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Non-small-cell lung cancers (NSCLC) represent 85% of all lung cancers, with

adenocarcinoma as the most common subtype. Since the 2000’s, the discovery of

molecular alterations including epidermal growth factor receptor (EGFR) mutations and

anaplastic lymphoma kinase (ALK) rearrangements together with the development of

specific tyrosine kinase inhibitors (TKIs) has facilitated the development of personalized

medicine in the management of this disease. This review focuses on the biology

of molecular alterations in NSCLC as well as the diagnostic tools and therapeutic

alternatives available for each targetable alteration. Rapid and sensitive methods

are essential to detect gene alterations, using tumor tissue biopsies or liquid

biopsies. Massive parallel sequencing or Next Generation Sequencing (NGS) allows

to simultaneously analyze numerous genes from relatively low amounts of DNA. The

detection of oncogenic fusions can be conducted using fluorescence in situ hybridization,

reverse-transcription polymerase chain reaction, immunohistochemistry, or NGS. EGFR

mutations, ALK and ROS1 rearrangements,MET (MET proto-oncogenereceptor tyrosine

kinase), BRAF (B-Raf proto-oncogen serine/threonine kinase), NTRK (neurotrophic

tropomyosin receptor kinase), and RET (ret proto-oncogene) alterations are described

with their respective TKIs, either already authorized or still in development. We have
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herein paid particular attention to the mechanisms of resistance to EGFR and ALK-TKI.

As a wealth of diagnostic tools and personalized treatments are currently under

development, a close collaboration between molecular biologists, pathologists, and

oncologists is crucial.

Keywords: non-small-cell lung cancer, molecular alterations, next-generation sequencing, liquid biopsy, ALK

rearrangement, EGFR mutation, tyrosine kinase inhibitors

KEY CONCEPTS

• Massive parallel sequencing, known as NGS, could be
particularly suited to multiplexed assessment of driving
somatic alterations.

• Gene rearrangements are rare events, with no single detection
technique shown to be 100% sensitive and specific. NGS
platforms present several key advantages over FISH, IHC,
or RT-PCR.

• Despite an initial response to EGFR inhibitors, patients
develop acquired resistance and relapse. The most frequent
mechanism of resistance (50–60%) is the T790M mutation in
exon 20.

• The strategy of sequencing ALK inhibitors was associated with
a median overall survival of 81–89.6 months.

INTRODUCTION

Lung cancer is the leading cause of cancer mortality, accounting
for 1,600,000 annual deaths worldwide and results in a 5-years
survival rate of 19%. Non-small-cell lung cancers (NSCLC)
represent 85% of all lung cancers, with adenocarcinoma as the
most common subtype. Lung cancers are often diagnosed at an
advanced stage, with worse prognosis (1).

In the 2000’s, the discovery of epidermal growth factor
receptor (EGFR) mutations and a specific tyrosine kinase
inhibitor (TKI) gefitinib, led to the development of personalized
treatments for NSCLC (2). Over the last 2 decades, other
NSCLC genetic alterations have been described, such as
anaplastic lymphoma kinase (ALK), ROS proto-oncogene 1
(ROS1), rearranged during transfection proto-oncogene gene
(RET), neurotrophin kinase (NTRK) gene rearrangements,
B-Raf proto-oncogene, serine/threonine kinase (BRAF)
mutations, MET proto-oncogene (MET) amplification, as
well as MET exon 14 skipping (3–9). These genes encode
tyrosine kinase receptors (TKR) and their alterations have
been shown to induce their constitutive activation, thereby
driving carcinogenesis through intra-cellular signaling.
Their inhibition by specific TKIs leads to cellular apoptosis.
Several EGFR-, ALK,- or ROS1-inhibitors, currently used
in clinical settings, have considerably improved NSCLC
patients’ overall response rates (ORR), progression-free
survival (PFS), and overall survival (OS), compared to
standard chemotherapy.

Consequently, molecular profiling of patients with advanced
NSCLC is now systematically performed in lung adenocarcinoma

patients, with a targetable molecular alteration found in 15–
20% of Caucasian patients (10). In clinical practice, different
molecular diagnostic tools are employed for detecting these
alterations, such as immunochemistry (IHC), fluorescent in situ
hybridization (FISH), and DNA- or RNA-based sequencing.

This review focuses on the biology of molecular alterations in
NSCLC, and on diagnostic tools and therapeutic alternatives for
each targetable alteration (Table 1).

BIOLOGY OF EGFR AND ALK
ALTERATIONS IN NSCLC

EGFR Mutations
EGFR, a member of the EGFR family, is a TKR that activates
multiple signal transduction pathways. In NSCLC, EGFR
mutations correspond to somatic gain-of-function mutations,
occurring within the tyrosine kinase domain (14). These
alterations commonly consist of in-frame deletions in exon
19 (45–50%) or the L858R substitution in exon 21 (40–45%).
Uncommon alterations represent 10% of EGFRmutations, which
induce a heterogeneous response to EGFR-TKIs, along with a
poorer prognosis than that of more frequent mutations (15,
16). Exon 18 G719X are the most frequent alterations in this
subgroup, accounting for 28% of all rare mutations, is followed
by exon 21 L861Q (16–35% of cases) and exon 20 S768I (5% of
cases) alterations (17, 18).

EGFR mutations are identified in 11% of NSCLCs and in
44% of non-smoker patients (10). These alterations are mainly
observed in non-smoking, Asian, and female patients.

TABLE 1 | Known oncogenic drivers with sensibility to targeted therapies in

NSCLCs (7, 10–13).

Oncogenic drivers Prevalence in

NSCLCs (%)

EMA-approved tyrosine kinase

inhibitors

EGFR mutations 11 Gefitinib, erlotinib, afatinib, osimertinib

ALK rearrangements 5 Crizotinib, ceritinib, alectinib,

brigatinib, lorlatinib

MET exon 14

mutations

3–4 –

MET amplifications 2–4 –

BRAF V600E mutations 1–2 Dabrafenib + trametinib

RET rearrangements 1–2 –

NTRK rearrangements 0.1–1 –

EMA, European Medicine Agency; NSCLC, non small cell lung cancer.

Frontiers in Medicine | www.frontiersin.org 2 October 2019 | Volume 6 | Article 233

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Pinsolle et al. Molecular Alterations in Lung Cancer

ALK Rearrangements
The ALK gene is located on the short arm of chromosome 2 and
encodes a TKR, member of the insulin receptor family. The ALK
receptor is activated by two ligands: FAM150A and FAM150B
(19, 20). The precise role of the ALK protein in humans is still
unknown, whereas the ALK gene plays a role in mice’s neuronal
development and testicular function (21, 22). The ALK protein is
physiologically not expressed in the lung tissue. These alterations
correspond to either an inversion or translocation, leading to
a fusion between the 3′ portion of ALK and 5′ portion of a
partner gene. These fusion genes encode a fusion protein that
activates signaling pathways (e.g., PI3K-AKT, JAK-STAT, MAPK
pathways), promoting carcinogenesis (23).

In NSCLC, several fusion partners have been described. The
most common of these is echinoderm microtubule-associated
protein like-4 (EML4), located on the short arm of chromosome 2
but separated fromALK by 12Mb (24). The breakpoint site in the
partner gene can occur within different exons, thereby defining
the fusion variant. Consequently, different fusion variants have
been identified, the most frequent being EML4(13)-ALK(20),
which consists of a fusion between exon 13 of EML4 and exon
20 of ALK. This is also known as EML4-ALK variant 1. Three
characteristics are shared by the reported ALK fusion variants.
First, the entire ALK kinase domain is conserved. Second and
third, the partner promoter and its oligomerization domain are
both preserved, inducing an aberrant expression and constitutive
activation of the fusion protein (25). As a result, levels of ALK
fusion protein expression, along with invasion or proliferation
capacities of the tumor cells, could depend on the nature of
the fusion variant (26). Moreover, the breakpoint site within the
gene partner could affect protein stability and, thus, treatment
sensitivity (27, 28). Some clinical data showed a link between the
variant nature and the TKI response (29).

ALK rearrangements are rare. They are identified in 2–7%
of NSCLCs and 15% of non-smoker patients, mainly in young
patients (3, 10, 30, 31).

DIAGNOSTIC TOOLS FOR DETECTING
MOLECULAR ALTERATIONS IN A
CLINICAL SETTING

Accurate and timely detection of these oncogenic alterations, has
been proven crucial, as the products of these alterations can be
targeted by a growing list of inhibitors, leading to tumor growth
inhibition and regression.

Methods for Genotyping Tumor Tissues or
Liquid Biopsies
Genotyping of somatic genetic alterations has become routine
practice for patient management from baseline to disease’s
progression following targeted therapies. Lung cancers are
predominantly diagnosed through biopsy, but the quantity of
tumor cells in each biopsy varies, largely depending on tumor
cellularity and size of the specimen acquired. Furthermore, most
tumor tissues are preserved in formalin-fixed paraffin-embedded
(FFPE) blocks, which crosslink the nucleic acids, thereby

resulting in fragmented DNA. Finally, EGFR testing should be
available as soon as possible to enable first-line therapy using
EGFR antagonists. Therefore, genotyping of NSCLC biopsies
requires rapid and sensitive technologies that only require a small
amount of input DNA.

While Sanger sequencing, the gold standard technology that
characterizes a mutation in hereditary disease, proves to be
not sensitive enough, numerous alternative sequencing methods
have been developed and validated for the clinic (Table 2). In
France, a multicenter study named ERMETIC (Evaluation of
EGFR Mutation Status for the administration of EGFR-TKIs
in Non-Small Cell Lung Carcinoma) was conducted to validate
numerous methods based on restriction enzyme analysis, allele-
specific amplification, single-base extensions, fluorogenic allele-
specific oligonucleotide hybridization probe, pyro-sequencing, or
high-resolution melting (33).

All these methods are single-gene approaches and must be
multiplied by a rapidly growing number of predictive markers.
Massive parallel sequencing, also known as next-generation
sequencing (NGS), is particularly well-suited to the multiplexed
assessment of somatic alterations (34). Associated with panel
development, bioinformatic supports permit to evaluate the
sequencing coverage and to characterize and annotate not only
known hot spot mutation but also other molecular anomalies
[non-hot-spotmutations, gene copy number (CNV)]. For clinical
applications, targeted sequencing of a limited set of essential
genes has so far proven to be themost practical approach. Indeed,
targeted panels offer the advantage of high depth (>300X), as well
as high overall exon coverage (>99%). These two quality markers
secure the sensitivity of NGS at around 2%. Thus, the choice
of a specific clinical NGS assay requires careful consideration
of panel size, inclusion of appropriate markers, the ability to
detect multiple genomic aberration types, and compatibility with
a low quality and quantity of nucleic acids (35). This choice is
also dependent of the analysis’s cost. Sabatine et al. (36) have
demonstrated that NGS price varies from about 600–3,400$

TABLE 2 | Methodologies for detecting mutations [modified according to Diaz and

Bardelli (32)].

Technique Sensitivity Optimal application Detection of known hot

spot/other mutations

Sanger

sequencing

>10% Tumor tissue Yes/Yes

Pyrosequencing 5–10% Tumor tissue Yes/No

Next-generation

sequencing

2% Tumor tissue Yes/Yes

Quantitative PCR 1% Tumor tissue Yes/No

ARMS 0.1% Tumor tissue, ctDNA Yes/No

BEAMing, Digital

PCR

0.01% ctDNA, rare variants in

tumor tissue

Yes/No

TAM-Seq 0.01% ctDNA, rare variants in

tumor tissue

Yes/Yes

ARMS, amplification refractorymutation system; ctDNA, circulating tumor DNA; BEAMing,

beads, emulsification, amplification and magnetics binding; TAM-seq, tagged-amplicon

deed sequencing; PCR, polymerase chain reaction.
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depending on the number of genes including in the panel.
Recently, Simarro et al. (37) have compared cost of conventional
molecular analysis for detection of EGFR, ALK, and ROS1
anomalies (367.66e) to targeted NGS analysis (421.23e) and
conclude that NGS could be implemented to routine diagnosis
at reasonable costs.

When tumor tissue specimens are insufficient, not
contributive, or not obtainable, molecular analyses are conducted
on liquid biopsies. Usually, a liquid biopsy corresponds to
circulating tumor DNA (ctDNA), which represents only a
small proportion (<1%) of circulating free DNA (cfDNA).
Discriminating ctDNA from normal cfDNA is aided by the
fact that tumor DNA is defined by the presence of somatic
mutations. Recently, the development of sensitive and accurate
assays has facilitated the detection and quantification of rare
variants among a large excess of normal sequences. At this
time, the commercially available Cobas EGFR mutation test is
the only technology approved by the United-Stated (US) Food
and Drug Administration (FDA) for the molecular analysis
of liquid biopsy specimens in NSCLC. Meanwhile, several
digital genomic technologies have been validated for clinical
use (38, 39). While these methods exhibit very high sensitivity
(around 0.01%), they remain single-gene approaches. New NGS
developments are particularly focused on molecular barcodes
called unique molecular identifiers (UMIs) and improved
bioinformatics pipelines, able to discriminate mutations with a
very low allele frequency from sequencing background (40). The
MOSCATO trial has demonstrated a good concordance between
tumor biopsies and cfDNA NGS analyses (41). This study also
demonstrate that molecular diagnosis (comprising tumor biopsy,
dispatch of biological samples, histological control, CGH array,
targeted NGS, bioinformatics analysis and multidisciplinary
molecular tumor board) represent a modest part (6%) of the
overall cost of a molecular-guided therapy (42).

Tools for Detecting Oncogenic Fusions
In NSCLC, kinase genes, such as ALK, ROS1, RET, NTRK1,
and NTRK3 [but also BRAF, MET, EGFR, and fibroblast growth
factor receptor (FGFR)] or other proto-oncogenes such as
neuregulin 1 (NRG1), may all be subject to gene rearrangements
that lead to constitutive downstream pathway activation (3, 6,
11, 43–45). Since 2007, a wealth of literature exploring ALK
rearrangements has shown that the detection of gene fusions can
prove challenging, because the genomic rearrangements leading
to these fusions can be either intra- or interchromosomal (3). In
addition, these ALK rearrangements have been shown to have
multiple partner genes (46–49). In these somatic rearrangements,
the 5′ portion of a gene that is expressed by the tumor cell
progenitor is fused to the 3′ portion of the proto-oncogene. If
an in-frame fusion gene is formed, it is then transcribed into an
mRNA fusion transcript that encodes a fusion protein. In the
case of kinase gene rearrangements, the fusion protein consists
of the N-terminus of the fusion partner, generally containing
a dimerization domain, fused to the C-terminus portion of the
target gene, containing the kinase domain (Figure 1).

Several molecular tools are currently available for identifying
oncogenic fusions in tumor specimens, enabling the detection of
these fusions at the DNA, RNA, or protein levels:

- FISH allows the detection of gene rearrangements at the
DNA level. The most common assays are based on the
use of specific break-apart probes, which are located on
either side of the breakpoint in the target gene. This
technique was initially considered the gold standard for
detecting gene rearrangements, and ALK FISH was FDA-
approved as a companion diagnostic to help identify patients
eligible for crizotinib treatment. However, FISH can lead to
false-positive results, because some rearrangements detected
on the DNA may not produce a fusion transcript. This
approach can additionally miss some small intrachromosomal
rearrangements, leading to false-negative results (50–55).
Moreover, this technique is not able to provide any
indication regarding the nature of the fusion variant
(i.e., the fusion partner and introns/exons involved in
the fusion).

- Reverse-transcription PCR (RT-PCR) allows the detection of
fusion transcripts, although a high number of primer pairs
is required for it to be able to detect all known fusions. This
is associated with a high risk of false-negatives, considering
the diversity of fusions possible, and this approach misses the
detection of unknown fusions (56, 57).

- Immunohistochemistry (IHC) can be used to detect fusion
proteins, provided a sensitive, specific, and clinically validated
antibody is available. This approach is based on the
assumption that these antibodies are not specifically directed
against fusion proteins, but rather toward their active domain.
ALK immunohistochemistry (clone D5F3) has received FDA
approval as a companion diagnostic tool, and comparable
results have been obtained with the 5A4 clone, provided
validated methods are employed (56–63). There are currently
no approved IHC-based tests for detecting other fusion
proteins, though commercial antibodies are available for
identifying ROS1 and TRK proteins.

- NGS, or massive parallel sequencing, assays represent
a multiplexed approach to tumor samples’ molecular
characterization. Considering the high number of molecular
alterations described so far in NSCLCs, these assays are
likely to experience a bright future in the clinical setting.
NGS assays performed on either tissue DNA or RNA enable
full characterization of the genes involved in the fusion
(rearranged gene and partner gene). However, some of
the DNA panels currently available are not designed to
detect all possible fusions. Indeed, some panels display
only partial intron coverage, especially for genes containing
large introns, such as the NTRK genes, or introns with
repetitive regions. This can lead to false-negative results,
because most breakpoints occur within introns. As with
FISH, DNA-based NGS can generate false-positive results,
given that some gene rearrangements detected on DNA are
unlikely to produce a fusion transcript (50, 64). Conversely,
Davies and colleagues recently compared DNA-based and
RNA-based NGS assays on 14 ROS1-positive samples. In
their study, these authors pointed out that the genomic
breakpoint was an unreliable predictor of the transcript-level
breakpoint. Moreover, some DNA breakpoints predicted
to yield an out-of-frame transcript by DNA-sequencing
actually produced an in-frame transcript that was detected
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FIGURE 1 | Schematic representation of a fusion between the 3′ portion of a protein kinase gene (containing the kinase domain) and 5′ part of a fusion partner gene,

resulting in the production of a fusion gene, fusion transcript, and fusion protein.

by RNA-sequencing (47). Using RNA-based NGS assays for
detecting gene rearrangements thus appears to be preferable,
because these techniques allow for detecting fusions within the
coding regions, in addition to fusions that are likely to result in
an expressed fusion protein. This is, however, only applicable
if the extracted RNA is of sufficient quality and quantity,
which is, undoubtedly, the most critical limitation of these
assays (56, 65, 66). Last but not least, NGS approaches
permit the full characterization of the introns/exons
involved in the fusions, which could provide essential
information for the clinicians, if specific fusion variants
are found to display different biologic and clinical features,
as previously proposed in ALK- or RET-rearranged lung
cancers (67–69).

Gene rearrangements are rare events, and no single
detection technique has been shown to be 100% sensitive
and specific. However, NGS platforms present several key
advantages over FISH, IHC, or RT-PCR, given that these
platforms not only allow for multiplex testing of both point
mutations and rearrangements, but additionally aid molecular
characterization of the fusion variant produced. This kind
of information could later gain clinical relevance, if some
variants prove to be superior predictors of response than
others (56, 65, 70–74).

THERAPEUTICS AND RESISTANCE

EGFR
Since 2009, several first-line Phase III trials have revealed the
impressive clinical activity of first- (gefitinib and erlotinib)
and second- (afatinib) generation EGFR-TKIs over platinum-
doublet chemotherapy, for advanced NSCLC EGFR-mutated
patients (75–82). Despite the lack of proven evidence regarding
OS benefits, probably due to the high percentage of crossed-
over patients, these first- and second-generation EGFR-TKIs
are clearly associated with a significant benefit in terms of
PFS and ORR, namely 9–14 months and 60–70%, respectively.
Dacomitinib, a second-generation EGFR-TKI, was investigated
in the Phase III ARCHER 1050 trial. This agent was shown
to significantly improve both PFS (9.2 vs. 14.7 months, HR
0.59; p < 0.0001) and OS (34.1 vs. 26.8 months, HR 0.76; p
= 0.0438) compared to gefitinib (83, 84). Nevertheless, all four
drugs received FDA approbation in the first-line setting, without
any distinction made in terms of patient selection (Table 3).

Despite an initial response to EGFR inhibitors, patients are
most likely to develop acquired resistance and relapse after 8–
13 months of treatment (89). Several mechanisms have been
proposed to account for this. The most common (50–60%
of cases) is the T790M mutation in exon 20, which changes
the conformation of the protein and prevents TKIs’ binding
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TABLE 3 | ALK inhibitors used in the first-line setting.

TKI Brigatinib Crizotinib Alectinib Ceritinib

Trial ALTA-1L (85) ALEX (86, 87) ALEX (86, 87) ASCEND-4 (88)

Comparators Crizotinib Alectinib Crizotinib Platinum-based

doublet

N 137 151 152 189

Median PFS

(months)

NR 10.4 34.8 16.6

PFS HR (95% CI) – – 0.5

(0.36–0.7)**

0.55 (0.42–0.73)*

ORR (%) 71 75.5 82.9 72.5

Median PFS

MC+ (months)

NR 7.4 NR > 27 10.7

Intra cranial ORR

(%)

78 50 81 72.7

ALK, anaplastic lymphoma kinase; TKI, tyrosine kinase inhibitor; N, number of patients;

PFS, progression-free survival; HR, hazard ratio; CI, confidence interval; ORR, objective

response rate; MC+, patients with central nervous system metastases; NR, not reached.

*vs. chemotherapy. **vs. crizotinib.

to the ATP pocket (90, 91). Another resistance mechanism is
the activation of bypass signaling pathways, such as HER2 or
MET (92, 93), as well as EGFR downstream signaling pathways
(94). Additionally, phenotypical transformations, such as SCLC
transformation and epithelial mesenchymal transition (EMT),
have been described as resistance mechanisms to EGFR-TKIs
(95, 96).

Osimertinib, a third-generation EGFR-TKI, was recently
approved as either first-line agent for metastatic and locally
advanced EGFR mutant patients or second-line drug for those
presenting the T790M resistance mechanism (97). In the Phase
III FLAURA trial, osimertinib nearly doubled the median PFS,
compared to erlotinib or gefitinib (18.9 vs. 10.2 months, HR
0.46; p < 0.001). It should, however, be noted that the OS data
were not yet mature at analysis (98). Considering these crowded
scenarios, the first-line choice should primarily be driven by the
patient’s characteristics and tolerability profile. In the FLAURA
trial, osimertinib had a lower rate of Grade 3–4 undesirable
events compared to first-generation EGFR-TKIs (34 vs. 45%).
Furthermore, the hazard ratio for PFS was similar in patients
either with or without known brain metastasis (0.47 and 0.46,
respectively). These data have been summarized in Figure 2.

Despite the impressive efficacy of third-generation EGFR
TKIs in T790M positive NSCLC, acquired resistance invariability
is likely to occur via several, though only partially-known,
mechanisms. These resistance mechanisms can be divided
into three categories: 1) reactivation of the EGFR pathway
through EGFR novel mutations; 2) activation of bypass signaling
pathways; 3) histological shift able to bypass the EGFR-
dependence in form of or small-cell lung cancer (SCLC)
transformation (99–101). At resistance, around 50% of patients
were demonstrated, across different series, to maintain the
T790M mutation. Novel EGFR mutations represent the most
commonly acquired resistance mechanism in this group, while
the C797S mutation accounts for 22–40% of all progressions
under third-generation EGFR-TKIs (100, 102). Interestingly, cell

lines harboring dual C797S and T790M alteration in trans were
sensitive to a combination of first- and third-generation EGFR-
TKIs, as opposed to a mutation in cis (103). Conversely, patients
with a loss of T790M alteration at resistance more frequently
presented an EGFR bypass alteration, either by downstream
EGFR (RAS-MAPK pathway) signaling or activating parallel
signaling pathways, such as MET or ERBB2 amplifications,
PIK3CA mutations, and PTEN loss (99–101). These data
highlight the urgent need for investigative or combination
therapies to effectively prevent or treat the drug resistance
complexity in EGFR-mutant lung cancer.

Other uncommon alterations (exon 18 G719, exon 21 L861Q,
and exon 20 S768I) are recognized as sensitizing EGFR-TKIs,
with different magnitudes of response. In a large cohort of EGFR-
mutated patients treated with first-generation EGFR-TKIs, ORR
was significantly lower in patients with uncommon alterations,
compared to classical EGFRmutations (47.5 vs. 74.1%; p< 0.001)
(104). Other studies have similarly reported data concerning
the effectiveness of EGFR-TKIs on these rare mutations. These
include a combined post-hoc analysis of LUX-Lung 2, LUX-
Lung 3, and LUX-Lung 6 (105), in addition to the Phase II
trial KCSG-LU15-09 (106). Among the upcoming target agents,
poziotinib demonstrated promising activity in a Phase II trial that
enrolled pretreatedNSCLC patients with EGFR exon 20mutation
(excluding acquired T790M). This resulted in 55% ORR and 5.5
months mPFS, along with a high rate of Grade 3–4 undesirable
events (56%) (107).

ALK
Five ALK inhibitors are currently available: first generation
(crizotinib), second generation (alectinib, ceritinib, and
brigatinib), and third generation (lorlatinib). These therapies
have dramatically changed patients’ prognosis, as they have
improved the median OS from diagnosis made in the metastatic
stage. Indeed, the strategy using sequencing ALK inhibitors
has resulted in a median 81 months OS in two recent studies
(108, 109).

Crizotinib, a molecule-targeting MET, ROS1, and ALK, was
the first TKI to generate promising results in ALK-positive
patients (30). Compared to standard chemotherapy in ALK-
positive advanced NSCLC, crizotinib demonstrated a longer
median PFS (10.9 vs. 7 months; HR 0.45), along with a higher
ORR (74 vs. 45%) (110). After crossover adjustments, OS was
increased in the crizotinib arm (HR 0.346) (111). Compared
to chemotherapy, crizotinib was found to be well-tolerated,
primarily causing color vision disorders, digestive disorders, or
edema. Ceritinib was shown associated with a doubled median
PFS (16.6 months), in comparison to chemotherapy (8.1 months)
(HR 0.55) (88). In this Phase 3 study, among 22 patients with
brain metastases, the intracranial ORR was 72.7% in the ceritinib
group and 27.3% in the chemotherapy group. The most common
undesirable events of ceritinib included digestive disorders and
increased alanine aminotransferase levels. The ALEX trial, which
compared alectinib to crizotinib in the first-line setting, has
proven an higher alectinib efficiency, with a comparable safety
profile (86, 87). Indeed, the median PFS in the alectinib arm
was 34.8 months vs. 10.9 in the crizotinib arm (HR 0.43).
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FIGURE 2 | Summary of FDA and EMA approved EGFR-TKI efficacy and tolerability across Phase III trials in the first-line setting. FDA, Food and Drug Administration;

EMA, European Medicines Agency; EGFR-TKI, epidermal growth factor receptor tyrosine kinase inhibitors; AE, adverse event; PFS, progression-free survival; OS,

overall survival; BM, brain metastasis.

Furthermore, alectinib exhibited a better cerebral activity, with
a median PFS of 27.7 months in patients with central nervous
system (CNS) metastases at baseline, compared to 7.4 months
for the crizotinib group (HR 0.35; 95% CI: 0.22–0.56). Alectinib
was shown to be associated with a lower incidence of CNS
progression (four times less) in patients without CNS metastasis
at diagnosis, compared to crizotinib. Considering its safety
profile, alectinib primarily induced myalgia, anemia, and liver
disorders. Finally, in the first-line setting, brigatinib has been
proven superior over crizotinib, in terms of efficacy (85). Indeed,
the 12-months PFS in the brigatinib group was higher (67%)
than in the crizotinib arm (43%), with statistically significant
results (HR 0.49; 95%CI: 0.33–0.74; p < 0.001). Likewise,
brigatinib was associated with an intracranial ORR of 78%,
compared to 29% in the crizotinib group. Furthermore, their
safety profiles were comparable. The most common undesirable
events of brigatinib conprised digestive disorders, hypertension,
and increased alanine aminotransferase ALAT and lipase levels.
Lastly, lorlatinib has been tested in a Phase II study that enrolled
228 ALK-positive patients, with or without previous ALK-TKI or
chemotherapy exposure (112). Lorlatinib showed an ORR of 90%

in the treatment-naïve group (30 patients) and of 47% beyond the
first-line setting (198 patients). Likewise, an intracranial response
was observed in 66.7% of the treatment-naïve patients (n = 3)
and in 63% of previously-treated patients (n= 81). Lorlatinib was
found to induce dyslipidemia, peripheral neuropathy, and mood
or cognitive effects.

However, ALK inhibitors have been shown to consistently
cause the development of resistance mechanisms. After a first
ALK-inhibitor, treatment choice can be guided by a new
sample with the identification of an ALK-resistance mechanism
(113). These mechanisms can be either ALK-dependent or
ALK-independent. ALK-dependent mechanisms correspond to
secondarymutations in the ALK kinase domain. Thesemutations
induce kinase and signaling reactivation by preventing the
binding of TKIs to their targets. These mutations occur in
20–30% of patients treated with crizotinib, and in 50–70% of
patients after second-generation ALK inhibitor exposure (113).
With second-generation inhibitors, the highly resistant G1202R
mutation was shown to be more common, which then requires
initiating the third-generation TKI lorlatinib (114, 115). Indeed,
an in vitro study has shown different sensitivity profiles of
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ALK inhibitors, with respect to various resistance mutations
(113). ALK amplifications were revealed to be less frequent than
ALK mutations, most commonly occurring following crizotinib
therapy. ALK-independent mechanisms consist of the activation
of bypass signaling pathways, such as EGFR activation, MET
amplification, MEK reactivation, or phenotypic changes like
EMT or SCLC transformation (25, 116–119). An overexpression
of P-glycoprotein (PGP), an efflux pump, was additionally
identified as a potential resistance mechanism (114). PGP was
shown to be responsible for decreased ALK inhibitor (crizotinib
or ceritinib) concentrations in brain tissues (120, 121).

MET
The MET gene encodes a transmembrane receptor that is
normally activated by the binding of its ligand, the hepatocyte
growth factor (HGF). MET pathway activation is thought to
occur through diverse mechanisms that influence properties
affecting cancer cell survival, growth, and invasiveness (122).
Somatic dysregulation at MET occurs through several different
mechanisms that are non-exclusive in NSCLC, including
protein overexpression, gene amplification, mutation, and
rearrangement. MET amplification was revealed to be
uncommon in previously-untreated NSCLC patients and
was found in about 2–4% of cases. MET amplification appears
to play a role in acquired resistance to EGFR inhibitors and is
observed in about 5–20% of patients in this setting (12, 123, 124).
MET alterations that result in exon 14 skipping were observed
in about 3–4% of NSCLCs (12, 125). METex14 mutations
were more frequently identified in adenocarcinoma and
sarcomatoid carcinoma patients. These mutations were found
more frequently in older rather than younger patients. Of note
is that these mutations were revealed to be mutually exclusive to
other driven mutations (126).

Several clinical trials have been carried out so far, but
most of them did not produce positive results (127–129).
Preliminary data on capmatinib revealed encouraging results in
patients with METex14 mutations in either previously-treated
or treatment-naïve NSCLC patients. The GEOMETRY trial
showed a clinically meaningful ORR of 39.1% and 71.4% in
previously-treated and treatment-naïve patients, respectively,
with a manageable toxicity profile (130). Tepotinib, a MET-
selective TKI, generated promising activity inMETex14 patients,
with anORR of 59%. In terms of safety, more than 50% of patients
experienced tepotinib-related treatment-emergent adverse events
(TRTEAEs), including serious TRTEAEs in three cases (8.8%)
(131). Crizotinib obtained FDA breakthrough designation in
METex14 NSCLC, based on the results of an expansion cohort
from the Phase I PROFILE 1001 study, which included 69
METex14 patients. Among 65 evaluable patients, there were
three complete responses (4.6%), 18 (27.7%) partial responses,
and 29 stable disease cases. Median time to response was 7.6
weeks, with a median duration of response (DOR) of 9.1 months
and PFS of 7.3 months (132). The AcSé program enrolled 25
patients withMET amplification and 29 withMET mutation (25
METex14). Crizotinib showed activity in both MET-amplified
and MET-mutated NSCLC (ORR: 32 and 40%, respectively)
patients, whereas response correlated with the number of MET
copies in the amplified group. Median PFS was around 3.5

months in both groups, while OS was longer in the METex14
population (9.5 vs. 7.7 months) (133).

BRAF
BRAF (B-Raf proto-oncogene, serine/threonine kinase) base
substitutions are present in approximately 2–5% of NSCLCs;
about half of these mutations result in V600E amino acid
substitution (13, 134, 135). The BRAF mutation induces the
activation of the MAPK pathway, promoting cell growth,
proliferation, and survival. Gene fusions that are biologically
distinct from V600E mutations have been identified more rarely,
in 0.2% NSCLC cases (136). Most patients with BRAF mutations
were revealed to be former smokers, whereas non-V600E
mutations were more commonly found in heavy smokers (44).

Preliminary data, pertaining to a single-agent BRAF inhibitor
like dabrafenib or vemurafenib, consisted of a 30–40% ORR
and 5–7 months median PFS (137, 138). The most interesting
results were, nevertheless, obtained when combining dabrafenib
with the MEK inhibitor trametinib. A Phase 2 trial in
chemotherapy-pretreated NSCLC patients generated an OS of 18
months, compared to 12.7 months observed under dabrafenib
monotherapy (139). Another Phase 2 trial in BRAF(V600E)-
positive, chemo-naïve patients confirmed this combination’s
efficacy, reflected by a 64% ORR, along with a PFS and OS of 11
and 25 months, respectively (140). Based on these results, both
the FDA and European Medicines Agency (EMA) approved in
2017 the combination of dabrafenib and trametinib for patients
with advanced NSCLC harboring a V600 mutation, regardless of
the therapy line.

ROS1
ROS1 rearrangements are detected in approximately 1–2% of
lung adenocarcinomas (43). In Europe, ROS1-rearrangement
testing is recommended in never smokers with advanced
EGFR/KRAS/ALK-negative NSCLC. In current and former
smokers, ROS1 testing is indicated only in non-squamous
histology (141). The high amino-acid sequence homology
between ROS1 and ALK kinase domains explains the significant
clinical activity of crizotinib in both ROS1 and ALK-driven
tumors. Indeed, in the expansion cohort of the Phase I trial
PROFILE 1001, 50 ROS1-positive NSCLCs received crizotinib,
reaching an ORR of 72% and a median PFS of 19.2 month
(142). Median OS was 51.4 months and no correlations were
observed between overall survival and specific ROS1 fusion
partners (143). Several Phase II trials conducted on European and
Asian cohorts showed similar results, with reportedORR of about
70% and PFS ranging from 10 to 13 months (144–146). As with
other oncogene-addictions, mechanisms of acquired resistance
also occur in ROS1-positive NSCLC cancers, mainly through
mutations in the target itself or via activation of alternative
pathways. Several molecules have shown promising results in
overcoming resistance to crizotinib in ROS1+ NSCLCs. For
example, ceritinib showed an ORR of 62% and a median PFS
of 9.3 months in a phase II trial conducted on 28 pretreated or
untreated patients with advanced ROS1-rearranged NSCLC. The
median PFS was even longer (19.3 months) for crizotinib-naïve
patients and the median overall survival (OS) was 24 months
(147). Alectinib and brigatinib, have little to no established ROS1
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inhibitory activity. By contrast, lorlatinib also appears to be able
to overcome acquired resistance to crizotinib in ROS1-positive
NSCLC, including disease in the CNS (112). Newer ROS1
inhibitors are in development, and investigational agents such
as cabozantinib, entrectinib, repotrectinib, and DS-6051b have
emerging results in early-phase clinical trials in ROS1-rearranged
NSCLC (148–150).

NTRK
The NTRK genes, consisting of NTRK1, NTRK2, and NTRK3,
encode the tropomyosin receptor tyrosine kinases TRKA, TRKB,
and TRKC, respectively, which function during normal neuronal
development and maintenance (151–153). While the frequency
of NTRK fusions proves to be low in common cancer types,
including NSCLC, NTRK3 fusions were revealed to be almost
ubiquitous among rare cancer types, such as mammary analog
secretory carcinoma and infantile fibrosarcoma (44). In NSCLC,
NTRK fusions are estimated to occur at a frequency of
approximately 0.1 to 1% (7, 44), whereas the clinical and
pathologic features of the patients harboring such fusions have
not yet been well-characterized.

Considering the rarity of these fusions, drug development has
been primarily derived from basket trials. Among them,
larotrectinib (LOXO-101) and entrectinib (RXDX-101)
produced promising results, in fusion-positive NSCLC patients
(132, 154). A Phase 1 study involving adults only, Phase 1–2
study involving children only, and Phase 2 study involving
both adolescents (n = 55) and adults treated with larotrectinb
showed an ORR of 75%, with the median DOR and PFS not yet
reached at data cut-off. Larotrectinib tolerability was acceptable,
with predominantly Grade 1 undesirable events reported (132).
Entrectinib, an oral TKI of TRKA/B/C, ROS1, and ALK, was
evaluated in two Phase 1 studies. These trials revealed a good
toxicity profile and rapid and durable responses in patients
with brain metastases (154). A Phase 2 trial with entrectinib
in solid tumor patients harboring NTRK1/2/3, ROS1, or ALK
gene rearrangements is still ongoing (NCT02568267), as are
several other trials involving TKIs against TRKA/B/C, including
TSR-011 (NCT02048488), DS-6051b (NCT02279433), and
PLX7486 (NCT01804530).

RET
The RET (rearranged during transfection proto-oncogene)
fusion oncogene and fusions proteins resulting from
chromosomal rearrangement were initially described in thyroid
carcinoma patients (155). RET fusions were subsequently
identified in approximately 1–2% of NSCLC patients; it was
found to be mutually exclusive with other oncogenic drivers
(5, 6, 11, 156, 157). At least 12 different RET gene partners have
been described, the most common being KIF5B (70% of cases),
followed by CCDC6 (20% of cases) (48). Data from the Global
Multicenter RET registry did not reveal any significant difference
in incidences between men and women, whereas the majority
of affected patients had never been smokers (63%) and suffered
from a metastatic adenocarcinoma (48).

In NSCLC, many multi-targeted kinase inhibitors have
been tested to date. These include cabozantinib, vandetanib,
sunitinib, sorafenib, alectinib, lenvatinib, nintedanib, ponatinib,
and regorafenib. Yet, their activity was shown to be clearly
inferior to the responses and survival outcomes seen with
selective TKIs in other oncogene-addicted NSCLC models
(48, 158, 159). To date, no drugs have been approved for
RET-rearranged NSCLCs (126). New RET selective inhibitors
are, however, in development (e.g., LOXO-292 and BLU-667).
LOXO-292 was found to generate encouraging clinical activity in
RET-altered solid tumors in a Phase 1 trial, with a 77% ORR for
NSCLCs patients, including those with brain metastases. At data
cut-off, the median DOR was not yet reached, while the longest
response already exceeded 10 months (160, 161). Based on these
data, further studies are needed to further confirm this drug’s
potential benefit.

CONCLUSION

In advanced NSCLC, identifying molecular alterations proves to
be a daily challenge. Tumor samples can be either tissues with low
tumor cellularity or liquid biopsies. Biologists increasingly use
efficient techniques to identify these oncogenic alterations. NGS
platforms, therefore, occupy a central place. Other promising
techniques are also emerging, such as radiogenomics, for
example, which combine non-invasive imaging and molecular
analysis, study the link between genomic and phenotypic
information. These techniques could help for the continuous
monitoring of patients with advanced NSCLC and to follow their
treatment responses (162).

For patients with EGFR mutations or ALK/ROS1
rearrangements, several TKIs are currently available, designed
either for front-line therapy or patients at progression. These
TKIs are more effective than chemotherapy, well-tolerated
and remain the reference treatment. For the other oncogenic
alterations (MET, BRAF, NTRK, and RET), while several new
molecules appear promising, further studies are still required.
Concerning immune checkpoint inhibitors, according to a recent
study, these molecules have not demonstrated a better efficacy
and should be used after TKIs and chemotherapy failures,
especially in ALK-positive NSCLCs (163).

As a wealth of diagnostic tools and personalized treatments are
already available or still under development. A close relationship
between molecular biologists, pathologists, and oncologists
is crucial.
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