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A B S T R A C T   

A new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a respiratory infection out broke in 
December 2019 in Wuhan, Hubei province, China, resulted in pandemic conditions worldwide. COVID-19 spread 
swiftly around the world over with an alert of an emergency for an adequate drug. Therefore, in this research, we 
repurposed the FDA-approved medicines to find the prominent drug used to cure the COVID infected patients. 
We performed homology modeling of the transmembrane serine protease 2 (TMPRSS2), responsible for the viral 
entry. The prediction of the transmembrane region and the Conserved Domain in TMPRSS2 protein was made for 
docking. 4182 FDA-approved compounds from the ZINC database were downloaded and used for the calculation 
of physicochemical properties. Two thousand eight hundred fifteen screened compounds were used for molecular 
docking against the modelled protein structure. From which top hit compounds based on binding energy were 
extracted. At 1st site pose, ZINC3830554 showed the highest binding energy -12.91kcal/mol by forming Salt 
Bridge at LYS143, Hydrogen bond at ALA8, VAL45, HIS47, SER142, ASN277, ASN359, and TRP363. The hy-
drophobic Interactions at PHE3, LEU4, ALA7, ALA8, ALA139, PRO197, and PHE266. In the 2nd site pose, 
ZINC203686879 shows the highest binding energy (-12.56 kcal/mol) and forms a hydrophobic interaction with 
VAL187, VAL189, HIS205, LYS301, GLN347, TRP370 and hydrogen bond was at GLY300, THR302, GLN347, 
SER350 residues. These hit compounds were subjected to stability checks between the protein-ligand complex 
through the dynamics simulation (MD), and binding free energy was calculated through the Molecular Mechanics 
energies combined with Poisson-Boltzmann (MM/PBSA) method. We hope that hit compounds would be an 
efficient inhibitor that can block the TMPRSS2 activity and resist the entry of the SARS-CoV-2 virus into targeted 
human cells by reducing the virus’s infectivity and transmissibility.   

1. Introduction 

Coronaviridae is an enveloped, positive-stranded RNA virus tending 
to be circulated in the human population and causing severe, mild res-
piratory diseases (van der Hoek et al., 2006). The Middle East respira-
tory syndrome coronavirus (MERS-CoV) and Severe acute respiratory 
syndrome coronavirus (SARS-CoV) are types of coronaviruses that have 
the capability of transmission (Kannan et al., 2020). The SARS outcome 

started in the year 2002 from Guangdong with 8096 cases and 774 
death. Due to the unavailability of potable drugs or vaccines against 
SARS, the pandemic was tried to be ceased by travel restriction and 
patient isolation (Berger and Preiser, 2011). 

In December 2019, from Wuhan, China’s seafood market, a new 
respiratory infection originated, named COVID-19 in March by the 
World Health Organization (Mackenzie and Smith, 2020). It had the 
potential of human-to-human transmission. It caused 139468 deaths in 
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the United States, after which it was considered an epicenter for virus 
infection as one-third of all diseases raised from the US. By the middle of 
2020, it became defile for the human population by infecting 216 
Countries worldwide by transmitting from one person to another 
through respiratory droplets. The minor symptoms showed by the 
infected person were Fever, Cough, Headache, Malaise, Sore throat, 
Vomiting, Nausea, Diarrhea, and trouble breathing (Zhang et al., 2020; 
Zhu et al., 2020). 

There are three COVID vaccines’ for which certain national regula-
tory authorities have authorized the use. In the United Kingdom, the 
BNT162b2 vaccine developed by Pfizer & BioNTech (Oliver et al., 2020) 
and the ChAdOx1 nCoV-19 (AZD1222) developed by the University of 
Oxford and AstraZeneca are currently in use (Voysey et al., 2021). These 
two vaccines have been authorized for emergency use by the Medicines 
and Healthcare products Regulatory Agency (MHRA), another third 
vaccine developed by Moderna will be available from Spring 2021 (https 
://vk.ovg.ox.ac.uk/vk/covid-19-vaccines). Before these three vaccines, 
the US Food and Drug Administration (FDA) has approved the Remde-
sivir first drug against COVID-19 (Rubin et al., 2020). This remdesivir is 
an antiviral medicine given an Intravenous therapy (IV) for patients 
needing hospitalization; this drug was California based Gilead Science 
Inc, which called Veklury, which reduce the time to recover from 15 
days to 10 days shown by the US National Institutes of Health (Liang 
et al., 2020) (https://www.nih.gov/news-events/news-releases/nih-clin 
ical-trial-shows-remdesivir-accelerates-recovery-advanced-covid-19). 
Pfizer vaccine shows the efficacy of 95% at preventing symptomatic 
COVID-19, which is measured starting from seven days after the 2nd dose 
was administered (Polack et al., 2020; Rubin and Longo, 2020). The 
Moderna vaccine shows 94.1% effectiveness at preventing symptomatic 
COVID infection, which is measured starting from 14 days after the 2nd 

dose (Mahase, 2020). 
Recently scientists have found a new variant of coronavirus; due to 

this new strain of the COVID -19, coronavirus has emerged in the UK, 
spreading fast than the previous strain. This new strain (VUI-202012/01 
variant) common in London, the South East and the East of England. 
After identifying the new strain Pfizer and Oxford vaccines were started, 
there was a new strain, existing coronavirus treatments. Studies of the 
new strain so far suggest it has 17 differences from previous strains. That 
includes a change to the Spike on the surface of the virus that may make 
it easier to get inside our body cells. Changes in the virus are very 
common; in new strains formed due to the virus entering the body, it 
multiplies very fast. With this quick multiply process, there is a chance 
that the virus may again change this quick-change process called a 
mutation. Due to only a few vaccines’ availabilities or drug and muta-
tion into COVID-19, scientists are still trying to discover more effective 
treatments by combining antiviral and convalescent plasma therapy. 

Along with this, repurposing existing drugs is also used to provide a 
valuable medicinal procedure, which is achieved by inhibiting the 
different mechanisms responsible for COVID-19 infection (Baron et al., 
2020; Elfiky, 2020; Fan et al., 2020; Zhou et al., 2020). Zygotic induc-
tion is one mechanism in which virus DNA is transferred from the virus 
and replicates into the host, leading to an increase in the virus’s infec-
tion. Several enzymes like Furin, trypsin, and other 
proprotein-convertases, cathepsin, transmembrane proteases (TMPRSS), 
and elastases are involved in coronavirus cell entry (Matsuyama et al., 
2018; Millet and Whittaker, 2015). The human entry is more frequent 
due to viral spike proteins on the surface of coronavirus, which binds to 
the carboxypeptidase angiotensin-converting enzyme-2 (ACE2) receptor 
present on human cells. The spike protein has two subunits S1 and S2, in 
which the S1 subunit contains the receptor-binding domain, which helps 
in binding to a cellular receptor, and another subunit, S2, which is a 
membrane-anchored subunit responsible for infusion of virus and hosts 
membrane (Bertram et al., 2011a; Glowacka et al., 2011; Shulla et al., 
2011). 

In the preliminary studies, serine protease anchored on the plasma 
membrane helps the virus enter and cause infection in the host (Millet 

and Whittaker, 2015). The S1 subunit initially binds to the cellular re-
ceptor, then priming S protein by the host transmembrane serine pro-
tease 2 (TMPRSS2) that breaks out the viral S protein at right upstream 
of the fusion peptide, which helps in membrane fusion via irreversible 
conformational changes (Bertram et al., 2011b; Hoffmann et al., 2018). 
Inhibition of the TMPRSS2 can help to avoid the entry of the 
SARS-CoV-2 virus into the human cells. Some earlier study also shows 
that a decrease in expression and activity of TMPRSS2 is a safe and 
effective method for the treatment of viral infection caused by viruses 
(Hoffmann et al., 2020; Matsuyama et al., 2020). Therefore, many re-
searchers are involved in the discovery of efficient medicament for 
inhibiting the TMPRSS2 of coronavirus. Camostat, Nafamostat, and 
Aprotinin are some of these TMPRSS2 preceding inhibitors, which had 
reduced the rate of infection of the lung cell line (Calu-3) by SARS-CoV2 
(Azimi, 2020; Hoffmann et al., 2020). 

In this study, we focused on the inhibitor of TMPRSS2, a host LDLRA 
domain region (1st docking site) and serine protease (2nd docking site), 
which is less prone to mutation over time compared to viral protein 
using the 3D homology model of TMPRSS2 was predicted using Mod-
eller software. The FDA-approved drugs were downloaded from the 
ZINC database and screened against the modeled structure of TMPRSS2. 
The binding site prediction was also made performing Molecular 
Docking. Further, the protein-ligand stability was studied using Molec-
ular dynamics (MD) simulation and Free Energy Calculation (Fig. 1). 

2. Materials and methods 

2.1. Retrieve and analysis of sequence 

In this study, the inhibitor was proposed through the in-silico 
approach for COVID19. Hence, the protein sequence was retrieved from 
the UniProt database (Consortium, 2018) by searching “Transmembrane 
protease serine 2”. From hits, we selected the TMPRSS2 gene of Homo 
sapiens (Human). 

2.2. Prediction of the transmembrane region and physicochemical 
parameters 

The transmembrane part of the selected TMPRSS2 sequence was 
predicted through TMHMM Server v. 2.0 (Krogh et al., 2001). After that, 
prediction of Physicochemical parameters of TMPRSS2 such as Extinc-
tion coefficient, molecular weight, theoretical isoelectric point (pI), 
half-life, aliphatic index, instability index, the total number of positive 
and negative residues, and grand average hydropathy (GRAVY) was 
computed using Expasy’s ProtParam (Gasteiger et al., 2005). 

2.3. Finding conserved domain and motif 

The Domain site in the TMPRSS2 gene was found by submitting the 
amino acid sequence to the PROSITE tool of ExPasY (de Castro et al., 
2006). This tool provided resources for identifying and annotating 
conserved sites on the protein, covering protein families, domains, and 
motifs. Along with this, PROSITE, which identified the protein domain, 
families, and functional sites, was also used. A motif site on the 
TMPRSS2 sequence was also predicted through the online motif tool 
(https://www.genome.jp/tools/motif/). 

2.4. TMPRSS2 model generation through modeller 

For homology modeling, the TMPRSS2 protein sequence was used to 
construct a 3D structure by the modeller. The BLAST search was done for 
the TMPRSS2 protein sequence, which was retrieved from the UniProt 
database. Two templates were selected based on similarity score and 
maximum identity. The model was generated using Modeller9.12 
(Eswar et al., 2006). TMPRSS2 sequence was put into the PIR format that 
is readable by the modeller. Subsequently, a search for potential was 
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aligned with the template and constructed the model. 

2.5. Analysis of constructed model 

After the model’s construction, the DOPE score was checked, and the 
best model was selected, which were analyzed by ERRAT and Ram-
achandran plot. ERRAT and Ramachandran plot was calculated by 
SAVES v5.0 online program (Colovos and Yeates, 1993; Laskowski et al., 
1996). This Ramachandran plot is used to check the protein conforma-
tion of φ and ψ angles, are possible for amino acid residue in protein and 
show the empirical of data points observed in a single structure in usage 
for structure validation or else in a database of many structures and 
usually shown against for the theoretically favored regions. ERRAT 
score is a program for verifying protein structure determined by 
crystallography. 

2.6. Finding binding pocket 

The Binding pockets finding was achieved with the MetaPocket 2.0 
open Meta serve (Huang, 2009; Zhang et al., 2011). Binding sites on the 
protein surfaces play an essential role in protein function. It is based on a 
consensus method. The predicted binding sites from eight modes: LIG-
SITEcs, PASS, Q-SiteFinder, SURFNET, Fpocket, GHECOM, ConCavity 
POCASA are combined to improve the prediction. To find the binding 
pocket, we used the model’s selected model and used it as an input 
query. Along with these pockets, we use the binding site residues 
extracted from literature, and these amino acids are Q185, H205, E208, 
K209, P210, K249, K251, E298, K299, L328, Q347, S350, W370 present 
in an active or catalytic pocket of TMPRSS2. A Triad of catalytically 
active site was included in this study, which contains H205, I255, D254, 
and S350 amino acid (David et al., 2020; Hussain et al., 2020; Vish-
nubhotla et al., 2020). Also, we verified the binding site identified 
through Metapocket by using the PDBsum tool and phyre2 tool. 

2.7. Preparing FDA approval compounds 

ZINC Database (Sterling and Irwin, 2015) has a wide range of com-
pounds from which we used FDA approval compounds DrugBank FDA 
only (https://zinc.docking.org/catalogs/dbfda/), and FDA-approved 
drugs (via DSSTOX) (https://zinc.docking.org/catalogs/fda/) were 
downloaded from the ZINC database and used for high throughput vir-
tual screening against TMPRSS2 protein of COVID-19. 

2.8. Property space filtering 

To assess drug-likeness, through Lipinski rule and verber rules were 
performed for downloaded compounds. This property space filtering is 
based on physicochemical parameters. This Lipinski rule (Benet et al., 
2016; Lipinski et al., 1997) and verber rules (Veber et al., 2002) consist 
of Molecular weight (MW), LogP, Hydrogen Bond Accepter (HBA), 
Hydrogen Bond Donor (HBD), Topological polar surface area (TPSA) 
and rotatable bonds. MW, logP, HBA, and HBD belong to Lipinski rules 
and rotatable bonds, and TPSA includes verber rules. Along with these 
parameters, Heavy Atom and Aromatic Ring were included in this study. 
ChemAxon InstantJChem software (https://chemaxon.com/product 
s/instant-jchem) was used for ligand preparation, such as adding a 
hydrogen atom, converting it into the 3D format, and calculating the 
Physicochemical properties; the physicochemical cut-off range was 
decided based on Lipinski rule and verber rules. 

2.9. Molecular docking of FDA approval compounds 

FDA approval Compounds used for docking through AutoDock Tools 
(Morris et al., 2009). A three-dimensional (3D) structure of the com-
pounds was generated, and hydrogen was added by employing (com-
mand line) ChemAxon software-molconvert (Jade et al., 2020). All input 
file was prepared by using AutoDock Tools (ADT) 1.5.4. Addition of 
Polar Hydrogen in protein and assigned charges by Kollman charges 

Fig. 1. Description of the In-silico virtual screening workflow of the iterative process to find a potent inhibitor for TMPRSS2.  
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method. All docking calculation parameters were kept as a default value. 
Ligands were docked using the Lamarckian Genetic Algorithm, with an 
initial population of 150 randomly placed individuals, a maximum 
number of 2500000 energy evaluation, a mutation rate of 0.02, and a 
crossover rate of 0.8 and a total of ten conformations were generated for 
each screened compound. We performed docking on two sites, the first 
site was the binding pocket found by the Metapocket tool, and 2nd site 
was the substrate binding site & triad of the active catalytic site. For 1st 

Metapocket pocket site, we use the number of a grid point in XYZ 80 ×
74 × 70 (x, y, and z) and grid box center is -15.997 × 24.256 × -24.858 
was assigned and for 2nd substrate binding site and triad of the active 
catalytic site, number of a grid point in XYZ 110 × 88 × 98 (x, y, and z) 
and grid box center is -18.418 × (-0.107) × (-9.329) was assigned on the 
protein with the spacing 0.375Ǻ. Autogrid4 was used to calculate grid 
maps, and Autodock4 was used to perform docking procedures. 
Generate the lowest binding energy conformation and find the molec-
ular interaction between receptor and ligands using PLIP. After that, we 
check the binding poses of selected active hit compounds with TMPRSS2 
protein on the 1st and 2nd site based on Binding energy and most 
populous cluster. 

2.10. ADME prediction and PAINS filter analysis 

For ADME Prediction, we used SwissADME online software (Daina 
et al., 2017) for the prediction of pharmacokinetic parameters of a 
drug-like compound through a molecular structure called ADME Ab-
sorption, Distribution, Metabolism, and Excretion. Compounds with low 
toxicity and high bioactivity by a drug-like compound are not the right 
criteria to qualify the compound as a promising drug. Finding a good 
drug is very important to calculate the ADME properties for new 
drug-like compounds. After that, we perform PAINS (pan assay inter-
ference compounds) filter analysis. PAINS is a prominent source to 
remove false positive compounds with poor pharmacokinetics and 
toxicity. We apply PAINS using PAINS-Remover (Baell and Holloway, 
2010) (http://cbligand.org/PAINS) to remove scrutinize the false posi-
tives from selected compounds. 

2.11. Clustering for a selected compound 

After docking and ADMET calculation, the virtual hit compounds 
were further subjected to Clustering. Clustering was performed using 
Chem BioServer online tool (Karatzas et al., 2020) based on the Hier-
archical Clustering method. The hit compounds were used for Clustering 
through Soergel (Tanimoto Coefficient) Distance method and Ward 
linkage Clustering method with clustering Threshold was 0.9. After this, 
we check the structural difference between known Camostat and other 
hit compounds using MolAlign Server based on property-based small 
molecule alignment; for this alignment, we used full-flexible alignment 
(Brown et al., 2019). 

2.12. Molecular dynamics simulation and free energy calculation 

MD simulation was performed by GROMACS-4.6.5 (Abraham et al., 
2015), and protein topology was generated by GROMOS 54A7 force 
field. The initial orientation of the ligand towards the protein was ob-
tained from the docking studies. The topologies for the ligands were 
created using PRODRUG (Schüttelkopf and van Aalten, 2004). The 
protein-ligand complex was put in a triclinic box, and the complex 
structure was solved with simple point charge (spc216) water. The 
neutralization of the system was done by adding ions and relaxation 
through the energy minimization process. The electrostatic interaction 
was estimated by using the PME algorithm. MD simulations with 
reasonable initial velocity follow the steepest descent path on the po-
tential energy surface to a local minimum. The temperature and pressure 
equilibrium step of 1ns was performed before the 20ns production 
simulation. The root means square deviation (RMSD), root mean square 

fluctuation (RMSF), Radius of gyration (Rg) were calculated using 
g_rms, g_rmsf, and g_gyrate. 

Along with this, the calculation of the hydrogen bond formation 
between protein-ligand, protein solvent was calculated. After that, we 
calculate the Principle compound analysis. We check the change in the 
protein’s secondary structure and complex with time through using the 
do_dssp program (Kabsch and Sander, 1983; Touw et al., 2015). After 
the simulation, we estimated the ligand-protein complex’s binding free 
energy using Molecular Mechanics energies combined with 
Poisson-Boltzmann (MM/PBSA) (Genheden and Ryde, 2015; Kumari 
et al., 2014). In this study, we calculated the protein-ligand complex 
binding fee energy using the MM-PBSA method. Calculation of Free 
binding energy in drug discovery plays a vital role, which gives the 
quantitative estimation of binding free energy. We use the 20ns MD 
trajectory to calculate MM-PBSA using the g_mmpbsa Tool (Kumari 
et al., 2014). 

The protein-ligand complex interaction analysis and visualization 
were done through AutoDock ADT and PyMOL. Docking conformations 
and MD simulation results were generated using PyMOL. 2D graph of 
RMSD, RMSF, the radius of gyration, hydrogen bonds, and protein sec-
ondary structure plot was generated using xmgrace. 

3. Result and discussion 

3.1. Calculation of physicochemical and secondary structure parameters 

The amino acid sequence was retrieved from UniProt ID: C9JKZ3, 
which belongs to the Transmembrane protease serine 2 (TMPRSS2) gene 
of Homo sapiens (Human), as shown in Supplementary Figure 1. This 
TMPRSS2 consists of 489 amino acids. The selected sequence of 
TMPRSS2 protein sequence was analyzed for prediction of the trans-
membrane region through TMHMM Server, which shows one trans-
membrane helix region consists of 21.8427 amino acids, 1-83 amino 
acids present inside, 84-106 amino acids consist of transmembrane helix 
region and 107-489 amino acids present outside the cell wall shown in 
Supplementary Figure 2. 

For this study, the outer region and some helix regions with 416 
amino acids were used for further research. Using this selected sequence, 
we calculated the physicochemical properties. The results revealed that 
the total length of protein as 416 amino acids, with the protein’s average 
molecular weight, was 45537.92 Daltons. The sequence has about 31 
negatively charged residues (Aspartic acid + Glutamic acid) and 36 
positively charged residues (Arginine + Lysine). pI of Protein was 8.29, a 
pH at which the surface of protein was covered with charge, but the 
protein’s net charge would be zero. Based on the instability index, 
Expasy’s ProtParam classified the optimized protein as stable by 
showing the Instability index value as 36.97. The estimated half-life of 
the selected protein was calculated; in the N-terminal of the sequence 
considered is G (GLY). The apparent half-life is 30 hours (mammalian 
reticulocytes, in vitro), >20 hours (yeast, in vivo), >10 hours (Escher-
ichia coli, in vivo). The aliphatic index of protein was 76.10. The grand 
average of hydropathicity (GRAVY) is -0.172. The extinction coefficient 
of optimized protein in the water at 280nm was 106100 M− 1 cm− 1. 

The FoldIndex program predicted the folding state of the TMPRSS2 
protein sequence, which estimates the probability of a protein sequence 
folding under specified conditions. The TMPRSS2 sequence showed a 
small unfolding of the sequence (0.176%). Supplementary Figure 3 
shows the positive and negative numbers representing ordered or folded 
(Green) region and disordered or unfolded (Red) protein. Amino acids 
are suggested as ordered, shown in green and disordered in red, 
respectively (Supplementary Figure 3). Fifty-five amino acids 
belonged to the disordered region at 76-130, responsible for unfolding 
the protein. 
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3.2. Analysis of conserved domain 

The PROSITE tool of ExPasY was used to determine the domain in the 
TMPRSS2 Amino acid sequence. In a selected sequence of TMPRSS2, we 
found the six hits, among which the three hits belong to distinct profiles 
that consist of LDL-receptor class A (LDLRA) domain profile-2, SRCR 
domain profile (SRCR_2) and Serine proteases, trypsin domain profile 
(TRYPSIN_DOM), shown in Supplementary Figure 4. LDLRA domain 
consists of a region 112-149, which shows a 10.662 score. These do-
mains contain disulfide bonds, shown in Supplementary Figure 4. 
SRCR domain profile consists of a region 158-189, which shows an 8.560 
score. Serine proteases TRYPSIN_DOM show 36.611 scores in region 
256-489. The other three hits have distinct patterns LDL-receptor class A 
(LDLRA) domain signature at region 126-148, (TRYPSIN_HIS) Serine 
proteases, trypsin family, histidine active site at 292-297 region, and 
(TRYPSIN_SER) Serine proteases, trypsin family, serine active site at 
435-446 shown in Supplementary Figure 4. 

3.3. Construction of model throughmodeller 

MODELLER is a computer program used for comparative protein 
structure modeling. TMPRSS2 amino acid sequence was used for 
searching the template through default modeller settings. The input 
sequence was aligned to be modeled with the template structures, which 
automatically generated the model. The top two templates 5TJX and 
1Z8G, were selected based on maximum Query cover and identity 
similarity, based on a sequence of identity value and query cover. They 
showed 48% and 69% query cover and identity similarity score 42.74 
and 33.52, respectively. The alignment of the query sequence with two 
selected target sequences for alignment is shown in Supplementary 
Figure 5. After alignment, we generate 20 models of TMPRSS2. From 
the 20 models, the 14th best model showed a good DOPE score 
-38215.922Kcal/mol. This final model was further used for further 
studies. 

3.4. Analysis of constructed model 

The modeled structure was analyzed by the ERRAT score and Ram-
achandran plot generated by SAVES v5.0. Regions of the structure that 
can be rejected at the 95% confidence level are Grey color; 5% of a good 

protein structure is expected to have an error value above this level. 
Regions that can be rejected at the 99% level are shown in black. The 
model ERRAT overall quality factor score is 44.324, which revealed that 
the model’s nonbonded interactions lie within a reasonable normal 
range shown in Supplementary Figure 6. 

After ERRAT, we calculated the Ramachandran plot, suggesting that 
86.2% of residues are in the most favored region. The additional allowed 
region shows 11.1%, the generously allowed region show 2.3% and 
0.3% of the modeled amino acids have disallowed geometry, as shown in 
Supplementary Figure 7. The obtained results suggest that the pre-
dicted protein model is reliable and suitable for further studies. The 
predicted final model was shown in Supplementary Figure 8. 

3.5. Finding an active binding site 

MetaPocket 2.0 server predicted a total of Six binding pockets, as 
shown in Supplementary Figure 9 (A). In the MetaPocket server, our 
protein successfully ran on the CON, FPK, GHE, LCS, PAS, SFN method, 
but the QSF and PCS method failed among the total methods. Supple-
mentary Figure 9 (B) shows the top 3 binding sites and Supplementary 
Figure 9 (C) shows the top 3 ligand binding sites surface in MetaPocket. 
MetaPocket shows six pockets, which shows Z-Score 19.88. To validate 
the above-predicted result through docking analysis. In docking studies, 
we perform docking on two different sites 1st site Fig. 2 (A) contain 
pocket 1, pocket two found in Metapocket tool (LDLRA domain region) 
and 2nd site Fig. 2 (A) is an amino acid is taken from literature which is 
present in a substrate binding site and Triad of the active catalytic site; 
these amino acids are H205, I255, D254, S350 (Triad of the active cat-
alytic site) (magenta color) and Q185, H205, E208, K209, P210, K249, 
K251, E298, K299, L328, Q347, S350, W370 (active or catalytic site) 
(yellow color) show in Fig. 2 (B). We also run the phyre2 and PDBsum 
online tool to confirm the predicted pocket. This tool shows the same 
binding cavity site shown by Metapocket. We performed more analysis 
to check the binding site and compared identified binding site. In this 
study, we select the binding site based on the Metapocket tool; for 
confirmation of this binding site, we use other tools to find binding 
pocket/cavity; Supplementary Figure 10 shows the binding, catalytic 
sits and pocket (red color top, binding pocket) find by PDBsum tool 
(Supplementary Figure 10 (A)), phyre2 (Supplementary Figure 10 
(B)) and Metapocket (Supplementary Figure 10 (C)) (Circled in 

Fig. 2. Binding pocket site (A.) showing 1st site on pocket 1, pocket two found in Metapocket tool, and 2nd site is substrate binding site & Triad of the active catalytic 
site (B.) The amino acid present in the 2nd site is the substrate binding site (Yellow color) and the Triad of the active catalytic site (Magenta color). 
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Magenta color). Selected active sites 1st and 2nd shown red color (circled 
in magenta and brick color) cleft or pocket was present at the same place 
we predicted through Metapocket. 

3.6. Calculation of physicochemical properties for FDA approval 
compounds 

The FDA approval compounds (DrugBank FDA 1657 Compounds and 
DSSTOX 2525 Compounds) from the ZINC database in total 4182 
compounds were converted to 3D coordinates. After that, selected 
compounds were further refined by using physicochemical parameters. 
The ChemAxon (command line) software calculated the Lipinski rule 
and Verber rules properties. In the given threshold, 2815 compounds 
were fit, which is shown in Supplementary Figure 11. 

3.7. Molecular docking analysis 

The docking for FDA approval 2815 compounds was done using 
AutoDock on-site predicted by Metapocket tool and substrate binding 
site and Triad of the active catalytic site shown in Fig. 3. Once docking 
finished, the compounds were selected based on binding energy (BE). 
Supplementary Table 1 shows that the selected FDA approval com-
pounds name/ID with their 2D structural and Supplementary Table 2 
shows that the FDA approval compounds name/ID and binding energy 
in kcal/mol. 

Docking on 1st site in pocket 1, pocket two found in Metapocket 
tool 

Top virtual hit compounds selected based on binding energy docked 
in a selected site shown in Fig. 3. Inhibitor Camostat forms a Hydro-
phobic Interactions, Hydrogen Bonds, and Salt Bridges at LEU4 (LEU4 
form 2 hydrophobic interaction with Camostat, which shows the 3.46Å 
and 3.81Å distance), ALA8 (3.59Å), VAL45 (3.84Å), ASN359 (3.31Å), 
and ILE361 (3.43Å). The residues SER46, CYS140, ASN277, ASN359, 
and TRP363, can form hydrogen bonds. In contrast, HIS47 AND LYS143 
are involved in Salt Bridges formation (Supplementary Figure 12). 
Inhibitor Differin shows the -11.07 kcal/mol binding energy. Differin 

forms a hydrophobic interaction with THR2 (3.63Å), LEU4 (2.97Å), 
VAL5 (3.81Å AND 3.32Å), VAL45 (3.74Å), LEU121 (3.03Å), PRO278 
(3.17Å). The hydrogen bond was formed at GLY279 residue. The pi- 
Cation Interaction was observed at LYS358 residues shown in Supple-
mentary Figure 12. 

E155 inhibitor shows the Hydrogen bonds at ALA8, ALA10, LYS16, 
VAL45, HIS47, CYS140, LYS143, and ASN277; along with this; there is a 
Hydrophobic interaction at PHE3 (3.07Å), LEU4 (3.46Å), ALA10 
(3.16Å) and LEU13 (3.89Å), and whose distance was not more than 4Å. 
Dasabuvir is another FDA approval compound called Exviera and used 
for antiviral medication for hepatitis-C; this drug is used to combine 
ombitasvir/paritaprevir/ritonavir for treatment of hepatitis-C virus type 
1. This drug forms a hydrophobic interaction and Hydrogen bonds. 
Hydrogen bonds are at TRP41 and GLY279 and hydrophobic interaction 
at amino acid LEU4 (3.41Å), VAL5 (3.45Å), PHE17 (3.38Å), TRP41 
(3.92Å), ASN122 (3.21Å), and PRO278 (3.23Å). 

We get the hit compound Sorafenib, which is a kinase inhibitor- 
approved drug to treat primary kidney cancer through our screening. 
It formed hydrophobic interaction at VAL5, ASP43, LYS120, ASN122, 
and PRO278 and Hydrogen bonds at ASN40, TRP41, GLY44, LEU121, 
and ASN122. Another drug Betrixaban hit compound, is an oral anti-
coagulant drug, which formed a Halogen bond with TMPRSS2 protein at 
MET280 at a distance of 3.89Å. The hydrogen bonds were formed at 
ASN40, TRP41, LYS120, ASN122, ASP391, and Hydrophobic interaction 
at ASP43, LYS120, LEU121, PRO278, THR390, and TYR394. Other hit 
compounds ZINC3830554 form salt Bridges, Hydrogen Bonds and Hy-
drophobic Interaction. LYS143 forms a Salt Bridge at a distance of 3.28Å 
with TMPRSS2 protein. The hydrogen bond at ALA8, VAL45, HIS47, 
SER142, ASN277, ASN359, and TRP363. The hydrophobic Interactions 
are at PHE3, LEU4, ALA7, ALA8, ALA139, PRO197, and PHE266, as 
shown in Supplementary Figure 12 and all hit compounds hydrogen 
bond and hydrophobic interaction were shown in Supplementary 
Table 3. 

Docking on 2nd site in substrate binding site and Triad of the 
active catalytic site 

Top virtual hit compounds selected based on binding energy docked 

Fig. 3. Screened virtual hit compounds binding in selected 1st site on pocket 1, pocket two and 2nd site are substrate binding sites and Triad of the active cata-
lytic site. 
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in a selected site shown in Fig. 3. In the substrate-binding site and Triad 
catalytic active site, compound Camostat binds and forms Hydrophobic 
Interactions at TRP370, Hydrogen Bonds at SER345, TRP370 and 
GLY373. Along with this bond, there is a Salt Bridges at HIS205 and 
ASP344 interaction with Camostat. All these amino acids were involved 
in Camostat binding in the serine protease domain of TMPRSS2, shows 
in Supplementary Figure 13. Inhibitor ZINC203686879 shows the 
-12.56 kcal/mol highest binding energy among all selected seven hit 
compounds. ZINC203686879 forms a hydrophobic interaction with 
VAL187, VAL189, HIS205, LYS301, GLN347, and TRP370. The 
hydrogen bond was at GLY300, THR302, GLN347, SER350 residues. 
This study finds the Imatinib (ZINC19632618), which is used as a cancer 
growth blocker called tyrosine kinase inhibitor. When this compound 
binds to the TMPRSS2 protein, it shows the -12.37 kcal/mol binding 
energy and forms a pi-stacking interaction at HIS205, Hydrophobic 
interaction at GLU298, GLN347, THR368, TRP370 and Hydrogen bonds 
at GLN347, SER350, GLY373. Another drug from seven hit compounds 
Darifenacin (ZINC1996117), used to treat urinary incontinence and 
discovered by scientists at the Pfizer research site, forms hydrogen bonds 
TYR246 pi-cation interaction at HIS205. We see the Hydrophobic 
interaction created by Darifenacin (ZINC1996117) at HIS205, TYR246, 
LYS251, ASP254, THR368, and TRP370 (Supplementary Figure 13). 

Compound Fazadinium (ZINC3830826) and Raloxifene 
(ZINC538275) show the Hydrophobic interaction at HIS205, LYS251, 
ASP254, THR368, and TRP370. Hydrogen bond for Raloxifene 
(ZINC538275) at GLU208, LYS251, ASP254, SER369, GLY371 Fazadi-
nium (ZINC3830826) at GLN347, SER350. Fazadinium (ZINC3830826) 
shows Pi-cation interaction and Raloxifene (ZINC538275) shows pi- 
Stacking interaction at HIS205. Compound ZINC1530886 and Brexpi-
prazole (ZINC84758479) show the same binding energy -11.36 kcal/ 
mol. Brexpiprazole (ZINC84758479)shows the hydrophobic (HIS205, 
LYS251, TRP370) and hydrogen bond interaction (SER345, GLN347, 
SER350, SER369), along with this, there is salt Bridges formation by 
GLU208. Compound ZINC1530886 shows TYR246, LYS251, ASP254, 
LEU328, TRP370 hydrophobic interaction and LYS251, GLY371 
hydrogen bonds. TRP370 forms a pi-sacking interaction. All these 
selected seven hit compounds most common occurrence of a hydrogen 
bond at GLN347and SER350. These amino acids are to the catalytic site 
or pocket of TMPRSS2 protein, highly conserved with other TTPs (type II 
transmembrane serine proteases). All hit compounds hydrogen bond 
and hydrophobic interaction were shown in Supplementary Table 3. 

After that, we check the binding poses of selected active hit com-
pounds bind in a 1st and 2nd site based on binding energy and most 
populous cluster. Docked poses of selected compounds were shown in a 
different color binding pose based on binding energy were shown by 
magenta color and most populous cluster were shown by Green color 
(Supplementary Figure 14 and 15), but some compounds show the 
same pose where highest binding energy and most populous cluster were 
found in same poses, in 1st binding site differin and ZINC3830554 found 
(Supplementary Figure 14) and 2nd binding site Camostat, Darifenacin 
and Imatinib (Supplementary Figure 15). 

3.8. ADME prediction and PAINS analysis 

In Bioactive radar, the Pink area exhibits an optimal range of 
particular properties for selected hit compounds. In bioactive radar, 
LIPO shows the lipophilicity as XLOGP3; SIZE is size as molecular 
weight; POLAR is polarity as topological polar surface area (TPSA); 
INSOLU is insolubility in water by logS scale; INSATU is in saturation as 
per fraction of carbons in the sp3 hybridization and FLEX is flexibility as 
per rotatable bonds. Supplementary Table 4 shows the bioavailability 
radar for all virtual hit compounds. Selected compounds (1st binding 
sites) other parameter values were shown in Supplementary Table 5; 
Selected compounds (2nd binding site) other parameter values are 
shown in Supplementary Table 6. Selected compounds were submitted 
to ‘PAINS remover’ to identify the false positive compounds; through 

this analysis, selected compounds passed the PAINS filtration; all com-
pounds are PAINS negative. 

3.9. Clustering analysis 

We performed Clustering analysis using ChemBioServer online tool 
based on the Hierarchical Clustering, using Soergel (Tanimoto Coeffi-
cient) Distance method, Ward Linkage clustering method and Clustering 
Threshold is 0.9. compounds from the 1st docking site, we found three 
clusters shown in Fig. 4 (A). We selected all three clusters, which 
contain seven compounds. Among these compounds, the known 
Camostat compound is used to inhibit TMPRSS2, and these compounds 
have formed a cluster with ZINC3784182 (Differin) and ZINC95616937 
(Dasabuvir), which fall in cluster first. On the other binding site (2nd 

Site), we found two clusters shown in Fig. 4 (B), First cluster contains 
five compounds, including Camostat, and 2nd cluster found three com-
pounds. We check the structural difference between known Camostat 
and other hit compounds using these virtual hit compounds (supple-
mentary figure 16) using MolAlign Server. Their alignment score was 
shown in Supplementary Table 7. Based on the Maximum atom dis-
tance (Dmax) score, Dasabuvir shows the 0.971583 top scores and Dif-
ferin shows the 2nd top Dmax score of 0.961961 on the first docking site. 
In the 2nd Docking site, ZINC1530886 shows the top Dmax score of 
1.06116 and Raloxifene shows the 2nd top score of 1.02178. We use all 
these compounds for 20ns MD simulation and free energy calculation. 

3.10. Analysis of MD simulation 

The virtual hit compounds with the highest binding energy were 
subjected to 20ns MD simulation to check the modeled structure and 
conformational stability of protein and protein-ligand complex structure 
by calculating RMSD, RMSF, and radius of gyration. 

RMSD Analysis 
MD analysis for hit compounds present in 1st site 
RMSD for 20ns was run for checking the change in the Cα atom of a 

protein (without ligand) and protein-ligand complex, which show the 
same fluctuation at the start of simulation up to 1.5ns between 0.38 to 
0.5nm. After 1.5ns, Betrixaban shows the sudden increase in the fluc-
tuation and ZINC3830554 shows a slight decrease in the fluctuation and 
other compounds are show the slow increase in the fluctuation up to 4ns 
simulation as shown in Fig. 5 (A). After 10ns Camostst, and Sorafenib 
showed more movement (between 0.6-0.8nm) than the other hit com-
pounds. The other five compounds Betrixaban, Differin, Dasabuvir, 
E155, and ZINC3830554, show the fluctuation between 0.38-0.7nm 
from 1.5ns to 20ns. In comparison, all compounds showed the same 
fluctuation. RMSD values are shown in Fig. 5 (A). 

MD analysis for hit compounds present in 2nd site 
Fig. 5 (B) shows the protein’s RMSD plot and selected seven hit 

compounds, one known compound-complex. All the eight complexes 
show the same pattern of fluctuation as shown by protein without the 
ligand. Still, the RMSD value of hit compounds is higher in the RMSD 
value due to hit compound binding to a protein complex. This fluctua-
tion is between 0.2 to 1nm throughout the 20ns simulation. At the initial 
of simulation, the increased fluctuation was observed up to 3ns. Ral-
oxifene, Brexpiprazole and Fazadinium show more RMSD values, but 
other compounds showed the same RMSD value. After 7ns, Brexpipra-
zole slowly decreases in the RMSD value and Raloxifene reveals a 
gradual decrease in the RMSD value after 11.4ns. The Fazadinium 
compound shows an increase in RMSD up to 9ns; after that, it shows a 
steady fluctuation with a slight rise and a decrease in RMSD value. 
Compound ZINC1530886 shows the low RMSD value up to 12ns simu-
lation after that it was gradually increased up to 20ns and at the end of 
20ns simulation, it shows the 1.3nm fluctuation. The RMSD result re-
veals that the hit compounds-protein complexes are stable throughout 
the 20ns simulation period, excluding the ZINC1530886 compound 
shown in Fig. 5 (B). 
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Root Mean square Fluctuation Analysis 
MD analysis for hit compounds present in 1st site 
The RMSF (Root Mean square Fluctuation) value was calculated by 

plotting nm vs. residues. Supplementary Figure 17 (A), all screened 
seven compound protein complexes, and protein (free ligand) showed 
the same fluctuation, but Differin (Yellow color) showed more change 
than other compounds, as shown in Supplementary Figure 17 (A). The 
RMSF plot’s backbone showed more fluctuation at 60-105 amino acids 
because of the β-sheet, loop, and small helix region. There is a little 
movement at region 110-135 amino acid due to the helix and β-sheet 

region. After that, the connected fluctuation was observed in the 145- 
165 region. A motion was shown as screened compounds bound from 
1 amino acid to 170 amino acids, resulting in the changes in protein 
structure and RMSF moment. When a comparison was made between 
protein (without ligand) and protein-ligand complex with selected seven 
hits compound, the same fluctuation was observed. Simultaneously, 
some regions exhibited differences in fluctuation, as shown in Supple-
mentary Figure 17 (A). 

MD analysis for hit compounds present in 2nd site 
2nd docking site present between 205-370 amino acid. At initial 

Fig. 4. (A) Three clusters were formed by hit compounds found in the 1st site and (B) Two clusters were formed by hit compounds found in the 2nd site based on the 
Hierarchical Clustering method. 

Fig. 5. RMSD for protein and selected hit compounds for 20ns MD simulation. (A) RMSD for hit compounds found in 1st site and (B) RMSD for hit compounds found 
in 2nd site. 
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residues of the protein are not very stable. It shows more fluctuation; 
specifically, Fazadinium and ZINC1530886 show more RMSF values, 
shown in Supplementary Figure 17 (B). The remaining all other 
complexes have shown similar RMSF patterns. However, in 2nd docking 
sites, an amino acid which is present in a substrate binding site and Triad 
of the active catalytic site; these amino acids are H205, I255, D254, S350 
(Triad of the active catalytic site) and Q185, H205, E208, K209, P210, 
K249, K251, E298, K299, L328, Q347, S350, W370 (active or catalytic 
site). In this region, we observed fluctuation and when we compare these 
with Figures A and B, we see slightly more fluctuation in Figure B, which 
is the 2nd docking site. Some residues show higher fluctuations in a few 
regions, depending on the inhibitor compound’s nature and overall 
complex stability. 

The radius of Gyration Analysis 
MD analysis for hit compounds present in 1st site 
The radius of Gyration (Rg) analyzes the protein and ligand’s 

compactness level, which was done for the 20ns time scale, are shown in 
Supplementary Figure 18 (A). At the MD simulation start, the Rg value 
for seven FDA approval hit compounds between 2.3-2.5nm was 3700ps. 
The Sorafenib and Differin protein complex’s compactness showed an 
increase in the Rg value as simulation time increases. Still, after 
16000ps, it shows a decrease in Rg value and ends at 2.45nm Rg. The 
protein (Black color) showed more Rg value (up to 2.5nm), but after 
3200ps, it shows an Rg value decrease between 2.35-2.45nm. At the end 
of the simulation, all compounds showed the Rg value between 2.3- 
2.5nm. Compound Camostat, Betrixaban, E155, and ZINC 3830554 
show the same fluctuation between 2.33-2.5nm Rg. Rg values are shown 
in Supplementary Figure 18 (A). 

MD analysis for hit compounds present in 2st 

At the start of the simulation, all compounds, including protein were 
shows the Rg value between 2.35-2.55nm up to 1000ps, that compounds 
show the different Rg value, compound Imatinib shows the lowest Rg 
value throughout the simulation and Raloxifene and Brexpiprazole 
shows the highest Rg value at initial of simulation after 8000ps it shows 
the decrease in the Rg value. After the 15000ps simulation, the 
ZINC1530886 compound shows a sudden increase in Rg value and 
slowly decreases in it up to 2.55nm at the end of the simulation. 
Throughout the 20ns simulation Camostat (Red color) compound the Rg 
value decrease and ends with 2.2nm Rg value Supplementary 
Figure 18 (B). 

Further, the change in the protein’s secondary structure with time 
through the do_dssp program was done. Through this, we read a tra-
jectory file and compute the secondary structure for each time frame. 
Secondary structure changes observed when the ligand binds to the 
protein, as shown in Supplementary Figure 19 and Supplementary 
Figure 20. When selected FDA-approved compounds bind to the pro-
tein, a change was observed in protein structure compared between 
protein and protein-ligand complex. When the ligand binds, some 
changes occurred in turn (yellow color) to Bends (Green color). In the 1st 

docking site (Supplementary Figure 19), there is a Coil (White color) 
region between 60-100 amino acids in protein when the ligand binds, 
and there are changes in this region to form Bends (Green color). In some 
places, β-sheets (Red color) are changes to turn (yellow color) and Bends 
(Green color). The case of the 2nd docking site region between 200-350 
shows the changes in the structure in which A-helix to turns, coil to 
β-sheets/ Bends. Compounds Darifenacin observe the A-helix region 
between 225-250 amino acid shown in Supplementary Figure 20. 

3.11. Hydrogen bond analysis 

Hydrogen bonds play an essential role in stabilizing the protein- 
ligand complex. This hydrogen bond is responsible for drug speci-
ficity, metabolization and adsorption in the body. MD trajectories were 
analyzed to check the number of hydrogen bonds between protein-hit 
compounds complex and protein solvent interaction was observed dur-
ing the 20ns simulation. The number of hydrogen bonds helps us to 

understand the stability of the protein-ligand complex. 1st Docking site, 
the formation of a hydrogen bond between protein and ligands was 0 to 
7 bonds for 20 ns simulation. Still, compound E155 forms more 
hydrogen bonds than the other compound hydrogen bond throughout 
the simulation shown in Supplementary Figure 21 (A). 

On the other hand, we check the hydrogen interaction between 
protein and solvent throughout the 20 ns simulation. This shows the 
constant hydrogen bond throughout the simulation, between 690-870 
number of hydrogen bonds. All hit compounds and known reference 
compound shows the same number of hydrogen bonds shown in Sup-
plementary Figure 22 (A), but Differin (yellow color) shows the more 
hydrogen bond after 10.5ns up to 19ns. 2nd docking site, protein-ligand 
interaction shows the hydrogen bond less than four, but compound 
Camostst shows more hydrogen bond than the other compound- 
complex. Raloxifene also shows more hydrogen formation than the 
other compounds but less than the Camostst complex shown in Sup-
plementary Figure 21 (B). Once we check protein-ligand interaction, 
we check the protein solvent hydrogen bond interaction, which shows 
the hydrogen bond formation between 690-870, shown in Supple-
mentary Figure 22 (B). We conclude that all hit compounds and known 
compounds can bind to protein effectively and tightly through this 
hydrogen bond interaction. 

3.12. Principal component analysis (PCA) 

To perform PCA, the eigenvectors, eigenvalues and their projection 
were calculated using the essential dynamics methods. Through this 
PCA analysis, we analyzed the motion during hit compounds binding in 
different complexes. These eigenvectors determine the overall motion of 
the particular protein. The protein-ligand complexes can be explained 
by 2D projection plot generation in PCA shown in Supplementary 
Figure 23. For that, we select the first two principal components, which 
are PC1 and PC2, to predict the significant motions. From Supple-
mentary Figure 23 (A), we observe that all hit complexes from the 1st 

docking site show stable clusters as similarly shown by known camostat 
compound. Still, Sorafenib, Dasabuvir show a slight difference in the 
moments. 2nd docking site Fazadinium and ZINC1530886 show the 
difference in the moment of the protein complex. Other remaining 
compounds show the same moment shown in Supplementary 
Figure 23 (B), which offers a stable cluster. 

3.13. Free energy calculation 

After MD simulation, free binding energy was calculated by 
MMPBSA for selected seven FDA approved compounds as shown in 
Supplementary Table 8; the post-simulation free binding energy for 1st 

docking site calculations showed maximum binding free energy for 
ZINC3830554 compound, which is -288.702kJ/mol and van der Waal 
energy, Electrostatic energy, Polar solvation energy, SASA energy was 
-296.495kJ/mol, -237.287kJ/mol, 271.750kJ/mol, and -26.671kJ/mol 
respectively. The lowest binding free energy was shown by Betrixaban 
(ZINC30691754), which is -90.847kJ/mol, van der Waal energy, Elec-
trostatic energy, Polar solvation energy, and SASA energy was 
-253.444kJ/mol, -203.530kJ/mol, 390.250kJ/mol, -24.123kJ/mol 
respectively. Free binding energy for 2nd docking site, highest binding 
free energy was shown by ZINC1530886 compound -164.738kJ/mol 
and lowest binding free energy was shown by Camostat (DB13729) 
which is -55.609kJ/mol. The rest of the compounds binding free energy 
and Van der Waal energy, Electrostatic energy, Polar solvation energy, 
and SASA energy were shown in Supplementary Table 7. 

We further validated the ligand-protein complex interaction before 
simulation and after simulation (20ns MD simulation run). Residues 
involved in the binding interaction of pre and post-simulation were 
compared. Almost the same residues of TMPRSS2 within 4Å of the 
ligand were involved, as shown in Supplementary Table 9, suggesting 
the same pocket preference and stable ligand binding interactions. 
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4. Conclusion 

COVID-19 is a global infection increasing the high mortality rate. In 
this study, in total, 4182 FDA-approved compounds from the ZINC 
database were used to interact with TMPRSS2. The target TMPRSS2, 
which consists of 489 amino acids transmembrane region, was predicted 
to show one transmembrane helix region at 84-106 amino acid and 
remaining part of the present inside (amino acid 1-83) and outside (107- 
489 amino acid). The outer region and some parts of the helix region, 
which consist of 415 amino acids, were used to calculate the physico-
chemical properties. 

The modelled structure of the TMPRSS2 protein was generated and 
validated. Simultaneously, physicochemical properties space filtering 
for FDA-approved compounds was done to reduce them to 2815 com-
pounds. These 2815 compounds’ binding energy was revealed by mo-
lecular docking. The top virtual hit compounds were selected based on 
Docking Binding energy. In the 1st docking site, we selected seven 
compounds on them. ZINC3830554 showed promising binding energy 
-12.91kcal/mol and 2nd docking site. We selected eight compounds, 
including the known Camostat ZINC203686879 compound shows the 
highest binding energy, which is -12.56 kcal/mol. Through docking 
study, we observed that selected virtual hit compounds with docking 
scores comparable to or more than that of the known Camostat inhibitor, 
screened FDA approval compounds on 1st and 2nd docking site shows the 
higher docking score, which is considered to be the most potent inhib-
itor. These virtual hit compounds found in the 1st and 2nd docking site 
protein-ligand complexes have maintained stability at 0.3-1.2nm during 
the simulation. RMSF of the protein and complex were similar, which 
shows the strength when binds to protein. Among the virtual hit com-
pounds, the Differin (ZINC3784182) has been mostly used for external 
use to treat skin disease. Our hit compounds show the more binding 
energy they known Camostat compounds and offer more stability when 
formed 20ns MD simulation. Therefore, other screened FDA compounds 
might be effective against COVID-19, and these compounds can be 
explored further for drug repurposing treatment against coronavirus to 
inhibit the COVID-19 successfully. 
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