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The spread of the COVID-19 pandemic has shown great heterogeneity between regions

of countries, e. g., in the United States of America (USA). With the growing of the

worldwide COVID-19 pandemic, there is a need to better highlight the variability in

the trajectory of this disease in different worldwide geographic areas. Indeed, the

epidemic trends across areas can display completely different evolution at a given time.

Geo-epidemiological analyses using data, that are publicly available, could be a major

topic to help governments and public administrations to implement health policies.

Geo-epidemiological analyses could provide a basis for the implementation of relevant

public health policies. With the COVID-19 pandemic, geo-epidemiological analyses can

be readily utilized by policy interventions and USA public health authorities to highlight

geographic areas of particular concern and enhance the allocation of resources.
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INTRODUCTION

The spread of the COVID-19 pandemic has shown great heterogeneity between regions of
countries, e.g., in the United States of America (USA) (1–4). Geo-epidemiological differences
between incidence, infection and mortality rates have been correlated with arrival time of the
COVID-19 virus (5), population age structure (6), socio-economic development and population
density (7), the health insurance system (8), climatic and meteorological determinants (9),
and anti-contagion policies and health practices (10). Recent studies have shown that the geo-
epidemiological distribution of the epidemic waves has been heterogeneous across countries
(11, 12). Thus, geo-epidemiological analyses using data, that are publicly available, could be of
major importance to help governments implement efficient health policies (13–15).

With the worldwide COVID-19 pandemic, there is a need to better highlight the geo-
epidemiological variability in the trajectory of this pandemic in different worldwide areas. Indeed,
the epidemic trends across areas can change completely at a given time. Dynamics include
increasing trends, leveling off, stationary incidence patterns, and decreasing trends. Moreover,
the growth could be marked by several modes depicting different pandemic waves (16). The
subnational level of the epidemic curves within a country will display different trends over
time. Because the type and intensity of public health policies can vary across space, classifying
and summarizing the geo-epidemiological dynamics of the COVID-19 pandemic is essential for
real-time public health policy making (17).
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FIGURE 1 | Count of new cases of COVID-19 patients across the USA for the four waves (new cases were reported by states divided by the population of each state

and per 100.000 inhabitants). (A) New cases between the minimum of infection counts and the national peak time between two waves. (B) Rolling 7-day average

before the national peak time of each wave. (C) Incidence of new cases for the national peak time of each wave.

The USA maps show no homogenous infection rates over
time in regions regardless of the four waves (Figure 1A). On the
day of the epidemic peaks for the waves, USA maps show very
different infection rates between the regions on the day of the
national peak regardless of the waves. This illustrates that local
epidemic peaks appear at different times. The national peak may
not be a good indicator for local management of the epidemic.
Moreover, the distribution of new cases between the minimum
of infection counts and the national peak time between the third
and fourth wave shows that the fourth wave mainly developed in
the southeast of the USA (Figure 1A, 4th wave) while during the
national peak the states with the highest rates of infection were
in the northwest (Figure 1C, 4th wave). Similar differences can
be also observed for the rolling 7-day average before the national
peak time of each wave (Figure 1B) and for the incidence of new
cases at the day of the national epidemic peak (Figure 1C).

The data that support the observations of this study are openly
available in https://github.com/CSSEGISandData/COVID-19.

DISCUSSION

Showing epidemic trends in advance may reveal more about the
geographic risks and social and economic determinants which
impact the mechanism of COVID-19 transmission, as well as
how to respond to it. Several investigations have focused on the
prediction of the epidemic trend of COVID-19 (18–21), but there

are few reports of countries that report high-resolution, geo-
epidemiological data. Aggregate (at the level of states- or country-
wide) data of epidemics can be irrelevant when the local levels are
not factored in the absence of geo-epidemiological data (22).

Geo-epidemiological analyses of epidemics could be described
as the approach by which one compares epidemiological
data of these epidemics across different geographical regions
and populations, in the process identifying high geographical
resolution (e.g., neighborhood or county/municipality level),
environmental, geo-temporal, and socioeconomic factors. This
approach provides valuable information about the global and
regional burden of epidemics that could shape resource-
planning, policy making, funding, healthcare considerations,
and therapeutic intervention (23). Moreover, geo-epidemiology
could prevent the errors and/or lack of practical (policy-related)
consequences associated with low-resolution, spatial data, i.e.,
state- or country-level data.

Interdisciplinary analyses have been shown to investigate
epidemics (24). The consideration of geo-epidemiology in the
design of policies could improve the impact of such policies
(24–26). Moreover, local geo-referenced and temporal data
could unmask dynamic and complex associations influencing
disease dissemination (27, 28). For example, investigations of
the biogeography associated with rabies may detect markers
promoting epidemic spread as well as barriers preventing
dissemination (29). In geo-epidemiological investigations,
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disease mapping, disease clustering and individuals and
ecological analyses are closely related (30).

A more comprehensive picture of a spatial problem can be
achieved when the results of geographical aggregate-level data are
combined with those at the individual level. Multilevel modeling,
hierarchical and contextual analyses are phrases describing one
of the various statistical methods in which this combination is
allowed (31). Multilevel modeling is a powerful technique that
can be utilized to determine howmuch of the ecological effect can
be explained by variations in the distribution of individual-level
risk factors. At this effect, attempts have been made to integrate
this kind of analysis into geo- and social-epidemiology (32).
There are also developments incorporating time changes along
with spatial variation. Spatial models often lack transparency
into the determinants of epidemiological dynamics. Thus, geo-
epidemiological models are able to provide new insights into the
spread of epidemics that are otherwise unavailable.

Geo-epidemiological differences in the trajectories of the
COVID-19 pandemic in different worldwide areas should be
investigated. Geo-epidemiological investigation can enhance
an objective framework to investigate the epidemic geo-
epidemiological dynamics in different areas within the same
country. Functional data analyses have been utilized to
investigate biologic mechanisms, stock market trends, weather
patterns, underlying medical conditions, growth rates, and
speech data. In the context of the COVID-19 pandemic, in
China, clustering of curves was investigated to understand
travel patterns of migrants (17, 33). Although attempts have
been used to enhance the accuracy and validity of these
estimates, the current data and algorithms focusing on domestic
and international COVID-19 transmission are rather unclear,
because of the spatiotemporal heterogeneity of the spread of the
pandemic and poor understanding of its transmission processes.
As an argument, only knowing the infection rate of a state
as large as Texas, in the USA, or countries as extended as
Russia and Chile do not facilitate cost-effective, site-specific
and control measures. In contrast, it was analyzing actual
geo-temporal-epidemiological data that it was discovered that
many epidemics (including COVID-19) disseminate through
preexisting connecting structures (e.g., road networks, airlines
transports) (22, 27).

With the development of the epidemic, the spread of
COVID-19 has gradually shifted from an imported case pattern
to a local case pattern. Greater transmission risks observed
in areas were in regions with low-detection capacity, high
transportation, or economic connectivity to the epicenter of
the outbreak.

Several studies have shown that the transmission of an
infectious disease is modulated by viral characteristics and
population susceptibility, as well as social and health conditions

(34). Besides these common markers, the COVID-19 pandemic
is also influenced by many specific markers, such as population
age structure and human mobilities (19, 35).

Moreover, socioeconomic factors could show significant
associations with COVID-19 transmission. The proportion of
primary industries is found to be mainly correlated with the
spatiotemporal mitigations of COVID-19 in provinces. The

proportion of medical resources and rate of medical accessibility
in an area have a major action in the prevention of infectious
diseases (36, 37). Density of population, urban development, and
access to transportation could also be correlated with COVID-19
transmission. Moreover, the risk of COVID-19 infection is also
mainly modulated by the local population age structure (38).

In addition, the geo-epidemiological heterogeneity in the
spread of infectious diseases comes from the socio-economic, and
environmental differences among the geospatial units themselves
(32). Compared with the possible climate associations implied by
several investigations (39, 40), several investigations demonstrate
that population density (41), and restrictions in health and
mobility policies (42) have a considerable effect on the spread
of COVID-19 pandemic. Mobility and connectivity (43), in
association with high population density (44), can enhance the
pandemic transmissionmore in terms of the geo-epidemiological
differences, supported by research focused on USA county daily
commute data (45) and mobility data for Boston (46).

In conclusion, geo-epidemiological heterogeneity of the
COVID-19 pandemic has been observed in different USA
regions. This observation could provide a basis for the
implementation of geo-epidemiological analyses to influence
public health policies. Thus, geo-epidemiology of COVID-19
transmission could be readily utilized by policy interventions and
the USA public health authorities to highlight geographic areas of
particular concern and enhance the allocation of resources.
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