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ABSTRACT

The success of chimeric antigen receptor (CAR) T cells in blood cancers has intensified efforts to develop CAR T therapies for solid cancers.
In the solid tumor microenvironment, CAR T cell trafficking and suppression of cytotoxic killing represent limiting factors for therapeutic
efficacy. Here, we present a microwell platform to study CAR T cell interactions with 3D breast tumor spheroids and determine predictors of
anti-tumor CAR T cell function. To precisely control antigen sensing, we utilized a switchable adaptor CAR system that covalently attaches
to co-administered antibody adaptors and mediates antigen recognition. Following the addition of an anti-HER2 adaptor antibody, primary
human CAR T cells exhibited higher infiltration, clustering, and secretion of effector cytokines. By tracking CAR T cell killing in individual
spheroids, we showed the suppressive effects of spheroid size and identified the initial CAR T cell to spheroid area ratio as a predictor of cyto-
toxicity. We demonstrate that larger spheroids exhibit higher hypoxia levels and are infiltrated by CAR T cells with a suppressed activation
state, characterized by reduced expression of IFN-c, TNF-a, and granzyme B. Spatiotemporal analysis revealed lower CAR T cell numbers
and cytotoxicity in the spheroid core compared to the periphery. Finally, increasing CAR T cell seeding density resulted in higher CAR T cell
infiltration and cancer cell elimination in the spheroid core. Our findings provide new quantitative insight into CAR T cell function within
3D cancer spheroids. Given its miniaturized nature and live imaging capabilities, our microfabricated system holds promise for screening cel-
lular immunotherapies.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0207941

INTRODUCTION

Chimeric antigen receptors (CARs) have emerged as a promising
approach to develop cell-based immunotherapies.1–3 CARs, composed
of an antigen-specific antibody single chain variable fragment fused to
T cell signaling domains, have been used to engineer T cells that are
activated upon binding to a target antigen. CAR T cell-based immuno-
therapies have been FDA-approved for acute lymphoblastic leukemia
and multiple myeloma.4–7 Developing CAR T cells that recognize tar-
gets enriched in solid tumors, such as human epidermal growth factor
receptor 2 (HER2), has been a major research focus, yet the clinical tri-
als have not been successful to date.7,8 The antitumor function of CAR
T cells in solid tumors relies on efficient trafficking within the tumor

microenvironment and sustained cytotoxic activity.9–12 Since these
processes involve dynamic cell–cell interactions, a comprehensive pro-
filing of tumor–CAR T cell crosstalk and antigen-specific cytotoxicity
is crucial to understanding mechanisms that enhance CAR T cell ther-
apeutic efficacy.

Preclinical testing of CAR T cell cytotoxicity in vivo has provided
valuable insight into identifying potent CAR T cell therapies;13,14 how-
ever, these models are costly and pose challenges for investigating
dynamic cell–cell interactions. While intravital imaging allows for
monitoring immune cell trafficking and cytotoxicity, its duration is
limited to a few hours, and the control of the tumor microenvironment
is challenging.15,16 Several in vitro studies have employed cocultures of
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CAR T cells with tumor cells to measure CAR T cell function by color-
imetric cytotoxicity assays.17–21 While these assays offered a rapid and
straightforward evaluation of CAR T cell function, they typically pro-
vide a single time-point measurement. Assays using micropatterning
of tumor cell islands allowed for spatial segregation of each cell type
and are compatible with time-lapse imaging.22 However, as the tumor
cells were plated on a two-dimensional surface, it is challenging to rec-
reate the three-dimensional architecture of the solid tumor
microenvironment.

Spheroids serve as more physiologically relevant 3D in vitromod-
els, allowing assessment of drug sensitivity,23–26 hypoxic gradients,27

and tumor–immune cell signaling.28–30 To model CAR T cell–cancer
spheroid interactions, previous studies have used ultra-low adhesion
well plates17,31 or hanging drop assays.32–34 These methods are simple,
requiring no special equipment, but they are labor-intensive and pose
challenges in obtaining high-resolution images for the dynamic profil-
ing of cell–cell interactions.35,36 Microfabrication technologies present
a promising approach to control and monitor T cell interactions with
cancer spheroids. For example, microfluidic devices seeded with T cell
receptor-engineered T cells and cancer spheroids revealed differences
in T cell migratory behavior and cytotoxic efficiency between 2D and
3D in vitro environments.37 Another microfluidic study demonstrated
how enhanced vascularization of cancer spheroids is critical for CAR T
cell delivery and cytotoxic function.38 Furthermore, a microfluidic plat-
form has previously shown the generation of cancer spheroids with
co-encapsulation of stromal cells to test combination immunothera-
pies with CAR T cells.39 Despite these advances, the spatiotemporal
patterns of CAR T cell infiltration and cytotoxicity following sensing
of a target antigen, as well as the effects of different spheroid sizes on
CAR T cell anti-tumor function remain poorly understood.

In this study, we developed a microwell-based assay to monitor
the dynamic processes of CAR T cell infiltration and cytotoxicity in
3D cancer spheroids. To evaluate the antigen-specific antitumor activ-
ity of CAR T cells, we utilized a switchable adaptor CAR system,
SNAP-CAR, which mediates tumor antigen recognition through the
covalent attachment of a co-administered antibody adaptor bearing a
benzylguanine motif.40 This adaptor system allows for universal target-
ing of antigens and functional profiling within the same batch of
engineered CAR T cells.41–51 Specifically, we assessed CAR T cell cyto-
toxicity against HER2þ breast cancer spheroids in the presence or
absence of an adaptor antibody that recognizes the HER2 antigen,
Herceptin.52 Through the fabrication of thin polydimethylsiloxane-
based microwells using spin coating, we were able to perform high-
resolution, live confocal imaging. Our microwell array facilitated
monitoring of CAR T cell clustering and cytotoxicity in individual
spheroids over time and led to the identification of the initial CAR T
cell to spheroid area ratio as a predictor of cytotoxicity efficiency.
Using a range of spheroid sizes and effector to target ratios, we demon-
strated the suppressive mechanism of larger spheroids on CAR T cell
cytotoxicity, activation state, and secretion of effector cytokines and
proteases. Additionally, the spatiotemporal analysis of CAR T cell
functions demonstrated distinct patterns of CAR T cell-mediated
killing in the spheroid core compared to the periphery. These results
demonstrate the utility of the microwell array platform for elucidating
dynamic interactions of CAR T cells with 3D cancer spheroids follow-
ing antigen sensing that promotes CAR T cell clustering and elimina-
tion of HER2þ breast cancer cells. Finally, our studies on CAR T cell

function within the spheroid core have important implications for the
design of cell-based immunotherapies to promote immune cell traf-
ficking in solid tumors.

RESULTS
Formation of 3D spheroids using HER21 breast cancer
cells in microwell arrays

We developed an array of microwells with controllable size to
form 3D cancer spheroids under conditions that allowed high-
resolution imaging. Microwells were fabricated using polydimethylsi-
loxane (PDMS) patterned onto an SU-8 silicon wafer using spin coat-
ing to create devices with �270lm thickness that are compatible with
high numerical aperture objectives [Figs. 1(a) and 1(c)]. The micro-
wells were bonded onto a 24-well glass-bottom plate to enable stable
long-term live cell microscopy and minimize the evaporation of the
cell culture medium. Coating of microwell surfaces with a pluronic
solution prevented cell adhesion and promoted cell–cell clustering
under suspension culture. We found that HER2þ breast cancer cell
lines BT474 and EFM192A could efficiently form spheroids in our
microwell array [Figs. 1(c) and S1]. As expected, spheroid diameter
increased for microwells with larger side lengths [Figs. 1(d) and 1(e)
and S1(a) and S1(b)]. We found that microwells with a side length of
50lm included a spheroid that occupied the whole microwell area
[Figs. 1(f) and S1(c)]. Similarly, the majority of the microwell area was
occupied with the spheroid for a side length of 100lm. Finally, for
microwells with a side length of 200lm, there was greater than 50%–
75% free surface area on the microwell, where another cell type could
be introduced to monitor dynamic cell–cell interactions [Figs. 1(f) and
S1(c)].

CAR T cell sensing of HER2 on cancer cells stimulates
cytotoxicity and promotes CAR T cell infiltration within
3D cancer spheroids

To study antigen-specific CAR T cell function, we seeded CAR T
cells in the microwells (200� 200lm) with HER2þ breast cancer
spheroids that were previously formed [Fig. 2(a)]. We utilized the
SNAP-CAR “universal” adaptor CAR system, for which the SNAPtag
protein takes the place of the antigen binding region and, instead of
directly binding to an antigen on a cancer cell, covalently attaches to a
benzylguanine (BG)-conjugated antibody.40 Specifically, we tested the
HER2-specific antibody adaptor, BG-Herceptin.52 This adaptor anti-
body binds to HER2þ cancer cells via the variable region of the anti-
body, while the BG motif reacts with the SNAPtag fusing it to the CAR
T cells [Fig. 2(b)]. To evaluate the performance of the adaptor-directed
CAR T cells, we analyzed the overlap of a dead cell marker [cyan,
Fig. 2(c)] with a cancer cell-specific marker [red, Figs. 2(c) and S2].
We found higher cancer cell death for both BT474 spheroids and
EFM192A spheroids in the presence of the BG-Herceptin adaptor
compared to control cocultures with no adaptor. Specifically, 62% of
the cancer spheroid area colocalized with dead cell staining for BT474
spheroids (average value across all spheroids) treated with BG-
Herceptin compared to 25% in the untreated control (p< 0.0001), and
a similar response was observed for EFM192A spheroids with 46%
and 17% (p< 0.0001), respectively [Figs. 2(d) and S3]. To examine
CAR T cell cytotoxicity within a 3D matrix, we embedded BT474
spheroids within a collagen type I matrix and seeded CAR T cells out-
side the matrix. We found that treatment with BG-Herceptin increased
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CAR T cell cytotoxicity in BT474 spheroids embedded in the 3D
matrix compared to the no BG-Herceptin condition (Fig. S4). Finally,
we tested the cytotoxic efficacy of our universal CAR system using the
T47D breast cancer cell line that has been previously shown to express
folate receptor a (FRa).53 In agreement with our results using BG-
Herceptin, we found that CAR T cell-mediated cytotoxicity in T47D
cancer spheroids was significantly higher following treatment with a
BG-conjugated folate receptor a antibody (BG-mirvetuximab54) com-
pared to the control without BG-mirvetuximab treatment (Fig. S5).

Next, we used live cell confocal imaging to monitor the dynamic
interactions of CAR T cells with BT474 cancer spheroids under both
baseline (�BG-Herceptin) and antigen-sensing (þBG-Herceptin) con-
ditions [Figs. 3(a) and 3(b)]. We found that following HER2-sensing,

the fraction of CAR T cells that interacted with cancer spheroids
increased over time, with �73% of the total CAR T cells interacting
with cancer spheroids after 12h [Fig. 3(c)]. Under baseline conditions
in the absence of BG-Herceptin, only �37% of the total CAR T cells
interacted with cancer spheroids after 12 h [Fig. 3(c)]. Time-lapse
imaging at a focal plane that captured the spheroid core, showed pro-
gressive infiltration of CAR T cells when treated with BG-Herceptin,
while CAR T cells remained at the periphery of spheroids in the
absence of BG-Herceptin treatment [Figs. 3(a) and 3(b)]. To character-
ize the spatial patterns of CAR T cell trafficking within breast cancer
spheroids, we divided each spheroid into three zones as a function of
radius: (a) the spheroid periphery (outer zone) (b) the intermediate
zone, and (c) the spheroid core (inner zone) [Fig. 3(d)]. We found that

FIG. 1. Microwell array platform to form and immobilize HER2þ breast cancer spheroids. (a) Schematics of PDMS microwell fabrication on SU-8 silicon wafer. (b) Bonding of
PDMS microwell array on glass-bottom platform and cell seeding to form cancer spheroids. (c) Time-lapse images showing the spheroid formation of BT474-H2BRFP cells in
microwells over 72 h. Scale bars, 100 lm. (d) Spheroid formation of BT474 cells in microwells with varying side length (50, 100, and 200 lm). (e) Quantification of the diameter
of BT474 spheroids formed in 50, 100, and 200 lm microwells (N¼ 392, 174, and 119 spheroids, respectively). (f) Quantification of the percentage of microwell area occupied
by BT474 spheroids in microwells with different side lengths (50, 100, and 200 lm). Each dot is one spheroid ����p< 0.0001 (one-way ANOVA analysis).
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under baseline conditions (�BG-Herceptin), most of the CAR T cells
(�90%) remained at the spheroid periphery and there was no signifi-
cant change in the CAR T cell population within the intermediate
zone or spheroid core over time [Fig. 3(e)]. However, following treat-
ment with BG-Herceptin, the distribution of CAR T cells within the
spheroid changed over time [Fig. 3(f)]. Notably, 24h following antigen
sensing, a similar population of CAR T cells were present in the
periphery (44%) and intermediate (39%) zones, with the lowest popu-
lation being in the spheroid core (17%) [Fig. 3(f)].

Given previous reports on CAR T cell clustering in two-
dimensional assays,22 we assessed the clustering patterns of CAR T
cells that had infiltrated within the spheroids and the impact of anti-
gen sensing. Infiltrated CAR T cells within cancer spheroids were
classified as single cells [blue in Fig. 4(a)] or clusters [white in
Fig. 4(a)]. We found that following 24 h of HER2-sensing (þBG-
Herceptin), 13% of infiltrated CAR T cells formed clusters, while
only 0.5% of CAR T cells formed clusters under baseline conditions

(�BG-Herceptin) [Fig. 4(b)]. Analysis of the CAR T cell cluster area
within cancer spheroids over time showed a rapid increase following
treatment with BG-Herceptin [Fig. 4(c)]. Taken together, these
results show that sensing of the HER2 antigen promotes CAR T cell-
mediated killing of breast cancer cells and stimulates CAR T cell infil-
tration and cluster formation within cancer spheroids.

Dynamic profiling at the individual spheroid level
uncovers predictors of CAR T cell-mediated cytotoxic-
ity with larger spheroid sizes limiting anti-tumor CAR T
cell function

Next, we characterized the cytotoxic activity kinetics of CAR T
cells that infiltrated within cancer spheroids. Consistent with our end
point results, we found that BT474 cancer spheroids treated with the
BG-Herceptin adaptor exhibited higher levels of cancer cell death for
all timepoints compared to the no adaptor condition, with killing

FIG. 2. CAR T cell-mediated cytotoxicity in HER2þ breast cancer spheroids. (a) Setup of CAR T cell and cancer spheroid coculture. (b) Schematics of SNAP-CAR T cells interacting
with BG-conjugated antibody adaptor to recognize HER2 antigen on cancer cells. (c) Images showing CAR T cell interactions with BT474 cancer spheroids6BG-Herceptin adaptor
at 0 and 48 h. Red: BT474-H2BRFP, green: CMFDA dye-stained CAR T cell, and cyan: Sytox deep red cell death dye. Scale bars, 100lm. (d) Quantification of cytotoxicity levels,
calculated as the overlap area between dead cell markers (Cyan) and cancer cells (RFP) divided by the total RFP area in BT474 cancer spheroids at 48 h. (N¼ 89 spheroids for
–BG-Herceptin and N¼ 145 spheroids for þBG-Herceptin. Results are representative of three biological replicates.) ����p< 0.0001 (unpaired t-test).
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initiated 10h following HER2 sensing [Figs. 5(a) and 5(b)].
Specifically, under treatment with BG-Herceptin, CAR T cells showed
an increased rate of antitumor cytotoxicity over time (1.36% of the
tumor cell area killed per hour between 10 and 48 h), compared to the
baseline cytotoxicity in the absence of antigen sensing (0.53% of the
tumor cell area killed per hour between 10 and 48 h. p< 0.0001) [Figs.
5(b) and S6]. Furthermore, this antigen-specific CAR T cell-mediated
death was significantly higher than the cancer spheroid-only control
that was treated with BG-Herceptin (21.7 fold, p< 0.0001) [Fig. 5(b)].

We also evaluated CAR T cell cytotoxic killing at the individual
spheroid level. There was significant heterogeneity in the cytotoxic effi-
cacy with a range from 10% to 99% of the tumor cell area that was pos-
itive for dead cell markers at 48 h [Fig. 5(c)]. Furthermore, the
temporal evolution patterns across spheroids were heterogeneous
[Fig. 5(c)]. To identify factors that drive these heterogeneous cytotoxic
outcomes, we first compared the microwells with the highest (top
quartile with 93%6 4% of the tumor cell area overlapping with dead
cell markers) and lowest cytotoxicity [bottom quartile with 26%6 10%
of the tumor cell area overlapping with dead cell markers Fig. 5(d)].
We found that the top quartile of microwells with high cytotoxicity
exhibited a higher number of initial CAR T cells compared to the bot-
tom quartile [Fig. 5(e)]. Furthermore, the initial spheroid diameter was
significantly larger in the bottom quartile microwells, indicating that

cancer cells in larger spheroids are less effectively killed [Fig. 5(f)]. To
account for both parameters, we calculated the initial ratio between
CAR T cell and spheroid area, which also effectively discriminated
between the top quartile of microwells with high cytotoxicity com-
pared to the bottom quartile of microwells with low cytotoxicity [CAR
T cell:spheroid area ratio was 1.336 0.5 for the top vs 0.576 0.48 for
the bottom quartiles, p< 0.0001, Fig. 5(g)]. This relationship was also
supported by evaluating the initial CAR T cell:spheroid area ratio and
cytotoxicity outcomes across all spheroids (Pearson correlation coeffi-
cient r¼ 0.57, p< 0.001) [Fig. 5(h)]. We also found a positive correla-
tion between a high initial CAR T cell:spheroid area ratio and high
cytotoxicity in the EFM192A breast cancer spheroids (Fig. S7).

To systematically evaluate the effect of spheroid size on CAR T
cell cytotoxicity, we seeded BT474 cancer cells at an increasing cell
density (0.05� 1066, 0.2� 106, and 0.8� 106 cells/ml) in microwells.
For these seeding densities, we found that mean spheroid diameters
ranged from 50 to 200lm [Fig. 5(i)]. A fixed number of CAR T cells
(0.2� 106 cells/ml) was seeded for each cancer cell density resulting in
effector to target (E:T) ratios in the range of 4:1, 1:1, and 1:4.
Compared to the larger BT474 spheroids (0.8� 106 cells/ml), we
found that smaller spheroids (0.05� 106 cells/ml) exhibited a twofold
higher mean cytotoxicity with values increasing from 43%6 17% to
86%6 15% [Figs. 5(j) and 5(k)]. Next, we used ELISA to quantify the

FIG. 3. Sensing of HER2 on breast cancer cells by CAR T cells promotes CAR T cell infiltration within cancer spheroids. (a) and (b) Time-lapse confocal fluorescence imaging
of y–z (side view) and x–y (top view) planes of CAR T cell-BT474 spheroid cocultures (a) in the absence and (b) presence of BG-Herceptin (HER2 sensing). Red: BT474 H2B-
RFP and green: CMFDA dye-stained CAR T cells. The x–y plane images are captured at z¼þ25 lm from microwell bottom surface. Scale bars, 100 lm. (c) Sensing of
HER2 increases the percentage of CAR T cells interacting with cancer spheroids. The percentage of interacting CAR T cells was calculated as the GFP area (CAR T cells) over-
lapping with RFP area (cancer cells) normalized by the total GFP area within a microwell. Plots represent mean 6 SD. N¼ 145 microwells (þBG-Herceptin) and N¼ 91
microwells (�BG-Herceptin). ����p< 0.0001 (unpaired t-test analysis). (d) Spatial analysis of CAR T cell infiltration in cancer spheroids divided in three zones as a function of
radial position. To define the periphery and intermediate zones, we set the difference between the inner and outer radii at 20 lm for each zone, while the core occupied the
remaining area of each spheroid. (e) and (f) Spatial distribution of infiltrated CAR T cells over time (e) in the absence of BG-Herceptin and (f) in the presence of BG-Herceptin.
Plots represent mean6 SD. N¼ 145 microwells (þBG-Herceptin) and N¼ 91 microwells (�BG-Herceptin). Results are representative of three biological replicates.

APL Bioengineering ARTICLE pubs.aip.org/aip/apb

APL Bioeng. 8, 036105 (2024); doi: 10.1063/5.0207941 8, 036105-5

VC Author(s) 2024

pubs.aip.org/aip/apb


concentration of effector cytokines IFN-c and TNF-a in culture
medium from these microwells with the range of spheroid sizes. We
found that IFN-c and TNF-a secretion levels were significantly lower
for the larger BT474 spheroids (0.8� 106 cells/ml) compared to the
smaller BT474 spheroids (0.05 or 0.2� 106 cells/ml) [Figs. S8(a) and
S8(b)]. As expected, IFN-c and TNF-a were only detectable in the
presence of BG-Herceptin (indicative of HER2 antigen sensing) [Figs.
S8(c) and S8(d)].

To further evaluate the effects of spheroid size on CAR T cell
anti-tumor function, we characterized the expression of the granzyme
B effector protease in CAR T cells interacting with spheroids of differ-
ent diameters [Figs. S8(e) and S8(f)]. Consistent with cytotoxicity and
the TNF-a/IFN-c cytokine findings, we found a higher expression of
granzyme B in CAR T cells interacting with smaller spheroids com-
pared to CAR T cells interacting with larger spheroids [Figs. S8(e) and
S8(f)]. In addition, we assessed CAR T cell activation using immuno-
fluorescence analysis for CD62L. CD62L is downregulated following T
cell activation.55 A stronger activation state was indicated by the lower
intensity of CD62L in smaller BT474 spheroids compared to larger
spheroids [Figs. S8(g) and S8(h)]. Finally, by employing an imaging-
based hypoxia sensor, we showed that hypoxia levels increased with
cancer spheroid diameter (Fig. S9).

Spatiotemporal analysis of CAR T cell function within
the cancer spheroid periphery and core for a fixed
cancer spheroid size

Next, we examined the effects of different E:T ratios on anti-
tumor CAR T cell function for a fixed cancer spheroid size. We seeded
an increasing number of CAR T cells (0.05� 106, 0.2� 106, 0.8� 106

cells/ml) in microwells with BT474 spheroids formed at a seeding den-
sity of 0.2� 106 cells/ml and a spheroid diameter �120lm. Under
these conditions, E:T ratios ranged from 1:4 to 4:1 for a fixed cancer
cell number. Microwells seeded with a higher number of CAR T cells
(4:1 E:T) exhibited a threefold higher mean cytotoxic efficiency (73%
vs 25%) compared to those seeded with a smaller number of CAR T
cells (1:4 E:T) [Fig. 6(a)]. As expected, we found that IFN-c and TNF-
a secretion levels increased with a higher density of CAR T cells [Figs.
6(b) and 6(c)].

In addition to these global analyses, we investigated the spatial pat-
terns of cytotoxic CAR T cell activity within individual BT474 spheroids
(BT474 at 0.2� 106 cells/ml). In microwells seeded with high CAR T
cell density (0.8� 106 cells/ml), we found a higher number of CAR T
cells within the spheroid periphery for both treatment with BG-
Herceptin and the baseline conditions [Figs. 6(d) and 6(e)]. However,
CAR T cell recruitment within the spheroid core increased only when
BG-Herceptin was added to facilitate sensing of the HER2 antigen
[Fig. 6(f)]. Tracking of individual CAR T cells within cancer spheroids
using live confocal microscopy revealed increased CAR T cell migration
speed within the spheroid core compared to the periphery (Fig. S10).

Analysis of CAR T cell-mediated cytotoxicity in the spheroid core
compared to the periphery revealed that in the spheroid periphery can-
cer killing was observed to begin at 10h, while killing in the spheroid
core was delayed to 20h [Figs. 6(g) and 6(h)]. At the higher CAR T cell
seeding density (0.8� 106 cells/ml), under BG-Herceptin treatment, the
killing rates at the periphery and core were comparable [Figs. 6(g) and
6(h)]. However, at a lower CAR T cell seeding density (0.2� 106 cells/
ml), the killing rate at the periphery was higher than the killing rate at
the core. Furthermore, consistent with our analysis of cytotoxicity

FIG. 4. CAR T cell clustering within breast cancer spheroids depends on HER2 sensing. (a) Image analysis of CAR T cell clustering in cancer spheroids at z¼þ25 lm focal
plane in the absence and presence of BG-Herceptin (HER2 sensing). Images in the top row are fluorescence images and images in the bottom row are segmentations based
on cancer spheroid area (red), single CAR T cell area (blue), CAR T cell cluster area (green), and CAR T cell cluster area overlapped with cancer spheroid area (white). (b)
Percentage of CAR T cell clustering area over total CAR T cell area in cancer spheroids at 24 h 6 BG-Herceptin. Mean 6 SD. N¼ 145 microwells (þBG-Herceptin) and
N¼ 91 microwells (�BG-Herceptin). (c) The size of CAR T cell cluster area within cancer spheroids increases over time only when HER2 is sensed. Mean 6 sem. N¼ 145
microwells (þBG-Herceptin) and N¼ 91 microwells (�BG-Herceptin). Results are representative of three biological replicates. ����p< 0.0001 (unpaired t-test analysis).
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predictors [Fig. 5(h)], we found that increasing the CAR T cell seeding
density within the microwell resulted in a higher initial CAR T cell:
spheroid area ratio (2.96 2.7) that was also associated with higher cyto-
toxicity (Fig. S11). These results show that antigen-specific CAR T cell–
tumor cell interactions promote CAR T cell infiltration within the 3D
spheroid core and subsequent tumor cell killing.

DISCUSSION
The solid tumor microenvironment poses a significant barrier

that CAR T cells must overcome to detect and kill cancer cells.
Experimental models that recapitulate different features of solid
tumors are needed to understand CAR T cell trafficking and test their
antitumor efficacy. Here, we developed a microwell-based platform to

FIG. 5. Dynamic profiling of CAR T cell cytotoxic killing reveals initial CAR T: spheroid ratio as a predictor of antitumor cytotoxicity. (a) Time-lapse confocal fluorescence images
of CAR T cell—BT474 spheroid coculture at z¼þ25 lm in the absence and presence of BG-Herceptin. Red: BT474-H2BRFP, green: CMFDA dye-stained CAR T cells, and
cyan: dead cell marker. Scale bars, 100lm. (b) Quantification of cytotoxicity levels in BT474 cancer spheroids over time 6BG-Herceptin. Mean 6 SD (�BG: N¼ 91; þBG:
N¼ 145; and no CAR T þBG: N¼ 9 wells). (c) Heatmaps showing the temporal evolution of cytotoxicity for individual spheroids 6BG-Herceptin [Data from 91 microwells
(�BG) and 145 microwells (þBG)]. Each row in the x-axis represents time and columns in the y-axis represent individual microwells. (d)–(g) Each dot is a spheroid and two
groups are shown based on high (top quartile) and low (bottom quartile) cytotoxicity levels from þBG-Herceptin condition in panel c. Characterization of (d) cytotoxicity, (e) ini-
tial CAR T cell area, (f) initial spheroid diameter, and (g) initial CAR T cell:spheroid area ratio. ��p< 0.01, ����p< 0.0001 (unpaired t-tests). (h) Correlation between cytotoxicity
and initial CAR T cell:spheroid area ratio in microwells treated with BG-Herceptin (N¼ 145, Pearson correlation coefficient r¼ 0.61, p< 0.001). (i) Quantification of spheroid
diameter in 300� 300 lm microwells seeded with different cancer cell numbers. (N> 30 spheroids) (one-way ANOVA). ����p< 0.0001. (j) Quantification of cytotoxicity levels
in microwells with different cancer cell seeding densities interacting with a fixed number of CAR T cells in the presence of BG-Herceptin (N> 46 spheroids from three biological
replicates) (One-way ANOVA) ���p< 0.001, ����p< 0.0001. (k) Representative images of cancer spheroids with different seeding densities interacting with CAR T cells in the
presence of BG-Herceptin at 48 h. Red: BT474-H2BRFP, green: CMFDA dye-stained CAR T cells, and cyan: dead cell marker. Scale bars, 50 lm.
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quantitatively assess CAR T cell infiltration and cytotoxic functions in
3D HER2þ breast cancer spheroids. By profiling individual cancer
spheroids, we identified the initial CAR T cell:spheroid area ratio as a
predictor of CAR T cell-mediated killing. Furthermore, using

spatiotemporal analysis of CAR T cell trafficking, we showed that
HER2 antigen sensing promotes CAR T cell clustering and infiltration
within the 3D spheroid core. These results demonstrate the capabilities
of our microwell assay as a miniaturized technology to elucidate

FIG. 6. CAR T cell cytotoxicity within the spheroid core is enhanced by higher CAR T cell density when HER2 antigen is recognized. (a) Quantification of cytotoxicity in micro-
wells seeded with different CAR T cell numbers for a fixed cancer seeding density in the presence of BG-Herceptin (N> 41 spheroids from three biological replicates) (one-
way ANOVA) ��p< 0.01, ����p< 0.0001. (b) and (c) Characterization of (b) IFN-c and (c) TNF-a secretion in microwells with different CAR T cell seeding densities. Three
biological replicates (one-way ANOVA) �p< 0.05, ��p< 0.01, and ����p< 0.0001. (d) Time-lapse confocal fluorescence imaging of CAR T cell-BT474 spheroid coculture in
the presence of BG-Herceptin with different seeding densities (low: 0.2� 106 cells/ml and high: 0.8� 106 cells/ml) at 0 and 48 h. Red: BT474-H2BRFP, green: CMFDA dye-
stained CAR T cells, and cyan: dead cell markers. Scale bars, 100 lm. (e) and (f) Quantification of the percentage of infiltrated CAR T cells out of the total CAR T cells in each
spheroid at (e) the periphery and (f) in the core at 48 h 6 BG-Herceptin with different CAR T cell seeding densities. (g) and (h) Cytotoxic index (definition in Methods) in (g)
spheroid periphery and (h) core 6BG-Herceptin. Plots represent mean 6 SD. �BG low (N¼ 91), þBG low (N¼ 145), �BG high (N¼ 25), and þBG high (N¼ 34).
�p< 0.05, ��p< 0.01, and ���p< 0.001 ����p< 0.0001 (one-way ANOVA analysis).
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dynamic cell–cell interactions at play during CAR T cell anti-tumor
functions.

Spheroids enable the study of physiologically relevant parameters,
including spatial zonation and cell motility within a multicellular envi-
ronment, which is not feasible in 2D models.56 Studies using cancer
spheroids have yielded insight into drug distribution as a function of
distance from the spheroid core35,57 and heterotypic tumor–immune
cell interactions.58,59 Compared to the traditional suspension culture
methods (e.g., hanging drop and ultra-low adhesion surfaces), integrat-
ing spheroids within microfabricated platforms provides advantages
with respect to controlling cell seeding and the extracellular environ-
ment.60 For example, microfluidic devices with cancer spheroids
embedded in a 3D matrix facilitated the analysis of directional T cell
trafficking and cytotoxic activity.37,38,61 Evaluation of targeted thera-
pies (e.g., G9a/GLP inhibitors) to stimulate T cell cytotoxicity in 3D
microfluidic models has been shown to reflect in vivo therapeutic out-
comes.62 With respect to monitoring real-time tumor–immune cell
crosstalk, our microwell platform offers several critical features. First,
spheroids are spatially segregated to facilitate parallel comparisons
between a large number of wells in a single experiment. Second, 3D
spheroids are formed in a microwell with controlled size. Finally, by
controlling the cell seeding sequence, we avoid transferring cancer
spheroids between culture platforms prior to high-resolution imaging.

Cell migration in a complex 3D microenvironment63,64 is critical
for the engagement of cytotoxic T cells that target tumor cells.37,62,65

We utilized universal adaptor CAR T cells to study antigen-specific
effects on migration under the control of an adaptor molecule. We
found that CAR T cell infiltration and clustering within cancer sphe-
roids was enhanced following the sensing of HER2 on cancer cells.
These antigen-specific effects may promote cooperation among CAR
T cells via paracrine signaling as shown by a previous study using
cytotoxic T cells. This study employed 3D macroscale cultures to also
demonstrate that engagement of cognate targets by cytotoxic T cells
promotes swarming.61 These cooperative interactions between T cells
following antigen recognition were also shown using a microfluidic
droplet assay with melanoma spheroids and ovalbumin-targeted
murine OT-I cytotoxic T cells.61 Furthermore, we found that CAR T
cells localized within the spheroid core only in the presence of the
HER2 antibody adaptor and irrespective of the CAR T cell seeding
density, consistent with a previous study that observed CAR T cell
infiltration in HER2 therapy-resistant tumor spheroids.66 In addition,
our results agree with a previous in vitro study that reported clustering
under 2D conditions when comparing mock-transduced CAR T cells
with anti-BCMA (B-cell maturation antigen) targeted CAR T cells.22

These results provide further supportive evidence for the critical role
of antigen-specific tumor–immune crosstalk that mediates CAR T cell
trafficking in a 3D environment.

Sustained CAR T cell cytotoxic activity represents a major chal-
lenge in developing CAR T cell therapies against solid tumors.67,68 By
monitoring CAR T cell-mediated tumor cell killing at the individual
spheroid level, we showed the suppressive effects of spheroid size and
that the initial CAR T cell to spheroid area ratio can serve as a predic-
tor of cytotoxicity. These results agree with a previous study that
showed killing of B16 melanoma cells expressing SIINFEKL as a func-
tion of initial OT-I T cell concentration.69 Furthermore, our findings
revealed that for a fixed number of CAR T cells, increasing spheroid
size reduced cytokine secretion, despite the higher surface area for

tumor–CAR T cell interactions. Under these conditions, the E:T ratio
was lower for the larger spheroid sizes and our findings are consistent
with a previous study showing lower killing efficiency and cytokine
secretion when the E:T ratio was decreased.70 Another study employed
intravital imaging and demonstrated that a high local density of OT-I
cytotoxic T cells correlated with a lower number of virus-infected cells
in vivo.71 Furthermore, we characterized the hypoxic state across the
range of spheroids formed in our microwells, and consistent with a
previous study in hepatocytes, we found that larger spheroids exhibited
lower oxygen levels.27 It is also important to monitor cytotoxic T cell
function in spatial zones that have been associated with poor T cell
infiltration, such as the intratumor core.72,73 Using spatiotemporal
analysis of killing dynamics in our microwell platform, we showed that
HER2þ cancer cells within the spheroid core could be eliminated by
CAR T cells in an antigen-specific manner. Our results are consistent
with a previous study that formed HER2 therapy-resistant JIMT1
spheroids using ultra-low adhesion 96-well plates and evaluated cyto-
toxicity using anti-HER2 CAR T cells.32

In the multicellular microenvironment of solid tumors, CAR T
cells migrate within a 3D extracellular matrix prior to killing cancer
cells.37,62 Spheroids in our microwell platform are not surrounded by
an extracellular matrix and thus CAR T cells only migrate within the
3D tumor spheroid. However, we found that HER2 antigen-mediated
CAR T cell cytotoxicity was qualitatively similar between microwell-
based spheroids and spheroids embedded in a 3D collagen matrix (Fig.
S4). Furthermore, our experimental design included only cancer cells
and CAR T cells; thus, future studies should evaluate the role of abun-
dant stromal cell types in solid tumors (e.g., fibroblasts) on antigen-
specific CAR T cell function. Finally, our experiments were performed
on a short timescale (48h). Future investigations should evaluate the
impact of antigen recognition on T cell activation state (e.g., using a
panel of markers including CD69 and CD25) and CAR T cell pro-
grammed death at longer timescales.74

In summary, we present a microwell platform to quantitatively
study CAR T cell infiltration and cytotoxicity in HER2 breast cancer
spheroids as a function of spheroid size. Our findings reveal distinct
patterns of anti-tumor T cell functions within the spheroid periphery
compared to the spheroid core that are dependent on the engagement
of the HER2 antigen on tumor cells. The universal CAR T cell system
used in our study provides flexibility in directing CAR T cells against
antigens that can be targeted using a benzylguanine-conjugated anti-
body. Finally, our multiwell plate-compatible assay can be integrated
into combinatorial drug screening platforms and the miniaturized
scale offers advantages for studying low-volume, patient-derived
samples.

METHODS
PDMS microwell fabrication and assembly

SU-8 silicon wafers served as molds for PDMS microwell fabrica-
tion with a side length of 50, 100, and 200lm. The height of the
microwell was 100lm. An LCD-based Phrozen Sonic Mini 4K resin
printer was used for the fabrication of microwells with a side length of
300lm and a height of 300lm using a previously published method.75

PDMS was mixed in a 10:1 ratio of elastomer base to curing agent and
placed in a vacuum desiccator for one hour to degas. Then, 2.5 g of the
PDMS mixture was poured on the center of the microwell mold. The
mold was fixed on a spin-coater and rotated at 1000 rpm for 5min.
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Next, the mold was incubated overnight in an 80 �C oven.
Subsequently, the thin PDMS microwell sheet was peeled off and
plasma-bonded into each well of a 24-well glass-bottom plate. After
incubating the plate in an 80 �C oven for 10min, the plate was treated
with plasma once more, and 500ll of 2% pluronic solution was added
to each well. The plate was then centrifuged at 900 rpm for 5min to
remove any bubbles trapped in the microwells. After incubating the
plate in the incubator for one hour, it was washed three times with
PBS and once with cell culture medium before seeding the cells.

3D spheroid formation and CAR T cell transduction

The human breast cancer cell lines BT474, EFM192A (expressing
fluorescent nuclear marker H2B-RFP76), and T47D were cultured in
RPMI supplemented with 10% heat inactivated fetal bovine serum
(HIFBS) and 1% penicillin/streptomycin. A cancer cell seeding solu-
tion at a density of 0.2� 106 cells/ml was prepared and subsequently
1ml of the cancer cell solution was added to each well of a 24-well
glass-bottom plate. The plate was centrifuged at 900 rpm for 1min to
promote cancer cell settling within the microwells. We allowed 72h
for spheroids to form in a 5% CO2 and 37 �C incubator.

CAR T cells were generated by following a protocol described in
our previous studies.40 In brief, CD3þ T cells isolated with Pan T cell
isolation kit (Miltenyi Biotec), were stimulated with TransAct Human
T cell activation reagent (Miltenyi Biotec), 100U/ml human IL-2 IS
(Miltenyi Biotec), and 1ng/ml IL-15 (Miltenyi Biotec) for 48 h. For
lentiviral transduction, the viral vector-containing medium was spun
down in a retronectin coated plate at 2000�g for 2 h at 32 �C, and after
removing 2ml of supernatant, 1� 106 of T cells were added in 4ml of
media and spun down for an additional 10 min 1000�g at 32 �C. Cells
were then expanded every 2–3 days, and fresh IL-2 and IL-15 were
added in each expansion time. Transduction efficiency was tested at
day 8 post-transduction (Fig. S12).

Production of BG-conjugated antibodies

The anti-HER2 antibody trastuzumab (Herceptin, Genentech)
and anti-folate receptor a antibody mirvetuximab were conjugated to
BG following the protocol described in our previous studies.40 In brief,
Herceptin was buffer exchanged in PBS by using 7K MWCO Zeba
Spin Desalting Columns (ThermoFisher Scientific). Then it was incu-
bated with 20ME (molar equivalent) of BG-GLA-NHS (NEB) for
30min at room temperature, subsequently buffer exchanged by using
7K MWCO Zeba Spin Desalting Columns, and the concentration was
measured by Nanodrop One (Thermofisher Scientific).

CAR T cell–spheroid interaction assays

Before seeding CAR T cells, we carefully aspirated the media
from the microwells containing cancer spheroids and added 500ll of
RPMI media supplemented with a 1:5000 dilution of SYTOXTM Deep
Red Nucleic Acid Stain dye (#S11381, Invitrogen) for tracking dead
cells. To quantify CAR T cell numbers, we performed staining with
10 ng/ml CellTracker Green CMFDA Dye (#C7025, Fisher) for 25min
at 37 �C and washed once with RPMI. Subsequently, we added 0.2E6/
ml CAR T cells in 500 ll of RPMI supplemented with BG-Herceptin
to each microwell at a final concentration of 1lg/ml for þBG-
Herceptin samples. For the higher initial CAR T cell seeding density,
we added a four time higher concentration at 0.8E6/ml CAR T cells to

the microwells. The cancer spheroid-only condition (no CAR T cells
added) also included a concentration of 1lg/ml of BG-Herceptin.

Time-lapse confocal microscopy

For time-lapse imaging, the microwell plate was mounted on a
Zeiss LSM700 confocal microscope housed within the Tokai-Heat
incubation system. Live images were captured as a z-stack (3 stacks
with a 25lm interval starting from the bottom of the microwell sur-
face) every hour for 48h using a 10� 0.45NA objective lens.

Image analysis

MATLAB was utilized for image analysis. To quantify CAR T cell
cytotoxicity, we calculated the overlap area of RFPþ (cancer cells
expressing H2B-RFP) and Cy5þ (dead cell marker, shown as cyan in
figures for visibility) and divided it by the total RFPþ area. We then
multiplied it by 100 to convert into a percentage.

To enable whole cancer spheroid segmentation for spatial analy-
sis, we applied a 20 pixel median filter on the RFP images to group
cancer cell nuclei into a single object prior to intensity thresholding.
GFP (CAR T cells) and Cy5 images were also segmented through
intensity thresholding. The percentage of CAR T cells interacting with
cancer spheroids was determined by calculating the overlap area
between the cancer spheroid area (RFP) and the CAR T cell area
(GFP), divided by the total CAR T cell area (GFP) per microwell. The
total CAR T cell area was computed by summing the GFP area within
the microwell over the entire z-stacks. To characterize CAR T cell clus-
tering areas, we first identified GFP objects with an area above 50 pix-
els (312.5 lm2), comprising approximately�4 cells, as a CAR T cell
cluster. The remaining GFP objects were classified as single CAR T
cells. We also report the percentage of CAR T cells that were organized
in a cluster by calculating the ratio of the overlap between the cancer
spheroid area and the CAR T cluster area, divided by the overlap
between the cancer spheroid area and the total CAR T cell area. We
report a cytotoxicity index to compare cytotoxicity in the core vs the
periphery region of each cancer spheroid. The cytotoxicity index was
calculated as the overlap area between the cancer spheroid area and
dead cell area, divided by the total cancer spheroid area.

Enzyme-linked immunosorbent assay (ELISA)

Conditioned medium was collected 48hours post seeding CAR T
cells in a microwell plate. IFN-c and TNF-a levels in the conditioned
medium were quantified with corresponding ELISA kits (IFN-c (cat#
DY285B-05, R&D Systems) and TNF-a (cat# DY210-05, R&D
Systems)). Kits were performed according to the manufacturer’s
instructions. The absorbance was measured using Synergy LX
(Agilent) at 450 nm and the absorbance at 540nm was subtracted to
correct for any plate abnormalities. The sample concentration was cal-
culated using a standard curve of recombinant human TNF-a or IFN-
c using Prism (Version 9.0, GraphPad Software).

Immunofluorescence staining analysis

Spheroids were harvested from the microwells and transferred to
15ml centrifuge tubes. After centrifugation (70 g, 5min), the media
was carefully aspirated, and spheroids were fixed in 4% paraformalde-
hyde (PFA) overnight at 4 �C. Following another centrifugation
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(70 g, 2min), the PFA was carefully aspirated, and spheroids were
incubated in 1ml of a buffer [LI-COR Intercept (cat # NC1660556,
Fisher) containing 0.1% Triton X-100] for 15min at 4 �C. After centri-
fugation (70 g, 2min), the supernatant was carefully aspirated, 200ll
of buffer was added and transferred to a non-tissue culture treated
24-well plate. Primary antibodies were mixed in 200ll of buffer, added
to the samples in the 24-well plate, and incubated overnight at 4 �C
using a shaker. Next, 1ml of buffer was added to spheroids and incu-
bated for 1 h at room temperature. The plate was tilted, and 1.2ml of
buffer was carefully removed, and another 1ml of fresh buffer was
added. After 1 h of incubation at room temperature, this washing step
was repeated three times. Secondary antibodies were added in 200ll
of buffer and incubated overnight at 4 �C using a shaker. The same
washing step was repeated. Finally, the samples were collected in 15ml
centrifuge tubes and centrifuged (70 g, 5min). Samples were trans-
ferred to a glass-bottom dish for confocal imaging.

Statistical analysis

For statistical analyses involving multiple groups, we applied one-
way analysis of variance (ANOVA) and Tukey’s post hoc test for multi-
ple comparisons. Two group comparisons were conducted using an
unpaired t-test using Prism. The statistical significance is marked by
asterisks in the figures, and we considered P-values below 0.05 as
significant.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional information on
spheroid formation of EFM192A cells (Fig. S1), separate fluorescent
channel images of CAR T-BT474 spheroid cocultures (Fig. S2),
EFM192A spheroid cytotoxicity measurement (Fig. S3), ECM-
embedding experiment (Fig. S4), T47D spheroid cytotoxicity measure-
ment (Fig. S5), cytotoxicity rate measurement (Fig. S6), correlation
between cytotoxicity and initial CAR T cell: EFM192A spheroid area
(Fig. S7), characterization of CAR T cell function in microwells with
different BT474 seeding densities (Fig. S8), hypoxic state characteriza-
tion (Fig. S9), CAR T cell migration analysis (Fig. S10), CAR T cell
seeding density effect on cytotoxicity (Fig. S11), and flow cytometry
characterization of CAR T cell transduction (Fig. S12).
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