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Abstract

Vibrational behaviour of symmetric angle-ply layered circular cylindrical shell filled with qui-

escent fluid is presented. The equations of motion of cylindrical shell in terms of stress and

moment resultants are derived from the first order shear deformation theory. Irrotational of

inviscid fluid are expressed as the wave equation. These two equations are coupled. Strain-

displacement relations and stress-strain relations are adopted into the equations of motion

to obtain the differential equations with displacements and rotational functions. A system of

ordinary differential equation is obtained in one variable by assuming the functions in sepa-

rable form. Spline of order three is applied to approximate the displacement and rotational

functions, together with boundary conditions, to get a generalised eigenvalue problem. The

eigenvalue problem is solved for eigen frequency parameter and associate eigenvectors of

spline coefficients. The study of frequency parameters are analysed using the parameters

the thickness ratio, length ratio, angle-ply, properties of material and number of layers under

different boundary conditions.

Introduction

Composite materials are widely used in petroleum, chemical industry etc., due to the high stiff-

ness and strength. Other characteristics of composite materials are resistance to corrosion and

light in weight. The applications of these kinds of materials can be seen in industries like trans-

portation, aircraft, construction, marine and consumer products. Hence, the investigation on

the vibrational behaviour of the structure is carried out in order to determine its natural fre-

quency. The important of finding frequency is to prevent the structure from resonance thus to

improve the life-span of the structure. There are many literature studied the vibrational behav-

iour of the shell structure especially in cylindrical shell itself by considering different theories

and method of solution. Warburton and Higgs [1] used Rayleigh-Ritz method to solve a canti-

lever cylindrical shell by considering Flugge’s shell theory. Using the same method, Song et al.

[2] investigated the free vibration of symmetrically laminated composite cylindrical shell with

arbitrary boundary conditions.
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Among the researchers those who used Finite Element Method (FEM) in their analysis

were Sivadas and Ganesan [3], Lam and Wu [4]. The wave propagation method was applied by

Li [5], Zhang [6] and Iqbal et al. [7]. Lopatin and Morozov [8] solved the problem of a cantile-

ver composite cylindrical shell using Galerkin method to find the fundamental frequencies. In

addition, Haar wavelet method was used by Xie et al. [9] to analyse the free vibration of cylin-

drical shell based on Goldenveizer-Novozhilov shell theory. Meanwhile, Jin et al. [10] applied

First Order Shear Deformation Theory (FSDT) to examine the vibration of functionally graded

cylindrical shell. A spline strip method was adopted in studying the vibration of cross-ply lami-

nated cylindrical shells [11]. Bickley-type spline method was applied to analyse the frequencies

of free vibration of cylindrical shell [12–15]. Besides that, a spline-based differential quadrature

method was used by Javidpoor et al. [16] and Ghasemi [17]. Ferreira et al. [18] used multi-

quadric radial basis function method to determine the natural frequencies of doubly curved

cross-ply composite shells.

Moreover, the structure can also interact with fluid either the structure filled with, partially

with, or submerged. The fluid can be flowing or non-flowing fluid. This type of investigation is

known as fluid structure interaction. The characteristics of fluid itself affect the behaviour of

the structure. Hence, the investigation has to consider both shell and fluid in order to get better

results. Recently, the investigation on fluid structure interaction has get attention among the

researchers.

Finite Element Method (FEM) was applied in the problem free vibration of isotropic, verti-

cal cylindrical shell partially and completely filled with stationary liquid [19]. The shell equa-

tions were constructed using Sanders’ thin shell theory. Selmane and Lakis [20] applied FEM

in solving the vibration of an anisotropic cylindrical shell submerged and subjected simulta-

neously to an internal and external flow by considering Sanders’ thin shell theory. Other litera-

tures applied FEM in their analysis are Kochupillai et al. [21], Kochupillai et al. [22], Toorani

and Lakis [23], Toorani and Lakis [24].

Gunawan et al. [25] conducted a study on cylindrical shells filled with fluid based on

elastic foundation by considering Sanders’ thin shell theory. Krishna and Ganesan [26] investi-

gated the results of free vibration of cylindrical shells filled with fluid. The shell was governed

by first order deformation theory. Lakis et al. [27] analysed the isotropic and anisotropic plates

and shells with and without fluid for linear and nonlinear vibration with the shell equations

were based on Sanders’ shell theory and dynamic pressure of fluid was derived from Bernoul-

li’s equation. Galerkin method was used by Goncalves et al. [28] in solving the nonlinear

dynamic behaviour of cylindrical shells filled with fluid with Donnell’s nonlinear shallow shell

theory.

A study on the vibration of vertical circular cylindrical shell partially filled by an incom-

pressible, compressible, quiescent and inviscid fluid using Rayleigh-Ritz method was analysed

by Amabili [29]. The shell was constrained by simply-supported boundary conditions. In addi-

tion to that, Kwak et al. [30] studied the clamped-free cylindrical shell partially submerged in

fluid using Sanders’ shell theory.

Vibrational analysis of fluid filled double-walled carbon nanotubes using the wave propaga-

tion method was carried out by Natsuki et al. [31] and the shell equations were based on sim-

plified Flügge shell theory. Iqbal et al. [32] applied Love’s thin shell theory to study the

vibration of a Functionally Graded Material (FGM) circular cylindrical shell filled with fluid

and the fluid was an incompressible non-viscous fluid. A study on cylindrical shells filled with

fluid resting on elastic foundations was carried out by Shah et al. [33] using wave propagation

method. The shell was constrained with simply supported at the both ends and the Love’s thin

shell theory was applied to the problem. A nonlinear vibration of cantilevered circular
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cylindrical containing quiescent fluid based on Flügge’s shell theory and the fluid motion was

modelled by linearized potential flow theory was investigated by Paak et al. [34].

A dynamic stiffness method was studied by Tran and Manh [35] to investigate the free

vibration of cross-ply laminated composite circular cylindrical shells filled with fluid partially

and also complete filling with fluid under clamped-free boundary conditions. Reissner-Mind-

lin theory was used for the shell equations. The fluid considered as non-viscous and incom-

pressible. In addition, spline method was applied to solve the free vibration of layered

cylindrical shell filled with fluid using Love’s thin shell theory [36]. Nurul Izyan et al. [37]

applied the spline method in their analysis to determine the frequencies of anti-symmetric

angle-ply laminated composite cylindrical shell filled with fluid. The shells’ equations were for-

mulated based on FSDT.

According to a nonlocal theory, there are two types of models which are structural harden-

ing and softening models. Li et al. [38] and Shen and Li [39] proved that both the hardening

and softening models are correct and they are related to different types of surface effects, i.e.

relaxation or tension of surface atomic lattices. Consequently, the two different models are

caused by the long range attractive and repulsive interactions in pair potentials between atoms,

respectively.

Different approach study is done in order to study the fluid structure interaction. The aim

of this study is to determine the vibrational behaviour of symmetric angle-ply laminated com-

posite cylindrical shell. The quiescent fluid-filled shell is considered. The quiescent fluid

means that the vibration of fluid is depends on the vibration of the shell. Once the shell

vibrates, the fluid will vibrate accordingly. Bickley-type spline is used to approximate the dis-

placements and rotational functions since it gives better accuracy and also uses of lower order

approximation in solving boundary value problem [40]. The shells’ equations are based on

FSDT. Three and five layered shell under clamped-clamped and simply-supported boundary

conditions are studied. The material properties of Kevler-49 Epoxy (KGE) and AS4/3501-6

Graphite/Epoxy (AGE) are used. Parametric studies on shell geometry i.e, length and thickness

of the shells, type of materials, ply orientations, number of layer of the materials, and boundary

conditions on frequencies are studied.

Formulation of the problem

Equations of shell

Fig 1 shows the geometry of the circular cylindrical shell with the shell coordinates defined as

(x,θ,z) where x is along the axial direction, θ is in the circumferential and z is along the normal

direction. The length of the shell is ‘, thickness is h and radius is r. The displacement compo-

nents u,v,w are expressed under the first order shear deformation theory [41] as

uðx; y; z; tÞ ¼ u0ðx; y; tÞ þ zcxðx; y; tÞ;

vðx; y; z; tÞ ¼ v0ðx; y; tÞ þ zcyðx; y; tÞ;

wðx; y; z; tÞ ¼ w0ðx; y; tÞ;
ð1Þ

where u,v,w are the displacements in x,θ,z directions. u0,v0,w0 are mid-plane displacements

and ψx,ψθ are the rotational functions of the normal to the mid-plane with respect to the x-

and θ- axes. Equations of motion for cylindrical shell are formulated using FSDT [42, 43]. The
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equations of cylindrical shell which included fluid are written as

@Nx

@x
þ

1

r
@Nyx

@y
¼ I1

@2u
@t2

;

@Nxy

@x
þ

1

r
@Ny

@y
þ

1

r
Qy ¼ I1

@2v
@t2

;

@Qx

@x
þ

1

r
@Qy

@y
�

1

r
Ny ¼ I1

@2w
@t2
� p;

@Mx

@x
þ

1

r
@Mxy

@y
� Qx ¼ I3

@2cx

@t2
;

@Mxy

@x
þ

1

r
@My

@y
� Qy ¼ I3

@2cy

@t2
:

ð2Þ

Here, p is the fluid pressure. I1 and I3 are the normal and rotary inertia coefficients, given

by [42,43].

ðI1; I3Þ ¼
R
rðkÞð1;z2Þdz; ð3Þ

where ρ(k) is the material density of the k-th layer of the shell.

Fig 1. A geometry and coordinate system of a circular cylindrical shell.

https://doi.org/10.1371/journal.pone.0219089.g001
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Stress and moment resultants are expressed as

ðNx;Ny;Nxy;Qx;QyÞ ¼
R

z
ðsx; sy; txy; txz; tyzÞdz;

ðMx;My;MxyÞ ¼
R

z
ðsx; sy; txyÞzdz:

ð4Þ

Using stress-strain relations and strain-displacement relations of the k-th layer by neglect-

ing the transverse normal strain and stress, the stress and moment resultants are obtained as

follows
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; ð5Þ

and

Qy

Qx

 !

¼ K
A44 A45

A45 A55

 !
cy þ

1

r
@w
@y
�
v0

r

cx þ
@w
@x

0

B
B
@

1

C
C
A: ð6Þ

Here Aij, Bij and Dij are extensional rigidities, bending-stretching coupling rigidities and

bending rigidities, respectively and defined as

Aij ¼
XN� 1

k¼1

QðkÞij ðzk � zk� 1Þ; Bij ¼
1

2

XN� 1

k¼1

QðkÞij ðz2
k � z

2
k� 1Þ;

Dij ¼
1

3

XN� 1

k¼1

QðkÞij ðz3
k � z

3
k� 1Þ; ði; j ¼ 1; 2; 6Þ;

and

Aij ¼ K
XN� 1

k¼1

Qij
ðkÞðzk � zk� 1Þ; ði; j ¼ 4; 5Þ:

Here zk and zk−1 are boundaries of the k-th layer and K is the shear correction factor which

is depends on lamination scheme [44, 45]. Since shell is considered to be a symmetric angle-

ply, therefore, the coefficients A16,A26,A45,D16,D26 and Bij are identically zeroes [13].

The displacements u0, v0, w and shear rotations ψx,ψθ are assumed in the form of

u0ðx; y; tÞ ¼ UðxÞcosnyeiot;

v0ðx; y; tÞ ¼ VðxÞsinnyeiot;

wðx; y; tÞ ¼WðxÞcosnyeiot;

cxðx; y; tÞ ¼ CxðxÞcosnyeiot;

cyðx; y; tÞ ¼ CyðxÞsinnyeiot;

ð7Þ
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in which ω,t and n are the angular frequency, time and circumferential node number

respectively.

Non-dimensional parameters used are as follows

L ¼
‘

r
; a length parameter;

X ¼
x
‘

; a distance coordinate;

R ¼
r
‘

; a radius parameter;

H ¼
h
r

; the thickness parameter;

l ¼ o‘

ffiffiffiffiffiffiffi
I1
A11

r

; a frequency parameter;

dk ¼
hk
h

; a relative layer thickness of k� th layer:

ð8Þ

Substituting Eqs (5) and (6) into Eq (2), then, using Eqs (7) and (8), the differential equa-

tions are obtained in terms of displacement and rotational functions and it can be written in

the matrix form as follows

L11 L12 L13 L14 L15
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A

; ð9Þ

where Lij are differential operators given as follows
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d
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;

L
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dX2
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þ KS14
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þ l
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n
R
d
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;

L
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R
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R
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with

S2 ¼
A12

A11

; S3 ¼
A22

A11

; S7 ¼
D11

‘
2A11

; S8 ¼
D12

‘
2A11

; S9 ¼
D22

‘
2A11

; S10 ¼
A66

A11

;

S12 ¼
D66

‘
2A11

; S13 ¼
A44

A11

; S14 ¼
A55

A11

; P1 ¼
I3
‘

2I1
:

Equation of fluid

The fluid pressure, p is obtained as an explicit expression and coupled to the equations of the

shell through radial displacement. The wave equation is obtained for irrotational flow of an

inviscid fluid undergoing small oscillations in the cylindrical coordinates system (x, θ, r) [46]

as

@2p
@r2
þ

1

r
@p
@r
þ

1

r2

@2p
@y

2
þ
@2p
@x2
¼

@2p
c2@t2

; ð10Þ

where c is the speed sound of the fluid.

The pressure is assumed in the separable form as

pðx; y; r; tÞ ¼ cðxÞcosðnyÞJnðrÞe
iot: ð11Þ

Here Jn is the Bessel function of order n.

The permeability condition on the fluid- shell interface ensures that the fluid remains in

contact with the shell wall and written as

�
1

iorf

@p
@r

�
�
�
�
r¼R

¼
@w
@t

�
�
�
�
r¼R

; ð12Þ

where ρf is the density of the fluid. Eq (12) is solved by using the displacement component in

the normal direction given in the Eq (7) together with the Eq (11), hence, the following relation

is obtained

cðxÞ ¼
o2rf

J 0nðrÞ
WðxÞ: ð13Þ

Then, by applying Eq (13) into Eq (11), the fluid pressure, p is obtained as follows

pðx; y; r; tÞ ¼ � rf
JnðrÞ
J 0nðrÞ

@2w
@t2

: ð14Þ
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Solution procedure

Spline collocation method

The displacement functions U,V,W and rotational functions CX and Cθ are approximated

using cubic splines as

U�ðXÞ ¼
X2

i¼0

aiX
i þ
XN� 1

j¼0

bjðX � XjÞ
3HðX � XjÞ;

V�ðXÞ ¼
X2

i¼0

ciX
i þ
XN� 1

j¼0

djðX � XjÞ
3HðX � XjÞ;

W�ðXÞ ¼
X2

i¼0

eiX
i þ
XN� 1

j¼0

fjðX � XjÞ
3HðX � XjÞ:

CX
�
ðXÞ ¼

X2

i¼0

giX
i þ
XN� 1

j¼0

pjðX � XjÞ
3HðX � XjÞ;

Cy

�
ðXÞ ¼

X2

i¼0

liX
i þ
XN� 1

j¼0

qjðX � XjÞ
3HðX � XjÞ: ð15Þ

Here, H(X−Xj) is the Heaviside step function and N is the number of intervals in the range

of X2[0,1] is divided. These splines are lower order approximation and an effective method

since it has fast convergence and high accuracy. The points of division X ¼ Xs ¼ s
N ; ðs ¼

0; 1; 2; . . .NÞ are chosen as the knots of the splines as well as the collocation points. Assuming

that the differential equations given by Eq (9) are satisfied by these splines given in Eq (15) at

the knots, a set of 5N+5 homogeneous equations into 5N+15 unknown spline coefficients ai,bj,
ci,dj,ei,fj,gi,pj,li,qj (i = 0,1,2;j = 0,1,2,. . .,N−1) is obtained.

Boundary conditions

Two types of boundary conditions are used to analyse the problem

i. Clamped-Clamped (C-C)(both the ends are clamped);

U ¼ 0;V ¼ 0;W ¼ 0;CX ¼ 0;Cy ¼ 0 at X ¼ 0 and X ¼ 1:

i. Simply supported–Simply supported (S–S)(both the ends are simply supported);

V ¼ 0;W ¼ 0;Cy ¼ 0;Nx ¼ 0;Mx ¼ 0 at X ¼ 0 and X ¼ 1:

The system will get ten more equations on spline coefficients by imposing any one of the

boundary conditions. Combining these ten equations with the earlier 5N+5 homogeneous

equations, one can get 5N+15 equations in the same number unknown coefficients. This can
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be written as

½P�fqg ¼ l2
½Q�fqg: ð16Þ

Here, [P] and [Q] are the square matrices of order (5N+15)×(5N+15). {q} is the column

matrix of the spline coefficients of order (5N+15)×1 and λ is the frequency parameter.

Results and discussion

Convergence and comparative studies

The convergence study has been made in order to determine the number of iteration. This is

done by fixing the circumferential node number, thickness ratio, length ratio, number of layers

and orientation of the material under C-C and S-S boundary conditions. The number of

knots, N is taken as 16 since the change in percentage for next following values of N is 0.29%.

In the case of comparison studies, none of literature has been done on symmetric angle-ply

shell with consideration of fluid. There are studies on symmetric angle-ply shells but limited to

empty shells only [4, 13]. Hence, an investigation on the empty shell as well as the fluid-filled

shells with respect to the length parameter is carried out as shown in Fig 2. The effects of the

fluid on angular frequency ωm(m = 1,2,3) of three layered symmetric angle-ply shells using the

materials Kevler-49 epoxy (KGE) and AS4/3501-6 Graphite/epoxy (AGE) are arranged in the

order of KGE-AGE-KGE with the angle orientations at (30˚/0˚/30˚) are presented. The param-

eters n = 2,H = 0.02 are fixed. The shell is clamped at both the ends. According to Fig 2, the

Fig 2. Effect of length parameter on the angular frequency of three layered symmetric angle-ply shells under C-C boundary conditions. Layer materials:

KGE-AGE-KGE.

https://doi.org/10.1371/journal.pone.0219089.g002
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frequency of fluid-filled shell is lower than the frequency of the empty shell. This result is

expected as the fluid in the shell gives an added mass to the shell.

Analysis

Three and five layered symmetric angle-ply circular cylindrical shells with fluid are analysed.

The materials which are KGE and AGE are used [47]. The shear correction factor K = 5/6 is

fixed throughout this analysis [44] and first three frequency parameters are studied for all the

cases.

Fig 3 shows the variation of angular frequencies ωm(m = 1,2,3) on length parameter is stud-

ied for three layered shell with the combination of the materials KGE and AGE with C-C

boundary conditions. The parameters n = 4 and H = 0.015 are fixed and the ply-angles are

arranged as 30˚/0˚/30˚, 45˚/0˚/45˚ and 60˚/0˚/60˚ using the materials AGE and KGE and

ordered as KGE-AGE-KGE. Since the frequency parameter λm is explicitly a function of length

of the cylinder, hence when studying the influence of the length of the cylinder on its vibra-

tional behaviour, the angular frequency ωm(m = 1,2,3) is considered instead of λm. The rela-

tionship between the frequency and the length of the shell can be seen as in [48]. The natural

frequency or equivalent rigidity increases with increasing the non-dimensional scale parame-

ter [49].

From the analysis, it can be seen that the frequency decreases as the length parameter

increases and the frequency is higher for higher modes. The frequency decreases fast at L rang-

ing from 0.5 to 0.75. Later, it decreases slowly. It also can be seen that the frequency form = 1

of Fig 3(A) is the lowest compared to Fig 3(B) and 3(C). As form = 2,3, the values of the fre-

quencies are the lowest for Fig 3(C), followed by Fig 3(B) and 3(A). Further, investigation on

S-S boundary conditions is presented in Fig 4 by fixing the parameters as in Fig 3. The trend

shown by the graph of Fig 4 is similar to Fig 3. The results show that the frequencies obtained

by S-S boundary conditions are lower than C-C boundary conditions.

Fig 3. Effect of length parameter on the angular frequency of three layered symmetric angle-ply shells under C-C boundary conditions. Layer materials:

KGE-AGE-KGE.

https://doi.org/10.1371/journal.pone.0219089.g003
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Fig 5 corresponds to the effect of length parameter on angular frequency ωm(m = 1,2,3) of

five layered angle-ply arranged materials in the order KGE-AGE-KGE-AGE-KGE with ply-

angles of 45˚/30˚/0˚/30˚/45˚, 30˚/45˚/0˚/45˚/30˚ and 60˚/30˚/0˚/30˚/60˚, respectively for C-C

conditions. The values of n = 4 andH = 0.02 is fixed. The figure shows that the frequency

decreases as the length parameter increases. The investigation is continued by applying S-S

boundary conditions using the same parameters as shown in Fig 6. The trend of graph is

Fig 4. Effect of length parameter on the angular frequency of three layered symmetric angle-ply shells under S-S boundary conditions. Layer materials:

KGE-AGE-KGE.

https://doi.org/10.1371/journal.pone.0219089.g004

Fig 5. Effect of the length parameter on the angular frequency of five layered symmetric angle-ply shells under C-C boundary conditions. Layer materials:

KGE-AGE-KGE-AGE-KGE.

https://doi.org/10.1371/journal.pone.0219089.g005
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similar to the Fig 5. The values of ωm(m = 1,2,3) in Fig 6 are lower than the value of

ωm(m = 1,2,3) in Fig 5.

Fig 7 shows the effect of thickness parameter on frequencies λm(m = 1,2,3) by considering

three layered shells arranged in KGE-AGE-KGE materials with n = 4 and L = 1.5 are fixed

under C-C boundary conditions. The shell is arranged in the order of 30˚/0˚/30˚, 45˚/0˚/45˚

Fig 6. Effect of the length parameter on the angular frequency of five layered symmetric angle-ply shells under S-S boundary conditions. Layer materials:

KGE-AGE-KGE-AGE-KGE.

https://doi.org/10.1371/journal.pone.0219089.g006

Fig 7. Effect of thickness parameter on the frequency for three layered symmetric angle-ply shells under C-C boundary conditions. Layer materials:

KGE-AGE-KGE.

https://doi.org/10.1371/journal.pone.0219089.g007
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and 60˚/0˚/60˚. From the analysis, it can be seen clearly that the frequency rises as the thick-

ness parameter rises. The frequencies are greater for larger modes. The values of λm(m = 1,2,3)

in Fig 7(A) are the lowest compared to Fig 7(B) and 7(C). In addition, Fig 8 presents the varia-

tion of frequencies λm(m = 1,2,3) under S-S boundary conditions. Results show that the values

of λm(m = 1,2,3) in Fig 8 are lower than the values of λm(m = 1,2,3) in Fig 7.

Fig 9 shows the variation of λm(m = 1,2,3) with respect to the thickness parameter for five

layered angle-ply by fixing n = 4 and L = 1 for C-C boundary conditions. The materials are

arranged as KGE-AGE-KGE-AGE-KGE with angle orientation at 45˚/30˚/0˚/30˚/45˚, 30˚/45˚/

Fig 8. Effect of thickness parameter on frequency for three layered symmetric angle-ply shells under S-S boundary conditions. Layer materials: KGE-AGE-KGE.

https://doi.org/10.1371/journal.pone.0219089.g008

Fig 9. Effect of thickness parameter on frequency for five layered symmetric angle-ply shells under C-C boundary conditions. Layer materials:

KGE-AGE-KGE-AGE-KGE.

https://doi.org/10.1371/journal.pone.0219089.g009
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Fig 10. Effect of thickness parameter on frequency for five layered symmetric angle-ply shells under S-S boundary conditions. Layer materials:

KGE-AGE-KGE-AGE-KGE.

https://doi.org/10.1371/journal.pone.0219089.g010

Fig 11. Effect of length parameter on frequency for three and five layered symmetric angle-ply shells under C-C boundary conditions.

https://doi.org/10.1371/journal.pone.0219089.g011
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0˚/45˚/30˚ and 60˚/30˚/0˚/30˚/60˚. Clearly, the frequency is higher for higher values of thick-

ness parameter. Fig 9(A) has the lowest frequency compared to Fig 9(B) and 9(C). Applying

the same parameters as in Fig 9, investigation on S-S boundary conditions is carried out as

depicted in Fig 10. It can be seen that Fig 10(A) has the lowest frequency, followed by Fig 10

(B) and 10(C). It can be observed that the values of λm(m = 1,2,3) under S-S boundary condi-

tions are lower compared to the values of λm(m = 1,2,3) under C-C boundary conditions.

By fixing n = 3, the effects of length parameter for both three and five layered shells on fre-

quencies under C-C boundary conditions are investigated as depicted in Fig 11. The materials

are arranged as KGE-AGE-KGE with angle orientation at 45˚/0˚/45˚ as shown in Fig 11(A).

Meanwhile, Fig 11(B) used KGE-AGE-KGE-AGE-KGE materials with angle orientation at

30˚/45˚/0˚/45/30˚. From Fig 11, it can be seen that the frequencies decrease as the length

parameter increases. It decreases fast in the range 0.5< ωm< 0.75. Also, the frequencies of

five layered shell are higher than the frequencies of three layered shell.

Next, the frequencies with respect to thickness parameter are analysed as shown in Fig 12.

The frequencies of five layered shell in Fig 12(B) are higher than the frequencies of three lay-

ered shell in Fig 12(A).

Conclusion

The vibrational behaviour of layered cylindrical shell with symmetric angle-ply is investigated

using spline method. The shell contained a quiescent fluid. The equations of motion of the

Fig 12. Effect of thickness parameter on frequency for three and five layered symmetric angle-ply shells under C-C boundary conditions.

https://doi.org/10.1371/journal.pone.0219089.g012
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shell are based on first order shear deformation theory. Investigations on empty and fluid-

filled shells show that the frequency value reduces as the fluid term is included. This is due to

the fluid in the shell that provides added mass to the shell.

Results show that by increasing the length of the shell, the frequency decreases. In contrast,

the frequency increases as the shell thickness increases. Meanwhile, frequency of C-C bound-

ary conditions is higher than the frequency of S-S boundary conditions. It can be concluded

that the geometric parameters, material properties, angle orientations, number of layers and

boundary conditions significantly affects the frequency of the shell.
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