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Abstract

Background

The pathogenesis of development and rupture of intracranial aneurysms (IA) is largely

unknown. Also, screening for IA to prevent aneurysmal subarachnoid hemorrhage (aSAH)

is inefficient, as disease markers are lacking. We investigated gene expression profiles in

blood of previous aSAH patients, who are still at risk for future IA, aiming to gain insight into

the pathogenesis of IA and aSAH, and to make a first step towards improvement of aSAH

risk prediction.

Methods and Results

We collected peripheral blood of 119 patients with aSAH at least two years prior, and 118

controls. We determined gene expression profiles using Illumina HumanHT-12v4 Bead-

Chips. After quality control, we divided the dataset in a discovery (2/3) and replication set (1/

3), identified differentially expressed genes, and applied (co-)differential co-expression to

identify disease-related gene networks. No genes with a significant (false-discovery rate

<5%) differential expression were observed. We detected one gene network with significant

differential co-expression, but did not find biologically meaningful gene networks related to

a history of aSAH. Next, we applied prediction analysis of microarrays to find a gene set that

optimally predicts absence or presence of a history of aSAH. We found no gene sets with a

correct disease state prediction higher than 40%.

Conclusions

No gene expression differences were present in blood of previous aSAH patients compared

to controls, besides one differentially co-expressed gene network without a clear relevant

biological function. Our findings suggest that gene expression profiles, as detected in blood

of previous aSAH patients, do not reveal the pathogenesis of IA and aSAH, and cannot be

used for aSAH risk prediction.

PLOS ONE | DOI:10.1371/journal.pone.0139352 October 6, 2015 1 / 12

OPEN ACCESS

Citation: van ’t Hof FNG, Ruigrok YM, Medic J,
Sanjabi B, van der Vlies P, Rinkel GJE, et al. (2015)
Whole Blood Gene Expression Profiles of Patients
with a Past Aneurysmal Subarachnoid Hemorrhage.
PLoS ONE 10(10): e0139352. doi:10.1371/journal.
pone.0139352

Editor: Nima Etminan, Heinrich-Heine University,
GERMANY

Received: March 12, 2015

Accepted: September 11, 2015

Published: October 6, 2015

Copyright: © 2015 van ’t Hof et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
available via NCBI GEO (DOI: GSE73378).

Funding: The authors received no specific funding
for this work.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0139352&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Introduction
Subarachnoid hemorrhage (SAH) from a ruptured intracranial aneurysm (IA) is a severe sub-
type of stroke, occurring in relatively young people (mean age 50 years), of whom a third dies
as a consequence of the aneurysmal SAH (aSAH).[1] It is known that both environmental
exposures and genetic predisposition play a role in susceptibility of aSAH,[2] with an estimated
heritability of around 40%.[3] The exact pathogenesis of IA development and subsequent
aSAH is not exactly known, but processes like hemodynamic stress, matrix degeneration and
inflammation appear to play a role.[4, 5]

Around 10% of the aSAH patients has one or more first degree relatives with aSAH, and
unaffected first degree relatives are at increased risk of developing an aneurysms and having an
aSAH.[6] IA are generally asymptomatic before rupture, and therefore have to be detected by
screening. Magnetic resonance angiography (MRA) is currently the standard screening method
for individuals at high risk for IA development and subsequent rupture, but screening has dis-
advantages in terms of costs and negative consequences.[7, 8] Moreover, screening is inefficient
in first-degree relatives if only one relative is affected, although they have an increased life time
risk of aSAH.[6, 9] Thus, we need tools to better detect persons with high risk of aneurysm
development or rupture. Gene expression profiling in blood of previous aSAH patients may
help to identify individuals who are at high risk for aSAH. Given the high long-term risk for
developing new aneurysms in previous aSAH patients, aSAH seems to be a continuous disease
of the vessel wall, making these patients suitable subjects for studying ongoing pathophysio-
logic processes involved in IA.[10]

Therefore, in this study, we compared gene expression profiles in blood between individuals
who had survived an episode of aSAH and healthy controls. We aimed to gain more insight
into the pathogenesis of IA and aSAH, and also to see whether these gene expression profiles
can improve identification of individuals with an increased risk of aSAH.

Materials and Methods

Study design and subjects
Between August 2010 and January 2011, we sampled blood from 119 persons who had been
treated for aSAH in the University Medical Center Utrecht (UMCU), the Netherlands. All
patients visited the outpatient clinic at the UMCU for blood sampling. We included only patients
who had the last episode of aSAH at least two years (median 7.5 years; range 2–23 years) before
the blood sample collection to minimize the chance of detecting direct effects of the bleeding on
gene expression profiles. Aneurysmal SAH was defined by symptoms indicative of SAH com-
bined with subarachnoid blood on a computed tomography (CT) scan and a proven aneurysm at
angiography (conventional angiogram, CT- or magnetic resonance (MR)-angiogram). Ruptured
IA were treated by operative clipping or by coiling. In a subgroup of 16 patients, one or multiple
unruptured IA were found in addition to the ruptured IA. Of these, five patients had an IA that
was left untreated. The controls were genetically unrelated individuals accompanying the patient
to the outpatient clinic (mostly spouses of the aSAH patients). When such unrelated individuals
were unavailable, spouses of other patients visiting the neurology outpatient clinic served as con-
trols. In total, we included 118 controls. For all participants, we obtained information about age,
smoking history, hypertension (defined as a self-reported history of hypertension and/or use of
antihypertensive medication) and presence of familial IA (defined as having one or more first-
degree relative(s) with SAH or IA). All controls confirmed a negative history of SAH or IA.

The study was approved by the Medical Ethics Committee at the University Medical Center
Utrecht, and all participants provided written informed consent.

Gene Expression in Subarachnoid Hemorrhage Cases

PLOS ONE | DOI:10.1371/journal.pone.0139352 October 6, 2015 2 / 12



Blood sample collection and processing
Blood samples were obtained in the morning after overnight fasting. In each participant (i.e.
cases and controls), we collected two PAXgene tubes (Qiagen) for genome-wide gene expres-
sion, and an EDTA tube for measurement of leukocyte differential counts. PAXgene tubes
were frozen at -20°C after two hours at room temperature, until RNA was isolated using PAX-
gene extraction kits (Qiagen).

We excluded five cases and three controls with low RNA quality or quantity, defined as an
RNA integrity number (RIN) value below 6. We also excluded one case with low RNA quantity
after RNA amplification, defined as a 260/280 ratio below 1.8, measured using nanodrop
(www.nanodrop.com). The remaining samples were hybridized to Illumina HumanHT-12v4
Expression BeadChips.

Data quality control
R version 2.15.2 was used for quality control and statistical analysis of gene expression data.
[11]

After calculating principal components (PCs), we excluded nine samples identified as outli-
ers based on visual inspection of PC plots (S1 Fig). Seven samples showing inconsistency
between reported gender and expression data based on at least two out of eight non-pseudoau-
tosomal sex chromosome transcripts, and two duplicate samples (>99% gene expression corre-
lation, measured using Pearson’s correlation coefficient) were excluded. In total, ten cases and
eight controls were excluded after quality control.

All probe sequences were aligned to the NCBI build 36 reference genome using UCSC’s
Genome Browser function BLAT.[12] We removed non-specific probes, defined as no or mul-
tiple hits with a sequence homology>95%, and non-autosomal probes (n = 13 188). Probes
mapping to transcripts designated as ‘retired’ according to RefSeq (updated on 27 September
2010) and UniGene (build #228, release data 29 October 2010) databases were also excluded.

After exclusion of sample and probe outliers, the raw dataset was again quantile normalized
and log2 transformed before further analyses.

Data analysis
After exclusion of samples that did not surpass the quality control, we divided the remaining
samples in a discovery set (2/3 of the dataset) and a replication set (1/3 of the dataset), with an
equal distribution of cases and controls in each set. We performed four different analyses to
investigate the gene expression profiles. Analyses 1 to 3 were aimed at gaining more insight in
the pathogenesis of IA and aSAH and analysis 4 at exploring the possible use of these profiles
in prediction of aSAH risk.

1. Differential expression. We calculated case-control differences in expression of all
probes in the discovery set, using logistic regression. To eliminate expression heterogeneity
caused by known and unknown technical and biological background, data were normalized
applying surrogate variable analysis (SVA). This produces surrogate variables for which
expression levels can be corrected by calculating residuals in a linear regression model. This
reduces batch specific background noise thereby increasing the ability to detect biologically
meaningful signals.[13] As covariables, we included the 14 variables as specified by the SVA
procedure. To correct for multiple testing, we calculated Benjamini Hochberg false discovery
rates (FDR). All probes with a FDR-corrected p-value (pFDR) below 0.05 were tested for case-
control difference in the replication set. Probes with pFDR < 0.05 in the replication set were
marked as significant.
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Next, we created a list of 69 genes with a previously described association with IA (S1
Table), consisting of all genes in significant loci from previous genome-wide association studies
(GWAS),[14–16] and genes associated with IA in at least three gene expression studies in IA
tissue.[17] We checked the p-value from the differential expression analysis for probes map-
ping to these genes. Probes were significant if p-values were below 0.05 after Bonferroni correc-
tion for the number of tested probes.

2. Co-differential co-expression (CDC). Differentially expressed genes can be interacting
with other genes to generate their effect on diseases. We tried to identify a differential gene reg-
ulating network involved in IA, based on co-differential co-expression.[18, 19] Therefore, we
investigated which genes have a similar pattern of differential expression in IA cases and con-
trols. First, we calculated residuals of gene expression levels after adjustment for known risk
factors for SAH: age, sex, hypertension, smoking (ever or never) and familial IA. Leukocyte dif-
ferential counts were not included as co-variables in the CDC analysis, because no significant
differences (threshold p<0.05 using two-sample Wilcoxon test) between cases and controls
were observed (S2 Table).

For the co-expression analyses, we used Weighted Gene Co-expression Network Analysis.
[20] An adjacency matrix was defined between all genes under study, based on pair-wise corre-
lations in all subjects in the discovery set. We used the Spearman rank correlations, to avoid
the leverage of influential outliers.[21] On this co-expression matrix, standard hierarchical
clustering with average linkage was applied, followed by gene group extraction from the result-
ing dendrogram, using a fixed cut height (0.96).[21] We created modules of co-expression
based on the adjacency matrix, and for each gene we matched the significance level of differen-
tial expression to the module assignment. Next, we calculated the average gene significance
level in each module based on analysis 1, and tested whether this level was significantly higher
than expected by chance (p<0.05).

To test the reproducibility of these significant modules, we calculated preservation statistics
for each module in the replication set, as described previously.[22] Specifically, the Z-summary
statistic was investigated. This statistic captures the density and connectivity statistics, and
adjusts for module size. DC modules with a Z-summary statistic> 10 (threshold for strong
preservation evidence[22]) were considered as significantly preserved.

3. Differential co-expression (DC)[21, 23]. Standard differential expression mainly
investigates regulatory genetic variation that leads to expression level changes between cases
and controls. Known disease genes, however, are often not differentially expressed because
mutations in the coding region can affect the interaction of the gene with other genes, which
will affect the co-expression pattern of the gene. Networks from gene expression data can be
inferred by calculating all pair-wise correlations of the genes in a diseased and a control state
and compare these networks based on differential co-expression.[21]

First, we created an adjacency matrix as described in paragraph 2 (‘Co-differential co-
expression’), but this time by investigating the cases and controls separately, instead of all sub-
jects in the discovery set together. Then the co-expression changes were computed from the
difference in adjacency matrices. Modules of differentially co-expressed genes were extracted
from this matrix, and these modules were randomly color-labeled. The statistical significance
of differential co-expression of gene groups was assessed using 10 000 permutations of the data
to generate a null distribution of the dispersion statistic, followed by a Bonferroni correction of
the empirical p-values.[21] The dispersion statistic (Ds) is a measure of correlation change for
groups of genes.[24]

We selected modules with a Bonferroni-corrected p-value (pBonf) below 0.05 for preserva-
tion testing in the replication set as described above. Next, we created correlation heatmaps of
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differentially co-expressed gene modules for the discovery set and replication set separately,
using hierarchical cluster analysis based on gene correlation values.

Biological relevance of gene modules:We investigated the biological meaning of preserved
modules based on (co-)differential co-expression in two ways. First, we tested the enrichment
of genes involved in biological pathways in each module, using the database for annotation,
visualization and integrated discovery (DAVID).[24] Biological pathways with pBonf < 0.05
were considered as significantly enriched. Second, we determined hub nodes in each module.
Hub nodes or “hubs” take a central position in a network. They can be easily reached by most
of the nodes of the network due to their central position.[25, 26] Several metrics can be used to
identify hubs. Hub nodes generally display an above average high number of connections to
other nodes in the network, a high level of (betweenness) centrality, a short average distance
towards the other nodes of the network, and a low clustering coefficient.[25, 26] We identified
hubs by computing a level of “hubness” for each node determining whether a node belonged
to: (1) the top 20% of nodes showing the highest level of connectivity; (2) the top 20% of nodes
showing the highest level centrality; (3) the top 20% of nodes showing the lowest path length;
and/or (4) the top 20% nodes showing the lowest clustering coefficient.[27] Each node was
assigned a score between 0 and 4, determined by the total number of hub criteria fulfilled.
Regions showing a hub-score of 2 or higher were marked as hub nodes.

We looked up the function and published disease associations for the most important hub
nodes at the website of the National Center of Biotechnology Information (http://www.ncbi.
nlm.nih.gov). Next, we investigated whether there was any overlap between these hub genes
and the list of 69 genes with a previously described association with IA.

4. Prediction analysis of microarrays (PAM). With this analysis, which uses the nearest
shrunken centroid method,[28] we aimed to find the smallest set of genes in our data that can
accurately classify samples as cases or controls. We computed a nearest shrunken centroid clas-
sifier for the SVA-normalized discovery dataset, and determined the amount of shrinkage by
cross-validation. Next, we estimated FDRs for this classifier in the replication set. The optimal
classifier gene set was determined by calculating sample misclassification errors for gene sets at
different shrinkage thresholds.

Results
A total number of 210 samples (103 cases and 107 controls) and 34 135 probes were included
after quality control. Table 1 shows the baseline characteristics of the study population.

Table 1. Baseline characteristics of the study population.

Characteristics Cases Controls

Total number 103 107

Mean age (range) 60 (43–87) 60 (20–85)

Women N (%) 86 (83) 43 (40)

FIA N (%) 4 (4) 0 (0)

History of smoking N (%) 85 (83) 83 (78)

Hypertension N (%) 63 (61) 30 (28)

Mean time from SAH to study (range) 8 (2–23) NA

Cases with additional aneurysms N (%) 14 (14) NA

FIA indicates familial intracranial aneurysm, N: number, SAH: subarachnoid hemorrhage, NA: not

applicable.

doi:10.1371/journal.pone.0139352.t001
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1. Differential expression
We observed no probes with a significant (pFDR< 0.05) case-control difference in expression
in the discovery set. Consequently, no probes were selected for further analysis in the replica-
tion set.

For IA genes from the literature, we listed the p-values of differential expression in the dis-
covery set (S1 Table). In total, 87 probes that mapped to these 69 IA genes were tested in our
study. No probes were differentially expressed between patients and controls with pBonf < 0.05.

2. Co-differential co-expression
We identified nine different modules of co-expressed genes in the discovery set of cases and
controls combined. In none of these modules, the average gene significance level of differential
expression of the genes was significantly higher than expected by chance, with p-values ranging
from 0.23 to 0.48.

3. Differential co-expression and biological relevance of gene modules
After creating a dendrogram of DC genes in the discovery set, we observed six different mod-
ules of DC genes (S2 Fig). After 10 000 permutations, three modules remained significant
(Table 2): the blue (pBonf = 0.024), turquoise (pBonf = 0.045) and yellow module (pBonf = 0.047).

The correlation heatmaps of differentially co-expressed gene modules showed that the pat-
tern of case-control differences in gene correlation per module, as observed in the discovery
set, did not look similar in the replication set (S3 Fig). We formally tested the preservation of
the three significant modules in the replication set, and observed a significant preservation of
only the yellow module (Z-summary = 11.3; Table 2). This module consisted of 1818 probes.
Pathway analysis in DAVID revealed that only Gene Ontology pathways involved in processes
in the vacuole and lysosome were significantly enriched in this module (pBonf = 5 x 10−3). We
did not find any publications on a role of such processes in IA.

We identified a total number of 129 genes from the yellow module as hub genes. No overlap
was found between the 69 IA genes and the list of hub genes. The most important hub gene of
the yellow module was CLCN6 (chloride channel, voltage-sensitive 6) at locus 1p36.22. This
gene encodes a member of the voltage-dependent chloride channel protein family. An associa-
tion with diastolic blood pressure has been described for a polymorphism in the promoter
region of this gene.[29] For the remaining genes in the ‘top 10’ of hub genes, no functions or
disease associations with a known relation to IA were found. The ten most important hub
genes are described in Table 3.

Table 2. Modules of differentially co-expressed genes: permutation and preservation results.

Module Number of genes Permutation index Permutation pBonf Preservation Zsummary

Blue 2007 40 0.024 6.06

Black 2837 553 0.33 NA

Brown 1822 103 0.062 NA

Green 1598 329 0.20 NA

Turquoise 3106 75 0.045 -0.74

Yellow 1818 81 0.047 11.32

pBonf indicates Bonferroni-corrected p-value, NA: not applicable (module not tested for preservation). Modules were randomly color-labeled.

doi:10.1371/journal.pone.0139352.t002
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4. Prediction analysis of microarrays (PAM)
The gene sets created with PAM in the discovery set all had a low predictive ability for classify-
ing samples in the replication set as cases and controls, with misclassification rates of 40% or
higher. The smallest gene set with a misclassification rate of 40% consisted of 2388 genes. This
gene set did not cluster cases and controls in separate groups in the replication set (Fig 1), with
a sensitivity for detecting SAH cases of 66%, and a specificity of 64%.

Discussion
We found no significantly differentially expressed genes in peripheral blood between patients
with a history of aSAH and controls. We identified only one group of genes with a significant
and preservated case-control difference in co-expression, which can indicate the presence of
coding changes in one or more genes present in that group. However, it remains unclear
whether these genes are biologically relevant. First, we could not ascribe biological meaning
either to this group of genes, or to the most connected genes within this network, the so-called
‘hub’ genes, according to pathway analysis. Specifically, the gene groups were not involved in
pathophysiological processes known to be involved in IA formation and rupture, like vessel
wall degeneration and inflammation.[4, 5] Second, these genes were not present in a list of 69
genes with a previously described association to IA based on GWAS[14–16] and gene expres-
sion studies.[17] In addition, we did not find a set of differentially expressed genes with the
ability to predict disease status.

Previous studies on gene expression in IA mainly investigated gene expression in IA tissue,
and some genes were differentially expressed between IA and control tissue in multiple studies:
BCL2, COL1A2, COL3A1, COL5A2, CXCL12, TIMP4, and TNC.[17] In our study, these genes
were not differentially expressed in blood (S1 Table) and did also not play an important role in
DC. It should be noted that many of the previous IA tissue gene expression studies had limita-
tions, in particular most were small. Moreover, their study designs were heterogeneous. These
factors could limit the number of genes that were differentially expressed in multiple studies.
One relatively large gene expression study in tissue of IA at the middle cerebral artery discov-
ered upregulation of several biological processes in ruptured compared to unruptured IA:
response to turbulent blood flow, chemotaxis, leukocyte migration, oxidative stress, vascular
remodeling, and extracellular matrix degradation.[30] These processes were also not found in
our pathway analysis. The most likely explanation for the discrepancies between the IA tissue
studies and our study findings is that the published genes could be expressed specifically in IA

Table 3. Top 10 hub genes in yellowmodule.

Rank Gene Locus Product / function Disease associations

1 CLCN6 1p36 Voltage-gated chloride channel proteins Blood pressure

2 SAG 2q37 Cellular responses in retina and pineal gland Oguchi disease

3 AOC2 17q21 Copper binding Ocular diseases

4 LILRA6 19q13 Leukocyte immunoglobulin-like receptor -

5 PCDHA5 5q31 Neural cell adhesion proteins -

6 LYPD6 2q23 Disulfide-bonding proteins -

7 LHX6 9q33 Development of neural and lymphoid cells Lung cancer, cervical cancer

8 LOC390531 15q11 Non-functional -

9 CISH 3p21 Regulation of cytokine-signaling Infectious diseases

10 HNMT 2q22 Metabolization of histamine Parkinson’s disease

doi:10.1371/journal.pone.0139352.t003
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tissue and not in blood. Additionally, some of these genes[30] could be specifically involved in
IA rupture and not in IA development.

Our motivation to study gene expression in blood is the higher clinical relevance compared
to IA tissue studies: because blood is accessible and easy to obtain, gene expression differences
present in blood could potentially lead to development of a biomarker.

Recently, two studies on gene expression in blood of aSAH patients have been published.
One study included aSAH patients in the acute phase and found expression differences of
genes related to T lymphocytes, monocytes and neutrophils.[31] This study is not comparable
to our study, in which we explicitly wanted to avoid including patients in the acute phase, since
these acute consequences probably do not tell anything about the pathogenesis of development
and rupture of IA. In a second study, in which gene expression in blood was compared between
30 patients with ruptured and unruptured IA and 15 controls, expression differences were
found for genes coding for matrix metalloproteinases, extracellular matrix and cytoskeleton
proteins and of genes related to apoptosis.[32] However, no correction for multiple testing and
no replication experiments were performed. The timing of blood sampling in relation to aSAH

Fig 1. Predicted SAH probability in subjects from replication set, using 2388 probes selected with prediction analysis of microarrays. This figure
shows the probability of being a SAH case for each subject in the replication set, based on prediction analysis of microarrays (PAM). We used PAM to define
a group of probes in the discovery set with the highest predictive value to identify cases and controls in the replication set. As a result, a group of 2388 probes
was selected, with a relatively high misclassification rate of 40%. The figure shows that this group of probes does not divide cases and controls in two
separate groups.

doi:10.1371/journal.pone.0139352.g001
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(in case of ruptured IA) and to treatment of the IA is not described, thus we cannot tell whether
the differences found are secondary to rupture or treatment, or are related to IA development.

Gene expression profiling has already been proven to characterize disease status in several vas-
cular diseases, including transient ischemic attacks (TIAs)[33] and ischemic stroke.[34] Gene
expression studies in blood have also been performed for abdominal aortic aneurysms (AAA)[35]
and thoracic aortic aneurysms (TAA).[36] In contrast to the present study, these studies did reveal
gene expression differences. In AAA, some disease-specific gene expression differences were
found both in blood and in tissue, while in TAA it was even possible to predict disease state with
gene expression profiles. However, a direct comparison with our study is not straightforward,
because it is not clearly stated for these studies in which stage of the disease the blood samples
were taken (before or after aneurysm rupture, and before or after treatment). Secondary effects of
aneurysm rupture and operative treatment on gene expression are therefore not excluded.

A strength of this study is the fact that we obtained blood samples several years after aSAH.
In this way, we minimized secondary effects of IA rupture on gene expression. To our knowl-
edge, the sample size of this study is the largest compared to previous gene expression studies
in blood of aneurysms and of other cardiovascular diseases.[37] Furthermore, to minimise con-
founding we matched cases and controls for factors including age and lifestyle by including
mainly spouses of aSAH patients as controls, and blood samples were obtained at the same
time and under the same circumstances for all participants. We also adjusted for known risk
factors of IA and aSAH. In this way, we minimized influence of factors not related to the dis-
ease, with a known influence on gene expression.[13]

Our retrospective study design, using previous aSAH patients, could lead to limitations.
First, disease-specific gene expression differences can theoretically be undetectable after IA
treatment. Ideally, we would also have studied patients with unruptured IA who are followed-
up for growth of their IA, using growth as a surrogate risk factor of rupture,[38] and compare
gene expression between IA that grow to those IA that remain stable over time. However, such
a study is difficult to perform given the low availability of such patients. Also, the usage of pre-
vious aSAH patients to study IA pathogenesis can be justified, as IA appears to be a continuous
disease process in the intracranial vessel wall: previous aSAH patients are still at risk of devel-
oping new aneurysms, and of growth of already present unruptured IA.[10]

Second, the study design precludes patients who deceased after aSAH. This selection bias
could theoretically have influenced our results, but it is unlikely that disease-specific gene
expression differences are only detectable in patients with a poor outcome.

In conclusion, this study revealed no structural gene expression differences in blood of pre-
vious aSAH patients compared to controls. Also, gene expression profiles in blood of previous
aSAH patients, as detected by expression arrays, do not seem promising for development of
clinically useful biomarkers. Future studies could aim at detecting changes in gene expression
profiles in patients with yet unruptured IA that grow over time, or at the identification of other
potential disease markers, including microRNAs or using proteomics.

Supporting Information
S1 Fig. Principal component (PC) plot of cases and controls. This figure shows the first two
PCs (two independent variables explaining most of the data variance) from the raw gene
expression dataset, plotted against each other. Cases are depicted in red and controls are
depicted in blue. The nine cases and controls left from the dashed line were identified as outli-
ers, based on visual inspection. The figure further shows that cases and controls do not cluster
in separate groups based on these PCs.
(TIF)
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S2 Fig. Dendrogram and gene clustering of differentially co-expressed genes in the discov-
ery set.We applied hierarchical clustering on a differential co-expression matrix: a matrix of
case control differences in pair-wise correlations between all genes. This is visualized in the
dendrogram above. Each line represents a gene, and the y-axis shows the level of differential
co-expression between genes. Low branches mean high case-control differences in gene corre-
lation. Based on these branches, we created six clusters of differential co-expressed genes (a
black, green, brown, turquoise, yellow, and blue module), using a tree cut height of 0.96.[21]
(TIF)

S3 Fig. Correlation heatmaps of differentially co-expressed gene modules. Correlation heat-
maps of differential co-expressed genes in cases (upper diagonal) compared to controls (lower
diagonal). Positive correlations are shown in red, negative correlations in blue. In the discovery
set (A), the gene correlations in most modules appear to be different between cases and con-
trols. When looking at the same gene correlations in the replication set (B), a different pattern
of correlation differences is visible. The right part of the figure shows that the mean gene
expression level of all modules is low, both in cases and controls.
(TIF)

S1 Table. List of known intracranial aneurysm genes from previous genetic studies, with
differential expression results for each corresponding probe.
(DOCX)

S2 Table. Leukocyte differential counts in cases versus controls.
(DOCX)
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