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Abstract: As critical components of DNA, enhancers can efficiently and specifically manipulate the
spatial and temporal regulation of gene transcription. Malfunction or dysregulation of enhancers is
implicated in a slew of human pathology. Therefore, identifying enhancers and their strength may
provide insights into the molecular mechanisms of gene transcription and facilitate the discovery of
candidate drug targets. In this paper, a new enhancer and its strength predictor, iEnhancer-GAN,
is proposed based on a deep learning framework in combination with the word embedding and
sequence generative adversarial net (Seq-GAN). Considering the relatively small training dataset,
the Seq-GAN is designed to generate artificial sequences. Given that each functional element in DNA
sequences is analogous to a “word” in linguistics, the word segmentation methods are proposed
to divide DNA sequences into “words”, and the skip-gram model is employed to transform the
“words” into digital vectors. In view of the powerful ability to extract high-level abstraction features,
a convolutional neural network (CNN) architecture is constructed to perform the identification
tasks, and the word vectors of DNA sequences are vertically concatenated to form the embedding
matrices as the input of the CNN. Experimental results demonstrate the effectiveness of the Seq-GAN
to expand the training dataset, the possibility of applying word segmentation methods to extract
“words” from DNA sequences, the feasibility of implementing the skip-gram model to encode DNA
sequences, and the powerful prediction ability of the CNN. Compared with other state-of-the-art
methods on the training dataset and independent test dataset, the proposed method achieves a
significantly improved overall performance. It is anticipated that the proposed method has a certain
promotion effect on enhancer related fields.

Keywords: enhancer; word embedding; sequence generative adversarial net; convolutional neural network

1. Introduction

Expressed as a specific sequence of nucleotides, the genetic information of most living
organisms is passed from parent to offspring by DNA replication. During the growth
and development of the offspring, the genetic information generally flows from DNA
through RNA to proteins via the process of transcription and translation [1]. As shown
in Figure 1, transcription can be divided into multiple sub-processes, mainly including
initiation, elongation, and termination [2]. Tissue-specific gene transcription is governed
by coordinated control of gene-proximal and -distal cis-regulatory elements (CREs) [3].
Among them, as critical components of DNA, enhancers can be commonly bound by
transcription factors (TFs) and chromatin modifying enzymes at specific genomic loci
to activate gene transcription as given in Figure 2 [4,5]. The regions flanking enhancers
are generally characterized by histone modifications and multiple distributed enhancer-
promoter interactions [2]. On average, each promoter interacts with 4.9 enhancers, which
has an important impact on spatiotemporal gene expression patterns [6]. Recently, advances
in epigenomics have demonstrated that enhancer activation and silencing can efficiently

Int. J. Mol. Sci. 2021, 22, 3589. https://doi.org/10.3390/ijms22073589 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-0066-2114
https://doi.org/10.3390/ijms22073589
https://doi.org/10.3390/ijms22073589
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22073589
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/22/7/3589?type=check_update&version=1


Int. J. Mol. Sci. 2021, 22, 3589 2 of 18

and specifically manipulate the biological behavior of downstream genes [7]. Different from
classical enhancers in their size, sensitivity of binding to perturbation, and transcription
factor density, super-enhancers (SEs) present high potential to maintain cell identity and
determine cell fate [8,9]. Notably, the functional role of enhancers on a genome-wide
scale remains elusive [6,10]. The comprehensive predictive annotations of enhancers will
provide better and more precise insights into the underlining biological roles and molecular
mechanisms of enhancers in the spatial and temporal regulation of gene transcription.

Figure 1. The sub-processes of DNA transcription.

Figure 2. Gene regulations of enhancers.

Recent studies have linked nucleotide variations in enhancer-associated chromatin-
modifying components to a number of phenotypic changes [11,12]. As reported, the absence
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of a SE can lead to under-expression of cancer associated genes and has profound effects
on certain oncogenic properties [13]. Accumulating evidence has underscored that the
SEs specific to cancers can induce disordered signaling pathways and contribute to tumor
progression [8]. Heyn et al. revealed that SEs undergo abnormal DNA methylation events
in cancer development and progression [9]. Cohen et al. indicated that the change of
epigenetic characteristics on enhancer elements is an important factor driving the formation
of human colorectal cancer [12]. Accordingly, targeting aberrant enhancer components has
become an effective therapeutic strategy on various cancers [8,11]. However, tremendous
efforts remain to be invested to further clarify the mechanisms underlying enhancer-
mediated processes in cancer and other diseases [14,15]. In addition, whether aberrant
enhancers drive tumor progression or are merely bystanders in the process of malignant
transformation remains unresolved [12]. A more thorough identification of enhancers will
potentially facilitate the development of enhancer modulators to overcome trait-associated
genetic variants and cancer associated somatic alterations.

For a variety of reasons, profound challenges exist in the identification of novel
enhancers [16]. First, enhancer regions are not evolutionarily conserved and account for a
very small proportion of the human genome. Second, their positions relative to target genes
are flexible and changeable as they do not necessarily interact with the nearest promoter,
but can regulate genes located farther away. Third, unlike well-defined protein-coding
genes, little is known about the general sequence encoding of enhancers.

With the explosion of genomic and epigenomic data, annotation methods for regu-
latory elements in specific cell and tissue types have been substantially developed [17].
Traditionally, the ability to regulate transcription detected by reporter gene assays is an
important basis for identifying enhancers [2]. Recent advances in next-generation sequenc-
ing (NGS) have greatly facilitated the assessment of functional enhancer activity. However,
these experimental methods are time-consuming, low-throughput, and applied to limited
cell types [6,18]. With this issue in mind, several computational methods have been pro-
posed to identify enhancers and their strength. We focus on machine learning and deep
learning approaches for enhancer and its strength identification published from 2016 to
2020. Stimulated by the pseudo amino acid composition, a sequence-based predictor called
iEnhancer-2L was proposed with pseudo k-tuple nucleotide composition [19]. Based on
support vector machine (SVM), Liu developed a predictor called iEnhancer-PsedeKNC
by extracting features from DNA sequences using pseudo degenerate kmer nucleotide
composition (PsedeKNC) [20]. Taking bi-profile Bayes and pseudo-nucleotide composition
as the feature extraction method, Jia and He employed a two-step wrapper-based feature
selection to construct a two-layer predictor called EnhancerPred [21]. Formulating DNA
elements with kmer, subsequence profile, and pseudo k-tuple nucleotide composition
(PseKNC), Liu et al. developed a new predictor called iEnhancer-EL by key classifiers
selected from elementary classifiers [22]. From the angle of the natural language process-
ing, Le et al. combined word embeddings with SVM to develop a novel predictor called
iEnhancer-5Step [23]. Taking one-hot encoding and k-mers as the input, Nguyen et al.
a convolutional neural network (CNN)-based integrative framework called iEnhancer-
ECNN [24]. To develop a predictor called iEnhancer-CNN, Khanal et al. transformed
DNA sequences into numerical vectors by word2vec, and then fed them into the CNN [25].
By incorporating multiple features sets, such as k-spectrum profile, mismatch k-tuple,
subsequence profile, position-specific scoring matrix (PSSM), and pseudo dinucleotide
composition (PseDNC), Cai et al. employed ‘XGBoost’ as a base classifier to construct
a two-layer predictor called iEnhancer-XG [26]. Enhancers are generally present in the
non-coding region constituted by more than 98% of human genome [16]. More efforts are
required for developing computational methods to broadly identify enhancers across the
human genome.

The aforementioned methods have obviously facilitated the development of enhancer
and its strength identification. However, some limitations still exist. (i) The relative
small training dataset with less than 3000 samples is a bottleneck for the performance
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improvement. (ii) Without considering word frequencies and context information, the
word segmentation methods adopted in previous studies have a weak theoretical basis
to extract “words” with a fixed-length. In general, for DNA sequences, the functional
elements equivalent to the “words” in linguistics vary in length. (iii) Most of machine
learning models heavily rely on hand-crafted features, which is generally difficult to
automatically extract comprehensive nucleotide patterns from DNA sequences based on
the limited domain knowledge, resulting in incomplete DNA representations.

By developing a new predictor in this area, this study is initiated in an attempt to
address the limitations as mentioned above. Aiming at the first limitation, the sequence
generative adversarial net (Seq-GAN) is employed for data augmentation. Aiming at the
second limitation, the word segmentation based on statistics is proposed to incorporate the
local and global sequence-order effects without the use of a fixed sliding window. Aiming
at the third limitation, the entirely data-driven skip-gram model and the convolutional
neural network (CNN) architecture are integrated to automatically mine the hidden high-
level discriminative features without involving any manual feature engineering. To the
best of our knowledge, the word segmentation based on statistics and the Seq-GAN have
not been applied in this research issue.

In conclusion, the main contributions of this paper are as follows. (i) A Seq-GAN
model is built to break through the limitations of a small dataset size, thereby improving the
quality of the benchmark dataset. (ii) Based on statistics, a word segmentation method is
developed to overcome the difficulty in extracting the semantic information of the sequence.
(iii) The skip-gram model and the CNN-based deep learning framework are designed to
compensate the limitations of traditional machine learning methods in feature construction,
thereby improving the performance and robustness of the prediction model.

The specific processes of the proposed method are implemented as follows. Non-
enhancer sequences, strong enhancer sequences, and weak enhancer sequences are, re-
spectively, generated by the Seq-GAN to enlarge the training dataset. DNA sequences are
segmented into a series of “words” by the 3-gram word segmentation or word segmen-
tation based on statistics. The skip-gram model is responsible for learning dense feature
vectors from these “words” in the positive training dataset to convert DNA sequences
into numerical embedding matrices. Finally, a CNN is constructed to extract the hidden
high-level discriminative features from these embedding matrices, and then perform the
enhancer and its strength identification tasks. The comparison results with existing meth-
ods indicate that the proposed method called iEnhancer-GAN achieves a significantly
improved overall performance on the training dataset and independent test dataset. The
flowchart of the proposed method is illustrated in Figure 3.

Figure 3. The flowchart of the proposed method iEnhancer-GAN .
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2. Results and Discussions
2.1. Performance Comparisons of Different Word Segmentation Methods

How to extract valid “words” from DNA sequences is particularly important for the
performance of a predictive model. The prediction results of word segmentation methods
without Seq-GAN on the training dataset and the independent test dataset are, respectively,
listed in Tables 1 and 2. The best performance evaluation indices are highlighted in bold.

For the first layer on the training dataset, the Acc achieved by the word segmentation
based on statistics is 0.011 higher than that achieved by the non-overlapped 3-gram word
segmentation, and comparable to that achieved by the overlapped 3-gram word segmen-
tation; the Sn obtained by the word segmentation based on statistics is 0.765, which is
0.012 lower than the non-overlapped 3-gram word segmentation and 0.026 lower than the
overlapped 3-gram word segmentation; the Sp of the word segmentation based on statistics
are significantly higher than that of the other two word segmentation methods; the over-
lapped 3-gram word segmentation has the largest MCC value of 0.577, only 0.008 higher
than the word segmentation based on statistics. In conclusion, these word segmentation
methods have similar predictive capabilities for enhancers on the training dataset. For the
second layer on the training dataset, the word segmentation based on statistics achieves the
highest Sn (0.737), followed by the non-overlapped 3-gram word segmentation (0.715) and
the overlapped 3-gram word segmentation (0.714); in terms of Acc and MCC, the word
segmentation based on statistics also achieves the best performance; in terms of Sp, the
overlapped 3-gram word segmentation scored the highest value of 0.635. Overall, for the
enhancer strength identification on the training dataset, the word segmentation based on
statistics is better than the other two word segmentation methods.

For the first layer on the independent test dataset, the word segmentation based on
statistics achieves the highest Acc of 0.772, Sn of 0.799, Sp of 0.746, and MCC of 0.578.
Notably, the MCC of the word segmentation based on statistics is 0.039 higher than that
obtained by the overlapped 3-gram word segmentation. For the second layer on the
independent test dataset, the Sn and MCC obtained by the word segmentation based on
statistics are 0.917 and 0.537, respectively, which are significantly higher than those of the
other two word segmentation methods; the non-overlapped 3-gram word segmentation
scores the highest Acc of 0.728, which is slightly higher than the word segmentation
based on statistics. To sum up, for the identifications of enhancer and its strength on the
independent test dataset, the word segmentation based on statistics attains much more
outstanding performance, which highlights its excellent generalization ability.

The performance comparisons of word segmentation methods indicate that the word
segmentation based on statistics is an ideal choice for DNA sequence segmentations.

Table 1. Performance comparisons of different word segmentation methods without Seq-GAN on the training dataset.

Layer Word Segmentation Method Acc Sn Sp MCC

First Layer
(Enhancer Identification)

Overlapped 3-Gram
Word Segmentation 0.788 0.791 0.786 0.577

Non-Overlapped 3-Gram
Word Segmentation 0.773 0.777 0.769 0.546

Word Segmentation
Based on Statistics 0.784 0.765 0.803 0.569

Second Layer
(Enhancer Strength Identification)

Overlapped 3-Gram
Word Segmentation 0.675 0.714 0.635 0.350

Non-Overlapped 3-Gram
Word Segmentation 0.659 0.715 0.602 0.320

Word Segmentation
Based on Statistics 0.675 0.737 0.613 0.353
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Table 2. Performance comparisons of different word segmentation methods without Seq-GAN on the independent test dataset.

Layer Word Segmentation Method Acc Sn Sp MCC

First Layer
(Enhancer Identification)

Overlapped 3-Gram
Word Segmentation 0.752 0.781 0.724 0.539

Non-Overlapped 3-Gram
Word Segmentation 0.762 0.784 0.741 0.552

Word Segmentation
Based on Statistics 0.772 0.799 0.746 0.578

Second Layer
(Enhancer Strength Identification)

Overlapped 3-Gram
Word Segmentation 0.718 0.843 0.593 0.484

Non-Overlapped 3-Gram
Word Segmentation 0.728 0.896 0.560 0.523

Word Segmentation
Based on Statistics 0.724 0.917 0.531 0.537

2.2. Analysis of the Generated DNA Sequences

In recent years, the nucleotide compositions of DNA sequences have been widely
employed to identify functional elements [27,28]. Furthermore, the formation of func-
tional elements is heavily dependent on the physicochemical properties of surrounding
nucleotides [29,30]. To intuitively visualize the effectiveness of the generated DNA se-
quences, the nucleotide compositions and mean values of some physicochemical properties
of the actual DNA sequences and the generated DNA sequences are plotted in Figure 4. As
shown in Figure 4a, adenine (A) and thymine (T) are preferred to have high frequencies
in non-enhancers, while the nucleotides are almost evenly distributed in enhancers. For
the actual non-enhancers and the generated enhancers, the frequency of each nucleotide is
almost the same. Similar results exist in strong enhancers and weak enhancers. As shown
in Figure 4b, the differences between the actual DNA sequences and the generated DNA
sequences are rather subtle in terms of mean values of 5 physicochemical properties for
trinucleotides. These results indicate that the generated DNA sequences can effectively
represent the characteristics of the actual DNA sequences. The inclusion of the generated
DNA sequences in the training dataset will highlight the differences of non-enhancers,
strong enhancers, and weak enhancers, thus helping to distinguish them.

(a)

Figure 4. Cont.
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(b)

Figure 4. Comparisons between the actual DNA sequences and the generated DNA sequences
on nucleotide compositions and mean values of some physicochemical properties. (a) The overall
frequencies of the nucleotides for the actual DNA sequences and the generated DNA sequences.
(b) Mean values of some physicochemical properties for the actual DNA sequences and the generated
DNA sequences.

2.3. Effectiveness of the Seq-GAN

The training dataset for enhancer and its strength identification is first enlarged by
the Seq-GAN. To intuitively reflect the effectiveness of the Seq-GAN, we list the prediction
results with and without the Seq-GAN on the training dataset and the independent test
dataset in Tables 3 and 4, where the word segmentation based on statistics is adopted to
extract “words” from DNA sequences.

For the first layer on the training dataset, the performance with the Seq-GAN is
superior to that without the Seq-GAN, with the results of Acc, Sn, Sp, and MCC increasing
from 0.784, 0.765, 0.803, and 0.569 to 0.951, 0.951, 0.951, and 0.902, respectively. Similar
conclusions can be conducted for the second layer on the training dataset. For the first
layer on the independent test dataset, all performance measures, except MCC, with the
Seq-GAN are superior to those without the Seq-GAN. Similar comparison results can be
obtained for the second layer on the independent test dataset. These results demonstrate
that the dataset size is indeed important for enhancer and its strength identification. The
Seq-GAN can further improve the reliability and performance of the predictor.

Table 3. Prediction results with and without Seq-GAN on the training dataset.

Layer Method Acc Sn Sp MCC

First Layer (Enhancer Identification) Without Seq-GAN 0.784 0.765 0.803 0.569
With Seq-GAN 0.951 0.951 0.951 0.902

Second Layer (Enhancer Strength Identification) Without Seq-GAN 0.675 0.737 0.613 0.353
With Seq-GAN 0.872 0.873 0.871 0.744

Table 4. Prediction results with and without Seq-GAN on the independent test dataset.

Layer Method Acc Sn Sp MCC

First Layer (Enhancer Identification) Without Seq-GAN 0.772 0.799 0.746 0.578
With Seq-GAN 0.784 0.811 0.758 0.567

Second Layer (Enhancer Strength Identification) Without Seq-GAN 0.724 0.917 0.531 0.537
With Seq-GAN 0.749 0.961 0.537 0.505
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2.4. Comparisons with Existing Methods

The parameters of the prediction model are adapted to the dataset. In general, the
models trained or tested by different datasets will achieve different identification results. To
evaluate the prediction performance objectively, we compare our method with previously-
published methods on the same training dataset and independent test dataset.

For the proposed method iEnhancer-GAN, the performance measures are calculated
by the prediction results of the training dataset rather than the prediction results of the
training dataset after data augmentation. Except iEnhancer-GAN, other methods do not
consider data augmentation. As listed in Table 5, for the first layer on the training dataset,
the prediction performance of iEnhancer-GAN outperforms that of all other methods. There
are only 3 methods that provide the Acc over 0.8, while the Acc achieved by iEnhancer-
GAN reaches up to 0.951. The Acc, Sn, Sp, and MCC yielded by iEnhancer-GAN are 0.951,
0.951, 0.951, and 0.902, which are 0.128, 0.14, 0.062, and 0.209 higher than the existing
best-performing method. Similar results are obtained for the second layer on the training
dataset. In conclusion, iEnhancer-GAN exhibits perfect performance for enhancer and its
strength identification on the training dataset.

As listed in Table 6, for the first layer on the independent test dataset, in terms of Acc
and Sn, iEnhancer-GAN and iEnhancer-5Step achieve pretty close values and outperform
all the other methods. iEnhancer-GAN reaches a higher Sp than some existing methods,
such as iEnhancer-2L, EnhancerPred, and iEnhancer-XG. The MCC of iEnhancer-GAN
is slightly lower than those of iEnhancer-5Step and iEnhancer-CNN, while better than
those of all other methods. Overall, iEnhancer-GAN is comparable with iEnhancer-5Step
and iEnhancer-CNN, and superior to all the other methods for enhancer identification
on the independent test dataset. For the second layer on the independent test dataset,
iEnhancer-GAN shows the best performance in terms of Acc, Sn, and MCC. It is worth
noting that that the Sn achieved by iEnhancer-GAN is more than 0.2 higher than that
achieved by the existing best-performing method, clearly indicating its overwhelming
superior for enhancer strength identification.

Table 5. The prediction results compared with those of other methods on the training dataset.

Layer Method Acc Sn Sp MCC

First Layer
(Enhancer Identification)

iEnhancer-2L [19] 0.769 0.781 0.759 0.540
iEnhancer-PsedeKNC [20] 0.768 0.773 0.763 0.540

EnhancerPred [21] 0.732 0.726 0.738 0.464
iEnhancer-EL [22] 0.780 0.757 0.804 0.561

iEnhancer-5Step [23] 0.823 0.811 0.835 0.650
iEnhancer-ECNN [24] 0.769 0.785 0.752 0.537
iEnhancer-CNN [25] 0.806 0.759 0.889 0.693
iEnhancer-XG [26] 0.811 0.757 0.865 0.627

iEnhancer-GAN [This Study] 0.951 0.951 0.951 0.902

Second Layer
(Enhancer Strength Identification)

iEnhancer-2L [19] 0.619 0.622 0.618 0.240
iEnhancer-PsedeKNC [20] 0.634 0.626 0.644 0.270

EnhancerPred [21] 0.621 0.627 0.615 0.241
iEnhancer-EL [22] 0.650 0.690 0.611 0.315

iEnhancer-5Step [23] 0.681 0.753 0.608 0.370
iEnhancer-ECNN [24] 0.678 0.791 0.564 0.368
iEnhancer-CNN [25] 0.764 0.436 0.768 0.451
iEnhancer-XG [26] 0.667 0.749 0.586 0.340

iEnhancer-GAN [This Study] 0.872 0.873 0.871 0.744



Int. J. Mol. Sci. 2021, 22, 3589 9 of 18

Table 6. The prediction results compared with those of other methods on the independent test dataset.

Layer Method Acc Sn Sp MCC

First Layer
(Enhancer Identification)

iEnhancer-2L [19] 0.730 0.750 0.710 0.460
EnhancerPred [21] 0.740 0.735 0.745 0.480
iEnhancer-EL [22] 0.748 0.710 0.785 0.496

iEnhancer-5Step [23] 0.790 0.820 0.760 0.580
iEnhancer-CNN [25] 0.775 0.783 0.790 0.585
iEnhancer-XG [26] 0.667 0.749 0.586 0.340

iEnhancer-GAN [This Study] 0.784 0.811 0.758 0.567

Second Layer
(Enhancer Strength Identification)

iEnhancer-2L [19] 0.605 0.470 0.740 0.218
EnhancerPred [21] 0.550 0.450 0.650 0.102
iEnhancer-EL [22] 0.610 0.540 0.680 0.222

iEnhancer-5Step [23] 0.635 0.740 0.530 0.280
iEnhancer-CNN [25] 0.750 0.653 0.761 0.323
iEnhancer-XG [26] 0.667 0.749 0.586 0.340

iEnhancer-GAN [This Study] 0.749 0.961 0.537 0.505

Except iEnhancer-5step, iEnhancer-ECNN, and iEnhancer-CNN, all the other methods
require researchers to carefully design and generate useful features, which is limited by
the lack of experiences and domain knowledge. The deep learning framework constructed
in the paper can automatically learn expert-free features without involving complex fea-
ture extraction and feature selection methods. The word segmentation methods used
in iEnhancer-5step, iEnhancer-ECNN, and iEnhancer-CNN are all based on the n-gram
theory. The biological words are generated by changing the size of n. These methods
only take the short or local DNA sequence information into account, and ignore the facts
that the long or global DNA sequence information is important for the prediction of func-
tional element. Based on statistical theory, the word segmentation method adopted in
the paper may incorporate more potential local and global discriminatory information.
Except iEnhancer-ECNN and iEnhancer-CNN, all the other existing approaches employs
the traditional machine learning algorithms. For iEnhancer-ECNN and iEnhancer-CNN,
the size of dataset used for training is equal to 2968. It is far less than normal require-
ment of deep learning model. The insufficient training data is the potential factor that
may cause overfitting. To solve this problem, the Seq-GAN is employed in the paper for
data augmentation.

3. Materials and Methods
3.1. Benchmark Datasets

The benchmark datasets used in this paper for performance analysis and comparison
are divided into two parts: training dataset and independent testing dataset.

The benchmark dataset constructed by Liu et al. [19] is employed to train the
predictive model. The same dataset was also used in the development of iEnhancer-
PsedeKNC [20], EnhancerPred [21], iEnhancer-EL [22], iEnhancer-5Step [23], iEnhancer-
ECNN [24], iEnhancer-CNN [25], and iEnhancer-XG [26], which provides a platform to
make a fair comparison with previous studies. According to the information on the chro-
matin state of nine cell lines, the benchmark dataset was constructed by extracting DNA
fragments with the length of 200 bp and removing fragment pairs with sequence identity
greater than 20%. After randomly selecting non-enhancers and selecting weak enhancers
based on the human embryonic stem cell, the training dataset includes 1484 enhancers
(742 strong enhancers and 742 weak enhancers) and 1484 non-enhancers.

In order to evaluate the generalization performance of the proposed method, the inde-
pendent test dataset first collected by Liu et al. [22] is also adopted in this study. It includes
200 enhancers (100 strong enhancers and 100 weak enhancers) and 200 non-enhancers.
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The enhancers (positive samples) and non-enhancers (negative samples) are used to
train and test the enhancer predictor in the first layer, while the strong enhancers (positive
samples) and weak enhancers (negative samples) are used to train and test the enhancer
strength predictor in the second layer.

3.2. Word Segmentations of DNA Sequences
3.2.1. 3-Gram Word Segmentation

To establish the correspondence between natural language and biological language,
DNA sequence is regarded as “sentence”, and it is composed of four kinds of “characters”,
Adenine(A), Cytosine(C), Guanine(G), and Thymine(T). Theoretically, A, C, G, and T can
also be, respectively, regarded as a “word”. However, only using the four words to depict
a long DNA sequence may not completely reflect the inner meaning. For this reason, the
n-gram word segmentation method is introduced to define the “word”.

According to the central dogma of molecular biology, the genetic codon is composed
of 3 consecutive nucleotides of mRNA. It transmits genetic information from mRNA to
protein, as well as determines the start, extension, and termination of protein synthesis [31].
In view of this, the 3-gram word segmentation method described in detail below is adopted
in this study to define “words” and “dictionary”.

For the overlapped 3-gram word segmentation, as shown in Figure 5a, the “words”
are defined as 3 consecutive nucleotides in the DNA sequence, while the “dictionary” is
defined as the set of all possible DNA subsequences of length 3.

Int. J. Mol. Sci. 2021, 1, 0 6 of 19

(a)

(b)

Figure 4. 3-gram word segmentation. The DNA subsequence in the bracket represent a “word”. (a)
Overlapped 3-gram word segmentation. (b) Non-overlapped 3-gram word segmentation.

For the overlapped 3-gram word segmentation as shown in Figure 4(a), the “words”
are defined as 3 consecutive nucleotides in the DNA sequence while the “dictionary” is
defined as the set of all possible DNA subsequences of length 3.

For the non-overlapped 3-gram word segmentation as shown in Figure 4(b), the
“words(i)” is obtained by moving with the window and stride size set as 3 from the
i-th positions of the DNA sequence. As can be obviously seen from Figure 4(b), the
“words(1)” and “words(4)” are exactly the same. The differences between the “words(2)”
and “words(5)” are only reflected on the first and second word. Similar conclusion can
be obtained for the “words(3)” and “words(6)”. To reduce computational complexity
without losing too much information, the DNA sequences are segmented into the first three
completely different “words”. The “dictionary” consists of 4 mononucleotides, 4× 4 = 16
dinucleotides, and 43 = 64 trinucleotides.

2.2.2. Word Segmentation Based on Statistics

Formally, a character is the smallest unit of a word. In context, the more adjacent
characters occur simultaneously, the more likely they are to form a word. Therefore, the
co-occurrence frequency or probability of adjacent characters can better reflect/measure
the reliability of the word, which is the theoretical basis of the word segmentation based
on statistics.

Given a DNA sequence, the word sequence obtained after the word segmentation and
the word occurrence probability are respectively denoted as w = {w1, w2, · · · , wm} and
p(wi). Assuming that each word is independent of historical words, the word segmentation
based on statistics aims to generate the word segmentation w∗ with the highest probability,
which can be formulated as

Figure 5. 3-gram word segmentation. The DNA subsequence in the bracket represent a “word”.
(a) Overlapped 3-gram word segmentation. (b) Non-overlapped 3-gram word segmentation.

For the non-overlapped 3-gram word segmentation, as shown in Figure 5b, the
“words(i)” is obtained by moving with the window and stride size set as 3 from the i-th po-



Int. J. Mol. Sci. 2021, 22, 3589 11 of 18

sitions of the DNA sequence. As can be obviously seen from Figure 5b, the “words(1)” and
“words(4)” are exactly the same. The differences between the “words(2)” and “words(5)”
are only reflected on the first and second word. Similar conclusion can be obtained for the
“words(3)” and “words(6)”. To reduce computational complexity without losing too much
information, the DNA sequences are segmented into the first three completely different
“words”. The “dictionary” consists of 4 mononucleotides, 4× 4 = 16 dinucleotides, and
43 = 64 trinucleotides.

3.2.2. Word Segmentation Based on Statistics

Formally, a character is the smallest unit of a word. In context, the more adjacent
characters occur simultaneously, the more likely they are to form a word. Therefore, the
co-occurrence frequency or probability of adjacent characters can better reflect/measure
the reliability of the word, which is the theoretical basis of the word segmentation based
on statistics.

Given a DNA sequence, the word sequence obtained after the word segmentation and
the word occurrence probability are, respectively, denoted as w = {w1, w2, · · · , wm} and
p(wi). Assuming that each word is independent of historical words, the word segmentation
based on statistics aims to generate the word segmentation w∗ with the highest probability,
which can be formulated as

w∗ = arg
w

max
m

∏
i=1

p(wi), wi ∈ D, (1)

where D represents a pre-determined dictionary. In order to obtain enough biological
words, the dictionary size is set to 150.

For a long DNA sequence with multiple possible word segmentations, the enumer-
ation method can be used to calculate the probabilities of all word segmentations, but
it has a low efficiency. For this reason, this paper takes the possible candidate words as
nodes and the probabilities of the word occurrence as the weights of edges to construct a
directed segmentation graph. The Viterbi algorithm [32] is employed to find the path with
the largest weight as the final word segmentation result.

Obviously, the dictionary D for DNA sequences is ambiguous. An iterative algorithm
is adopted in this study to define D through the following steps. (i) The byte-pair-encoding
(BPE) [33] algorithm is implemented to establish an initial dictionary by searching the most
frequent combinations of nucleotides. (ii) On the basis of a fixed dictionary, p(wi) is solved
by the expectation maximization (EM) [34] algorithm to maximize the marginal likelihood L

in Equation (2), where Xi is the i-th sequence in the corpus, and its segmentation candidate
set is denoted as S(Xi). (iii) Before and after each word wi is removed, the marginal
likelihood Li is, respectively, calculated, and their difference is denoted as lossi. (iv) The
words are ranked by lossi, and the top 70% are retained. (v) Repeat (ii)–(iv) until D meets
the desired size.

L =
n

∑
i=1

log(p(Xi)) =
n

∑
i=1

log ∑
w∈S(Xi)

p(w). (2)

3.3. Skip-Gram Model Based on Negative Sampling

Word2vec is a shallow neural network probabilistic language model that can learn
word embeddings in an unsupervised manner. It overcomes the problem of high dimen-
sionality and sparseness of word vectors brought by one-hot encoding, and incorporates
context information into the word vector representation [35]. As a classical model of
word2vec, the skip-gram model [36] predicting context words given a center word is
adopted in this study to convert the “words” into numerical vectors.

As shown in Figure 6, the input of the skip-gram model, x ∈ R1∗V , is the one-hot
representation of the center word. For the overlapped 3-gram word segmentation, V = 64;
for the non-overlapped 3-gram word segmentation, V = 84; for the word segmentation
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based on statistics, V = 150. After passing through a hidden layer with N = 300 neurons,
the input is mapped to a lower dimensional space. The output of the hidden layer is
h = xW, where W ∈ RV∗N , and its j-th row corresponds to the low-dimensional vector
representation of the word labeled as j. As x is a one-hot vector, xW is a row of W, and
h ∈ R1∗N is the vector representation of the center word. The output of the model y = hU,
where U ∈ RN∗V , and its j-th column corresponds to the context vector representation of
the word labeled as j. Based on the Softmax activation function, the predicted probability
of the word labeled as j is

Pj =
exp(h ·Uj)

∑V
k=1 exp(h ·Uk)

. (3)

Figure 6. The skip-gram model based on negative sampling.

Unlike the update of all weights for each training sample, negative sampling allows
only a small part of the weights to be updated at a time, thereby reducing the computational
complexity in the gradient descent process. In the skip-gram model, the center word and
its context are, respectively, denoted as w and context(w). Each word q in context(w)
and w can constitute a positive sample. The number of words in the context is set to 4.
Negative sampling is performed for each positive sample (w, q) to obtain m = 10 negative
samples (w, t), where t ∈ NEG(q) = {q1, q2, · · · , qm}. For positive samples, the output
of the skip-gram model is p̂q = σ(hθq), where σ is the sigmoid function, and θq is the
context vector corresponding to the word q in the weight matrix U. For negative samples,
the output of the skip-gram model is p̂t = σ(hθt). Under this strategy, the optimization
goal is to simultaneously maximize the probability of positive samples and minimize the
probability of negative samples, that is to maximize

Fw = ∏
q∈context(w)

[ p̂q ∏
t∈NEG(q)

(1− p̂t)]. (4)

For a given corpus C, the final optimization goal is

F = ∏
w∈C
Fw. (5)

For calculation convenience, take the logarithm of F ; then,

F = log ∏
w∈C
Fw = ∑

w∈C
logFw = ∑

w∈C
∑

q∈context(w)

[log(σ(hθq)) + ∑
t∈NEG(q)

log(1− σ(hθt))]. (6)

From 1− σ(x) = σ(−x), we can get

F = ∑
w∈C

∑
q∈context(w)

[log(σ(hθq)) + ∑
t∈NEG(q)

log(σ(−hθt))]. (7)
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The stochastic gradient ascent method [37] is adopted in this study to solve the
optimization problem.

Based on the skip-gram model and word segmentation methods described above, the
word vectors of DNA sequences can be obtained. If they are directly summed and averaged
or horizontally concatenated, each sequence will be represented by a one-dimensional
vector, which can be used as the input of traditional machine learning algorithms to achieve
classification. However, it may cause the loss of the sequence-order information and the
position dependency effects. The sequence personalities is likely to be discarded and
converted into commonality. Its efficiency is still hampered by their inability to extract
useful features from a robust and automatic framework. In view of this, this study vertically
concatenates the word vectors of DNA sequences so that each sequence is represented by a
two-dimensional pre-trained embedding matrix.

3.4. Construction of Convolutional Neural Network

In recent years, deep learning has promoted the explosive development of artificial
intelligence. From the perspective of bionics, deep learning extracts features at different
levels, avoiding the explicit feature reconstruction process in traditional machine learning
algorithms. Various models of deep learning have fully energized the field of protein
functional annotation. To mine remote interaction information, Kaleel et al. proposed a
protein relative solvent accessibility prediction framework by combining a bidirectional
recurrent neural network with a stack of convolutional layers [38]. By integrating local
context and global sequence features, Zeng et al. constructed a new end-to-end deep
learning framework to predict protein interaction sites [39].

Convolutional neural network (CNN) is the most typical deep learning architecture.
Inspired by visual neuroscience, the essence of CNN is to learn multiple filters that can
extract features of input data. As shown in Figure 7, the CNN is composed of input layer,
embedding layer, convolutional layer, pooling layer, and fully connected layer, which will
be described in detail below.

Figure 7. The architecture of the proposed convolutional neural network (CNN).

Input layer. In the input layer, a given DNA sequence is segmented into vertically
arranged “words” so that each “word” is regarded as an operating unit rather than the
entire sequence.

Embedding layer. As shown in Figure 7, the construction process of the embedding
layer can be viewed as a “query" process, or it can be represented by a fully connected layer.
According to the word order of the DNA sequence, the pre-trained word vector wword is
added to the corresponding row of the embedding matrix by matching each word with
each row index in the pre-trained embedding matrix.

Convolutional layer. The convolution operation with a stride of 1 can be formulated as

zj
i = σ(sum(Wj � xi:i+m−1) + bj), (8)

where zj
i represents the output of the i-th local region after passing the j-th convolution

kernel. It is worth mentioning that the weights are shared when the same convolution
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kernel is applied to different local regions. σ denotes the rectified linear unit (ReLU)
activation function. � denotes the element-wise product between matrices. sum(A) refers
to the sum of all the elements of A. xi:i+m−1 is a submatrix composed of the first row
to the i + m− 1-th row of x, and x represents the embedding matrix of the input DNA
sequence. Wj and bj are, respectively, the weight and bias of the j-th convolution kernel.
The size of the convolution kernel is set to 2 × 300, 3 × 300, and 4 × 300, respectively. Each
convolution kernel is intended to learn a specific type of feature, and multiple convolution
kernels may help in providing insights into different potentially important DNA patterns.
The number of convolution kernels with each size is set to 128. Finally, 128 × 3 feature
maps are generated in the convolutional layer.

Pooling layer. To highlight the key features in the feature map and prevent over-fitting
during the training phase, max pooling is performed to extract the maximum value of each
feature map.

Fully connected layer. The feature vectors generated in the pooling layer are concate-
nated to form a new feature vector with a dimension of 128 × 3 = 384. Each element of new
feature vector is fully connected to 384 neurons, and the Softmax function is used to output
the category probabilities.

3.5. Sequence Generative Adversarial Net

The CNN-based deep learning model trained by the dataset with less than 3000 samples is
prone to over-fitting. To reduce the influence of the problem, the sequence generative adversarial
net (Seq-GAN) [40] is employed to rebuild the dataset by generating artificial sequences.

As shown in Figure 8, the Seq-GAN mainly includes a generator and a discriminator.
The role of the discriminator is to distinguish real data from generated data, while the role
of the generator is to improve itself to generate data that can confuse the discriminator.
According to the policy gradient algorithm, the optimization goal of the generator is to
maximize the accumulated expected value of reward from the initial state s0, which can be
formulated as

max J(θ) = E[RT |s0, θ] = ∑
y1∈Y

Gθ(y1|s0) ·QGθ
Dφ(s0, y1), (9)

where RT is the reward for the complete sequence. θ and φ are, respectively, the model
parameters of the generator and the discriminator. yt is the output of the generator at time
t. Y is the set of all possible outputs. QGθ

Dφ(s, a) is the action-value function, which means
that the action a is selected under the state s, and then the decision is made in accordance
with the policy. Taking the output of the discriminator as the reward, QGθ

Dφ(s, a) is then
defined as

QGθ
Dφ(s = Y1:t−1, a = yt) =


1
N

N

∑
n=1

Dφ(Yn
1:T), Yn

1:T ∈ MCGβ(Y1:t; N) f or t < T

Dφ(Y1:t) f or t = T

, (10)

where Y1:t = {y1, y2, · · · , yt}, and Yn
t+1:T is sampled based on the generative model Gβ and

the Monte Carlo (MC) search with a roll-out policy.
The generated data is used to retrain the discriminator, and its objective function is

min
φ
−ER(log Dφ(R))− EG[log(1− Dφ(G))], (11)

where R denotes the real dataset, while G denotes the generated dataset. After training the
discriminator for one or more rounds, the generator is updated with the following formula.

θ ← θ + αOJ(θ), (12)

where OJ(θ) = ∑T
t=1 EY1:t−1 [∑yt∈Y OθGθ(yt|Y1:t−1) ·QGθ

Dφ(Y1:t−1, yt)].
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To ensure that the input format of the Seq-GAN is similar to English sentences, the
non-overlapped 2-gram word segmentation is employed for pre-segmentations of DNA
sequences. Through the Seq-GAN, 20,000 non-enhancer sequences, 10,000 strong enhancer
sequences and 10,000 weak enhancer sequences are, respectively, generated. The generated
sequences may have a high similarity with the original sequences. To avoid potential bias
and over-fitting, CD-HIT software [41] is used to remove redundant sequences with a
cutoff of 80%.

Figure 8. The architecture of the sequence generative adversarial net.

3.6. Performance Measures

In this paper, the 10-fold cross-validation [42] is adopted to evaluate the performance
of enhancer and its strength predictors. That is, the training dataset is randomly split into
10 disjoint subsets with roughly equal size. Each subset is, in turn, taken as a test set, and
the remaining are combined to train the predictor.

The overall prediction accuracy (Acc), sensitivity (Sn), specificity (Sp), and Matthew’s
correlation coefficient (MCC) are used to quantitatively measure the prediction perfor-
mance. They are defined as

Acc =
TP + TN

TP + TN + FP + FN
, (13)

Sn =
TP

TP + FN
, (14)

Sp =
TN

TN + FP
, (15)

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
, (16)

where TP, FP, TN, and FN represent true positives, false positives, true negatives, and false
negatives, respectively.

4. Conclusions

As critical regulatory elements of DNA, enhancers perform significant roles in gene
transcription and are implicated in a series of diseases. Accurately identifying enhancers
and their strength could contribute to revealing the underlying mechanisms of enhancer-
related biological processes and disease progression. In this study, a promising deep
learning framework has been developed to identify enhancers and their strength. Firstly,
for the relatively small training dataset, the Seq-GAN is adopted to generate non-enhancers,
strong enhancers and weak enhancers. Then, the skip-gram model combined with the
word segmentation based on statistics is developed to obtain the embedding matrices,
i.e., feature descriptors for DNA sequences. Finally, a CNN architecture is designed to
integrate feature extraction and the identification tasks. Experimental results indicate that,
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compared with the 3-gram word segmentation, the word segmentation based on statistics
can extract “words” from DNA sequences more effectively; the actual DNA sequences and
the generated DNA sequences have strong similarities on nucleotide compositions and
mean values of some physicochemical properties; the performance with the Seq-GAN is
superior to that without the Seq-GAN. Furthermore, the proposed method iEnhancer-GAN
performs far better than previous methods on the training dataset. On the independent test
dataset for the enhancer identification, iEnhancer-GAN is comparable with iEnhancer-5Step
and iEnhancer-CNN, and superior to all the other methods; on the independent test dataset
for the enhancer strength identification, iEnhancer-GAN shows the best performance in
terms of Acc, Sn, and MCC. To further improve the prediction performance, our further
work will mainly focus on the ensemble learning techniques and autoencoder-based
feature reduction.
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