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Abstract
Metabolic acidosis could emerge from diseases disrupting acid-base
equilibrium or from drugs that induce similar derangements. Occurrences are
usually accompanied by comorbid conditions of drug-induced metabolic
acidosis, and clinical outcomes may range from mild to fatal. It is imperative
that clinicians not only are fully aware of the list of drugs that may lead to
metabolic acidosis but also understand the underlying pathogenic
mechanisms. In this review, we categorized drug-induced metabolic acidosis in
terms of pathophysiological mechanisms, as well as individual drugs’
characteristics.
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Introduction
Metabolic acidosis is defined as an excessive accumulation of 
non-volatile acid manifested as a primary reduction in serum bicar-
bonate concentration in the body associated with low plasma pH. 
Certain conditions may exist with other acid-base disorders such as 
metabolic alkalosis and respiratory acidosis/alkalosis1.

Humans possess homeostatic mechanisms that maintain acid-
base balance (Figure 1). One utilizes both bicarbonate and non- 
bicarbonate buffers in both the intracellular and the extracellular 
milieu in the immediate defense against volatile (mainly CO

2
) and 

non-volatile (organic and inorganic) acids before excretion by the 
lungs and kidneys, respectively. Renal excretion of non-volatile 
acid is the definitive solution after temporary buffering. This is an 
intricate and highly efficient homeostatic system. Derangements in 
over-production, under-excretion, or both can potentially lead to 
accumulation of excess acid resulting in metabolic acidosis (Figure 1).

Drug-induced metabolic acidosis is often mild, but in rare cases it 
can be severe or even fatal. Not only should physicians be keenly 
aware of this potential iatrogenic complication but they should also 
be fully engaged in understanding the pathophysiological mecha-
nisms. Metabolic acidosis resulting from drugs and/or ingestion 

of toxic chemicals can be grouped into four general categories 
(Figure 2):

1. Drugs as exogenous acid loads

2.  Drugs leading to loss of bicarbonate in the gastrointestinal 
(GI) tract or kidney

3. Drugs causing increased endogenous acid production

4. Drugs that decrease renal acid excretion

Some medications cannot be placed into one single category, as they 
possess multiple mechanisms that can cause metabolic acidosis.

In suspected drug-induced metabolic acidosis, clinicians should 
establish the biochemical diagnosis of metabolic acidosis along 
with the evaluation of respiratory compensation and whether there 
is presence of mixed acid-based disorders2, then convert the bio-
chemical diagnosis into a clinical diagnosis with identification of 
the invading acid/drug3. Next is to review the list of medications 
by history and record to determine whether any of the drugs are 
culprits in either the generation or the exacerbation of the disorder. 
Note that just because a patient has, for example, lactic acidosis and 

Figure 1. Excretion of acid and ways to jeopardize the system.
1.  A strong non-volatile acid HA dissociates to release H+ and poses an immediate threat to plasma pH.
2.  Bicarbonate buffers the H+ and generates CO2, which is expelled in the lungs and results in depletion of body HCO3

-. Non-bicarbonate 
buffers (collectively referred to as B) carry the H+ until the kidneys excrete it.

3.  The kidneys split CO2 into H+ and HCO3
- and selectively secrete H+ into the lumen and HCO3

- into the blood. In addition, any excess H+ 
from the body fluid is also excreted.

4.  Most H+ excreted in the urine is carried by urinary buffers (UBs).
5.  Some organic anions (A) (e.g. lactate, ketoanions) can be metabolized to regenerate the HCO3

-. If A is not metabolizable (e.g. phosphate 
or sulfate), it is excreted in the urine.

* Two possible ways by which metabolic acidosis can occur.
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is on a drug that can potentially cause lactic acidosis does not mean 
that the two are causally related. Finally, if a drug is indeed causing 
some degree of metabolic acidosis, the clinician should make an 
appraisal of the benefits from the drug weighed against the sever-
ity of the metabolic complication to determine whether cessation 
of therapy is justified. For example, if a patient with problematic 
seizures is effectively controlled by topiramate, a mild degree of 
metabolic acidosis can be more tolerable than seizures.

Drugs resulting in exogenous acid precursors
Non-pharmaceutical agents: toxic alcohols, phenols, and 
ammonium chloride
Methanol4, ethylene glycol5, diethylene glycol6, and isopropanol7 
are volatile alcohols that produce a high plasma osmolar gap (the 
alcohol itself and the aldehyde metabolite), pure high anion gap 
metabolic acidosis from their metabolism into strong carboxy-
lic acids such as formic acid (from methanol), and a combination 
of oxalic, glyoxylic, and glycolic acid (from ethylene/diethylene 
glycol). Isopropanol alcohol, due to the absence of an alpha-carbon, 
could only be metabolized to a keto- group and contributes to an 
osmolar gap but not high anion gap metabolic acidosis in poison-
ing encounters. Toluene abuse with glue or paint thinner sniffing 
can cause hippuric metabolic acidosis that presents with a normal 
plasma anion gap but elevated urinary osmolar gap because of the 
rapid clearance of hippurate8. Note that the time at which blood 
is sampled may reveal variable osmolar and anion gap. When the 

hydroxyl group is metabolized to carboxyl with a low pKa, there 
will not be an osmolar gap due to the contemporaneous consumption  
of bicarbonate; however, the metabolite between hydroxyl and 
carboxyl is an aldehyde, which still contributes to an osmolar gap 
but not an anion gap.

Ammonium chloride is not usually abused but is used extensively 
by investigators to study overproduction acidosis and used outside 
the laboratory9. There is a rise in acid excretion and a fall in serum 
HCO

3
- concentration that remains constant after initial drop10,11.

Overproduction acidosis from pharmaceutical agents
The excessive use of amino acids with a net positive charge would 
result in liberation of H+ during metabolism (arginine and lysine) 
in parenteral alimentation with inadequate concomitant administra-
tion of alkali12. Another example in this category is propylene glycol 
(1,2-propanediol [PG]), a common hygroscopic and emulsify-
ing agent that is metabolized to lactate13. The U.S. Food and Drug 
Administration classified PG as GRAS (generally recognized as 
safe). The recommended maximum daily intake of PG should be 
less than 25 mg/kg/day (equivalent to 21 mmol/day for a 70 kg 
person)14. Each drug injection may have very different amounts of 
PG. Clinically significant toxicity is seen only in rapid, massive, and 
protracted parenteral administration of high quantities, especially in 
patients with renal impairment. PG intoxication from intravenous 
vitamin therapy was reported in pediatric patients who developed 

Figure 2. Mechanisms of drug-induced metabolic acidosis.
1.  Increased exogenous ingestion of acidic precursors that are converted into strong acids.
2. Loss of alkali from kidney or GI tract.
3. Increased endogenous production of strong organic acids.
4.  Compromised renal net acid excretion by inhibition of the renin-angiotensin-aldosterone system (RAAS), impaired proximal tubule (PT), or 

distal tubule (DT) H+ secretion.
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stupor15. Intoxication with lactic acidosis and hyperosmolality 
were found during treatment of schizophrenia16, with the use of 
intravenous benzodiazepines13,17, etomidate18, nitroglycerin19, and 
barbiturates20, all with PG as a vehicle. Approximately 55% of PG 
undergoes oxidation to propionaldehyde and pyruvic, acetic, and 
lactic acid, while the remainder is excreted unchanged in the urine21,22. 
Some studies have demonstrated PG-injured proximal tubular cells, 
leading to impaired renal acidification20,23. Patients with hepatic dys-
function, renal insufficiency, and diabetic ketoacidosis are more sus-
ceptible to PG toxicity and development of lactic acidosis24.

Drugs causing external base loss
Renal loss of bicarbonate
Carbonic anhydrases (CAs) are critical enzymes for bicarbonate 
reabsorption. Acetazolamide is a commonly used CA inhibitor in 
the treatment of ocular and convulsive disorders. It causes bicarbo-
naturia and a mild degree of hyperchloremic metabolic acidosis25. 
There have also been reports of symptomatic anion gap metabolic 
acidosis associated with acetazolamide therapy in elderly patients26 
and in those with impaired renal function26,27 and diabetes mellitus28. 
Severe metabolic acidosis may result from inhibition of pyruvate 
carboxylase and mitochondrial damage29. Ocular solution of CA 
inhibitor-induced acidosis is rare but has been reported30.

Topiramate is approved for the treatment of seizure, as a migraine 
headache prophylaxis, and for weight loss, with off-label use for 
bipolar disorder, obesity, neuropathic pain, and smoking cessation31. 
It inhibits CA II, IV, and XII31. Topiramate generates a mild hyper-
chloremic metabolic acidosis32,33 but increases urinary pH and dras-
tically lowers urinary citrate excretion, thus increasing the risk for 
calcium phosphate urolithiasis34,35.

The sulfonamide class of drugs also has CA inhibitory activity. 
Topical application and absorption over large areas in burn patients 
can cause extremely high blood levels and systemic CA inhibition36. 
This results in more than mere renal bicarbonate loss but rather a 
systemic disequilibrium syndrome.

Gastrointestinal loss of bicarbonate
Cholestyramine is an oral agent for treating hypertriglyceridemia 
and cholestasis by binding and sequestering bile acids from the 
entero-hepatic circulation; the non-absorbable complexes are 
eventually excreted in the stool37. In the GI tract, cholestyramine 
also binds phosphate, sulfate, and bicarbonate, leading to potential 
loss of bicarbonate from the body. Under normal conditions, this 
is easily corrected by renal regeneration of bicarbonate. However, 
patients with impaired renal function are at risk of hyperchloremic 
acidosis37–39.

Sevelamer hydrochloride is a non-reabsorbable phosphate binder. 
Dialysis patients on sevelamer hydrochloride have lower mean 
serum bicarbonate concentration during and at the end of therapy 
compared to those treated with calcium acetate40,41. The chloride 
released upon phosphate stimulates bicarbonate secretion by the gut 
via chloride-bicarbonate exchange40. This secretion coupled with 
defective ability to regenerate bicarbonate in renal patients leads 
to hyperchloremic acidosis. This complication is avoided by using 
sevelamer carbonate, which binds phosphate and releases carbonate 
instead42, or by bixalomer, which contains no chloride, and seems to 

demonstrate equal efficacy of phosphate binding with no evidence 
of acidosis in clinical trials43,44. Laxative abuse, calcium chloride, 
and magnesium sulfate could also cause hyperchloremic acidosis 
because the secreted bicarbonate from the pancreas is trapped by 
calcium and magnesium45–47 and then excreted in stools.

Drugs causing increased endogenous acid 
production
Lactic acidosis
Lactic acid is produced under basal metabolic conditions and H+ 
ions are released. Normally, an equivalent amount of H+ ions is 
consumed when the liver and renal cortex utilize lactate for glu-
coneogenesis or oxidize it to water and CO

2
 so that acid-base bal-

ance remains undisturbed (Figure 3). Lactic acidosis is arbitrarily 
classified into overproduction of lactate (type A), underutilization 
of lactate (type B), or both48. Type A lactic acidosis is associated 
with generalized or regional tissue hypoxia, while type B is seen 
in patients with metabolic abnormalities in malignancy, hepatic 
dysfunction, diabetes mellitus, congenital enzymatic deficiency, 
and drugs or toxins45,49. In 1995, metformin replaced phenformin, a 
notorious inducer of lactic acidosis, and became the primary bigua-
nide used today50. Post marketing safety surveillance revealed no 
cases of fatal lactic acidosis51. There are still reports of metformin-
associated lactic acidosis (MALA)52,53 with proposed mechanisms 
shown in Figure 3.

Most cases of MALA were associated with some underlying condi-
tions such as acute renal failure induced by volume depletion, other 
potential nephrotoxic agents and concurrent use of radio-contrast 
media, or hepatic insufficiency54–58. Blood pH and lactate levels are 
not prognostic in MALA59. Although the incidence of MALA is low, 
once developed, the mortality can be staggeringly high52, particu-
larly in the critical care setting, so discontinuation is advised in a 
patient with impending renal and multi-organ failure. Recently, a 
less restrictive guideline is proposed on metformin usage in patients 
of stable chronic kidney disease60–63. In general, the mortality of  
MALA decreased from 50% to 25% from the 1960s to the present64.

Highly active antiretroviral therapy (HAART) has led to dramatic 
reductions in HIV-associated morbidity and mortality65 (Figure 3). 
However, lactic acidosis complicated this therapy, especially 
with the nucleoside and nucleotide reverse transcriptase inhibi-
tor (NRTI)-based regimens: didanosine, stavudine, lamivudine, 
zidovudine, and abacavir66–71. Combined use of these drugs fur-
ther increases the risk of lactic acidosis72. Moreover, didanosine73, 
cidofovir74, lamivudine, and stavudine75 could cause Fanconi syn-
drome with pan-proximal tubular dysfunction leading to exacer-
bation of the acidosis and reduction of the plasma anion gap. The 
mortality of HAART-induced lactic acidosis can be as high as 50%76.

Linezolid is a long-term antibiotic against serious resistant Gram-
positive organisms77,78 with adverse effects including bone marrow 
toxicity, optic/peripheral neuropathy, and lactic acidosis77,79,80. Con-
current use of selective serotonin uptake inhibitors such as citalo-
pram and sertraline may predispose patients to lactic acidosis81,82. 
The vast majority of lactic acidosis occurred in the elderly and 
those receiving prolonged treatment, and most resolved upon ces-
sation of linezolid80. Children receiving linezolid appeared to suffer 
lactic acidosis earlier during treatment83 (Figure 3).
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Isoniazid is commonly used to treat tuberculosis84. Dosing more 
than 300 mg/day can lead to refractory grand mal or localized sei-
zure, coma, and lactic acidosis84–86. Some suggested acidosis stems 
from excessive muscle activity during refractory seizure86,87, and 
slow reversal was observed in the postictal period. One proposed 
mechanism is inhibition of conversion of lactate to pyruvate84,87–89 
(Figure 3).

Propofol is commonly used for induction and maintenance of 
anesthesia, sedation, and interventional procedures. Two cases were 
reported on propofol-associated severe metabolic acidosis90,91. Risk 
factors include severe head injury, critical illness, prolonged admin-
istration (>48 hours) of large doses (>4 mg/kg/hour, equivalent to 
1.6 mmol/hour for a 70 kg person), and inborn errors of fatty acid 
oxidation90,92 (Figure 3).

Ketoacidosis
Ketosis develops when metabolism of fatty acid exceeds the removal 
of ketoacids (acetoacetic and β-hydroxybutyric). Typically there is 
insulin deficiency and/or resistance coupled with elevated glucagon 
and catecholamine. Glucose utilization is impaired and lipolysis is 
increased, augmenting the delivery of glycerol, alanine, and fatty 
acids for ketoacid generation45,93.

Overdose with salicylates in children commonly produces high 
anion gap acidosis, while adults exhibit a mixed respiratory alka-
losis and metabolic acidosis. Metabolic acidosis occurs during 
salicylate toxicity due to uncoupling of oxidative phosphorylation 
and interfering with the Krebs cycle45,86, resulting in accumulation 
of lactic acid and ketoacids in as many as 40% of adult patients 
with salicylate poisoning45,94,95. The anion gap is mainly composed 
of ketoanions and lactate, while salicylate anion seldom exceeds 
3 mEq/L.

Alcoholic ketoacidosis occurs when ethanol is abused chronically 
in the setting of poor carbohydrate intake and volume contraction. 
Ketosis resolves when the ethanol intake is interrupted and the 
patient is provided with nutrients and fluid, which stimulates insu-
lin secretion and promotes the regeneration of bicarbonate from the 
metabolism of ketoacid anions45.

Pyroglutamic acidosis
The γ-glutamyl cycle produces glutathione, which is involved 
in the inactivation of free radicals, detoxification of many 
compounds, and amino acid transport45,96,97. Acetaminophen can 
deplete glutathione, leading to increased formation of γ-glutamyl 
cysteine, which is converted and accumulated as pyroglutamic 

Figure 3. Mechanisms of drug-induced lactic acidosis.
1.  Metformin inhibits pyruvate carboxylase (PC) → inhibits hepatic gluconeogenesis146 → excess lactate84. Metformin also inhibits complex 

I of the mitochondrial electron transport chain (ETC)84 → increases NADH/NAD+ ratio → blocks the entry of pyruvate into the tricarboxylic 
acid (TCA) cycle147. LDH = lactate dehydrogenase

2. �In�vitro, nucleoside reverse transcriptase inhibitors (NRTIs) inhibit β-oxidation, the tricarboxylic acid (Krebs) cycle, and DNA γ-polymerase 
→ mitochondrial dysfunction and loss of transcription of essential enzymes → hepatic steatosis (increased triglycerides), myopathy, 
pancreatitis, nephrotoxicity, and lactic acidosis68.

3.  Linezolid may cross-react with mammalian cellular processes → disrupts mitochondrial protein synthesis involved in ETC75,148.
4.  Propofol may inhibit coenzyme Q and cytochrome C at Complex IV in ETC, and also inhibit mitochondrial fatty acid metabolism88.
5. Isoniazid inhibits metabolism of lactate to pyruvate82.
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acid (5-oxoproline)45,97. Patients at risk include those with malnu-
trition, sepsis, alcohol abuse, underlying liver disease, and/or renal 
insufficiency96. Acetaminophen ingestion alone may not cause 
pyroglutamic acidosis, but synergistic interaction between acetami-
nophen and the other factors as noted above96 can. Concomitant use 
of other drugs such as aminoglycoside and β-lactam penicillin is 
reported to increase the risk98.

Drugs causing decreased renal acid excretion
Syndromes of hyper-hypokalemia and reduced distal 
hydrogen secretion
Both angiotensin II and aldosterone are stimulators of the H+- 
ATPase α-intercalated cells in the cortical collecting tubule99,100, 
adding H+ into the urinary luminal. Inhibition of the renin-angiotensin- 
aldosterone system (RAAS), which leads to secondary inhibition of 
the H+-ATPase, can lead to decreased H+ secretion and metabolic 
acidosis. Additionally, inhibition of the RAAS reduces Na+ reab-
sorption, which reduces the luminal electronegativity and reduces 

H+ excretion by the H+-ATPase100. The same mechanisms can cause 
hyperkalemia, which can in turn reduce stimulation of the H+/K+-
ATPase101. Hyperkalemia suppresses ammoniagenesis in the proxi-
mal tubule, impairs NH

4
+ transport in the medullary thick ascending 

limb, and reduces medullary interstitial ammonium concentration, 
all of which can lower urine acid excretion45,102. Therefore, any 
drug that affects the RAAS or causes hyperkalemia can increase 
the risk of metabolic acidosis. These drugs include the following  
(Figure 4):

- Cyclooxygenase (COX) inhibitors45,103

- β-adrenergic receptor blockers45,104

-  Angiotensin-converting enzyme inhibitors (ACEIs), angi-
otensin II receptor blockers (ARBs), and direct renin 
inhibitors104–106

- Heparin107 and ketoconazole108,109

Figure 4. Mechanisms of drug-induced distal H+ secretion.
1.  Cyclooxygenase (COX) inhibitors and β-blockers interfere with release of renin, leading to hyperkalemia with metabolic acidosis43,101.
2.  Angiotensin-converting enzyme inhibitors (ACEIs), aldosterone receptor blockers (ARBs), and renin inhibitors all interfere with the renin-

angiotensin-aldosterone system (RAAS), causing hyperkalemia with hyperchloremic metabolic acidosis102–104.
3. Heparin105 and ketoconazole106,107 interfere with aldosterone synthesis.
4. Spironolactone and eplerenone block aldosterone receptors43,108.
5.  Na+ channel blockers lead to reduced net negative charge in lumen in cortical collecting ducts (CCD), which reduces K+ and H+ excretion 

and causes hyperkalemia and acidosis43,108–111.
6.  Calcineurin inhibitors interfere with Na, K-ATPase in the principal cell decreasing transepithelial K secretion and H+ secretion, cause 

vasoconstriction of afferent glomerular arterioles, and decrease glomerular filtration rate and alter filtration fraction112,113.
7.  Lithium causes a voltage-dependent defect for H+ secretion and decreases H+-ATPase activity114–116.
8.  Amphotericin B binds to sterol in mammalian cell membranes106,107 forming intramembranous pores which increase permeability and back 

diffusion of H+.
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- Spironolactone and eplerenone45,110

- Potassium-sparing diuretics: amiloride and triamterene45,110

- Pentamidine and trimethoprim111–113

- Calcineurin inhibitors: cyclosporine and tacrolimus114,115

When these drugs are administered in combination, there is 
increased risk for hyperkalemia and metabolic acidosis, especially in 
patients with diabetes, chronic kidney disease, and liver disease45.

In contrast, patients with classic distal renal tubular acidosis (dRTA) 
generally have hypokalemic hyperchloremic metabolic acidosis. 
The metabolic acidosis results from the inability to acidify urine 
in the distal nephron and impaired excretion of NH4+100. Inherited 
forms of dRTA have defects in the basolateral HCO

3
-/Cl- exchanger, 

B1 or A4 subunits of the H+-ATPase, or CA. Some medications 
can mimic these defects by altering membrane permeability and 
causing leaky pathways45. Amphotericin B108,109, lithium116–118, 
and foscarnet119 are known to cause leak and lead to hypokalemic 
hyperchloremic metabolic acidosis (Figure 4).

Drugs causing Fanconi syndrome and proximal renal 
tubular acidosis
The proximal tubule is the initial step in renal acidification and is 
essential in maintaining acid-base homeostasis by reclaiming 80% 
of filtered bicarbonate (HCO

3
-) (Figure 5). Bicarbonate reabsorp-

tion occurs by luminal H+ excretion and HCO
3
- extrusion back into 

the blood at the basolateral membrane100. CAs catalyze the reac-
tion: CO

2
 + H

2
O → HCO

3
-+ H+. If proximal HCO

3
- reclamation is 

impaired, more HCO
3
- is delivered to the distal tubule, which has 

limited capacity for HCO
3
- reabsorption. Bicarbonaturia ensues and 

net acid excretion decreases, which eventually leads to metabolic 
acidosis45,120. Generalized proximal tubule dysfunction is termed 
Fanconi syndrome. Potential drugs that could induce Fanconi syn-
drome include the following (Figure 5):

- CA inhibitors (e.g. acetazolamide)25.

-  Anti-viral/HIV drugs (e.g. lamivudine, stavudine75 and 
tenofovir121–124). Most tenofovir-induced cases are subclinical125

-  Platinum-containing agents (e.g. cisplatin126,127) and DNA 
alkylating agents (e.g. ifosfamide128–130) are common proximal 

Figure 5. Mechanisms of proximal tubule (PT) and drug-induced Fanconi syndrome.
1. CA inhibitors25 cause bicarbonaturia and hyperchloremic metabolic acidosis in the elderly26 and patients with renal failure27 and 
diabetes28.
2. Antineoplastic platinum-containing agents126,127 and DNA-alkylating agents128–130 damage proximal tubule cells through accumulation and 
induced cell apoptosis.
3. Anti-viral/HIV drugs75,121–124, valproic acid (VPA)131–133, and outdated tetracycline134–136 interfere with mitochondrial function within proximal 
tubule cells, leading to tubular dysfunction.
4. Aminoglycosides137,148,149 induce acidosis with unclear mechanisms150.
5. Deferasirox139–143 increases hemodynamic iron removal, causes vacuolization of proximal tubular epithelial cells142, and elevates iron 
absorption in various organs. All could lead to acidosis.
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tubule toxins. Note that cyclophosphamide, structural isomer 
of ifosfamide, can also cause hemorrhagic cystitis but is not 
nephrotoxic by producing less chloroacetaldehyde128

- Valproic acids (VPAs)131–133

- Outdated tetracycline134–136

-  Aminoglycoside137 accumulation in proximal tubule would lead 
to nephrotoxicity with an unclear mechanism; however, inci-
dence decreased recently due to a better monitoring strategy138

- Deferasirox139–143

Many other agents such as fumaric acid144, suramin145, and imatinib146 
have also been associated with Fanconi syndrome in case reports. 
This field remained to be further explored as proximal tubule toxic-
ity is common due to the existence of multiple drug transporters at 
the surface membrane, leading to very high uptake of drugs by this 
segment147.

Conclusion
In summary, metabolic acidosis can occur as a side effect of ther-
apy. Instead of memorizing the catalogue of drugs, clinicians should 
classify these agents based on their pathophysiologic mechanisms 
to facilitate the recognition of potential causal relationships. Some 
of these side effects are inferred from empirical observations, but 

some have undergone extensive studies to determine the pathogen-
esis of metabolic acidosis. We hope that this review will intrigue 
our readers to experience that eureka moment identifying unrecog-
nized explanations for metabolic acidosis in patients or to partake in 
extending clinical observations to clinical investigations.
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