the deterministic model needed to set up the aPC procedure are not 
computationally demanding and can be computed on a laptop in few minutes. As a proof of concept, in this paper 
we demonstrate the practical applicability of the proposed method by quantifying the uncertainty in the spread 
of a generic invasive population in the Basque Country area in northern Spain.

For the sake of simplicity in presentation the method has been described here in basic form, but it can be 
easily extended in a number of ways. For instance, in our proof of concept we showed how elevation can be easily 
included and the carrying capacity was dependent solely on it. While the elevation is an important18,22,36–39 and, 
as has been discussed, often overlooked factor in species dispersal it is of course not the only factor. In practice 
the carrying capacity may be a function of a number of environmental variables. The spatial dependence of the 
model coefficients allows other characteristics concerning hospitality to be easily incorporated. As an example, 
the landscape can be differentiated between meadows, forests, urban areas and mountains, whose geographical 
distribution can be obtained from GIS data11. Moreover, the temporal dependence of the coefficients allows for 
temporal variations to be accounted for in the dynamics. For instance seasonality could be modeled by perio-
dizing relevant coefficients in the reaction-diffusion equation. Another important aspect to underline is that, for 
illustrative purposes, this paper considered the very simple situation of a single species invading an empty envi-
ronment. However, any ecological model of competition based on systems of ordinary differential equations (like 
the one in Lohr et al.19, for instance) could be easily included in our framework. The resulting model would be a 
system of partial differential equations of reaction-diffusion type like the one studied in one spatial dimension by 
Maciel and Lutscher23.

The presented model has some limitations as well. Firstly, although aPC is very efficient in handling scarce 
data, a preliminary parameter estimation for the model coefficients is needed. As population data are normally 
available at geopolitical or territorial levels, particular care would be required to translate them at a spatially 
continuous level. Secondly, although the proposed coupled model provides a probability distribution for relevant 
quantities of interest in species invasion, it lacks the ability of reproducing peculiar dynamics such as the stochas-
tic fade-out characteristic of individual based models in epidemiology13.
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