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The first clinical gene delivery, which involved insertion of a marker gene into

lymphocytes from cancer patients, was published 25 years ago. In this review,

we describe progress since then in gene therapy. Patients with some inherited

single-gene defects can now be treated with their own bone marrow stem cells

that have been engineered with a viral vector carrying the missing gene.

Patients with inherited retinopathies and haemophilia B can also be treated

by local or systemic injection of viral vectors. There are also a number of prom-

ising gene therapy approaches for cancer and infectious disease. We predict

that the next 25 years will see improvements in safety, efficacy and manufac-

ture of gene delivery vectors and introduction of gene-editing technologies

to the clinic. Gene delivery may also prove a cost-effective method for the

delivery of biological medicines.
1. Introduction
Before the first human coding sequence had been determined, there was already

speculation about the prospects for gene therapy. A prescient editorial published

in Science in 1971 outlined many of the problems that would face clinical gene

therapy, including construction of safe viral gene delivery vectors and efficient

gene delivery to enough patient cells to correct the inherited gene defect [1]. Some

40 years later, the same issues persist but substantial progress has been made.

This review will discuss current developments in delivery technology, describe

clinical achievements to date and finish with speculation on future prospects.

In 2015, there is no lack of information on the structure of the human genome.

The first draft human genome sequence was published in 2001, with an esti-

mate of 30 000–40 000 protein-coding sequences [2]. Current estimates are

closer to 20 000 protein-coding genes, with an expanding number of functional,

non-coding RNAs. Identifying the molecular basis of inherited genetic disorders

has become much easier; at the time of writing this has been achieved for 3674

human phenotypes, the majority being single-gene mutations [3]. Information

on the remaining 1765 described phenotypes with Mendelian inheritance

cannot be long in coming. Thus, there are potentially several thousand severe

recessive genetic disorders, for which gene replacement therapy could be a treat-

ment. Gene replacement therapy is a simple concept: insert a correct copy of the

defective gene into the necessary cells. This review discusses current progress

in some degree of detail because bringing this simple concept to fruition is

technically demanding and has taken much longer than originally anticipated.

In contrast to the simple concept of gene replacement therapy, the majority of

gene therapy clinical trials to date have involved ‘gene addition’. Over 60% of

trials have been for cancer, probably because of the large numbers of affected

patients, oncology’s track record in innovative therapy and the seriousness of

the disease [4]. Gene therapy may also provide an effective treatment for other

acquired diseases; for example, it is one of a number of new ideas for Parkinson’s

disease (reviewed in [5]). In the case of infection, gene therapy approaches include

immune cell engineering [6], antibody gene expression [7] and gene editing to

remove pathogen receptors [8]. Gene therapy research has also contributed

viral vectors being applied to vaccination for infectious diseases and cancer [9].
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Figure 1. Direct and cell-based gene delivery (adapted from [89]). (Online version in colour.)
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Gene replacement therapy has the relatively defined

objective of sufficient gene expression in enough appropriate

cells to ameliorate or correct the phenotype. By contrast, the

options for gene addition therapy are essentially unlimited.

Indeed, there are even concerns that gene addition may be

used illicitly, for example, to express erythropoietin in the

muscles of athletes [10].
2. Gene therapy remains a delivery challenge
The most elegant method of gene delivery, in terms of

defined composition and manufacturing reproducibility,

would involve synthetic particles, for example, using lipids

or polymers to carry DNA. However, these methods have

not yet achieved efficient uptake and sustained gene

expression in vivo. So the gene replacement therapy trials

that have demonstrated clinical benefit, discussed in §§3–6,

have all used viral vectors for gene delivery, because viruses

are highly adapted for gene delivery to their host cells. These

have either involved direct viral vector injection to target
tissues such as liver, or modification of cells in culture by

viral vectors, followed by cell expansion and injection

(figure 1).

Viruses of the family retroviridae integrate their genome

into host cell DNA as part of their life cycle [11] (figure 2).

This means that the integrated provirus is transmitted to

daughter cells when the infected cell divides. A murine leu-

kaemia virus (MLV) was the first retroviral genome to be

engineered to carry a foreign gene, herpes simplex virus thy-

midine kinase [12]. Deletion of the sequence required for

packaging the viral RNA into particles allowed viral genes

required for particle production to be provided in cis to repli-

cation-defective MLV vectors carrying no viral genes [13].

Viral packaging cell lines were then constructed with the

viral genes expressed from two segments of DNA, essentially

eliminating the risk of recombination with the vector to

generate replication-competent virus [14,15]. The ability of

MLV vectors to deliver genes to mouse and human bone

marrow stem cells was very soon demonstrated [16,17].

This was because a number of inherited diseases could be

cured by bone marrow transplantation if a suitable donor
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was available; therefore, gene therapy using the patient’s own

cells engineered to carry a correct copy of the faulty coding

sequence seemed an attractive option for patients without a

suitable donor. The feasibility of gene transfer to patients

was first demonstrated by Rosenberg et al., who used an

MLV vector to introduce the neomycin-resistance gene into

tumour-infiltrating lymphocytes before infusing the cells

into five patients with advanced melanoma [18].

One drawback of MLV vectors is that they can only trans-

duce dividing cells, because the MLV core needs nuclear

envelope breakdown to access chromatin [19]. However, vec-

tors engineered from HIV can transduce most non-dividing

cells and tissues [20], as the pre-integration complex of nucleic

acid and protein from HIV is imported across the nuclear mem-

brane (reviewed in [21]). Unlike MLV vectors, HIV-based

vectors can incorporate genomic sequences containing poten-

tial splice sites. For example, MLV vectors containing globin

genomic sequences required as powerful tissue-specific enhan-

cers proved unstable because splicing of the vector genome

occurred [22]. However, the HIV genome contains multiple

splice sites, so it encodes the Rev protein to facilitate expression

of unspliced RNA [23]. In §3, the use of MLV- and HIV-based

vectors for the treatment of inherited disorders by bone

marrow transplantation will be discussed.

Vectors based on the non-pathogenic human parvovirus

adeno-associated virus (AAV) have also been used for the

treatment of inherited disorders, in this case by local or sys-

temic direct vector injection, as discussed in §§4 and

5. AAV replicates only in the presence of a helper virus, in

humans usually an adenovirus. There are a number of

capsid varieties of AAV (serotypes) and most individuals

have been exposed to at least one of these [24]. In the absence

of helper virus, AAV integrates its genome into cellular DNA

[25], remarkably into a preferential single locus (AAVS1) on

human chromosome 19 [26]. Initial vectors replaced the

AAV capsid gene with a transgene but left the AAV Rep

coding sequence, which directs site-specific integration [27].

However, the coding capacity of AAV is relatively small so

in general cap and rep genes are removed, leaving the AAV

inverted terminal repeat sequences in the vector, with cap,
rep and adenovirus helper functions supplied in trans
[28,29]. These AAV vectors do not integrate efficiently so

they are not maintained in dividing cells; however, they do

modify non-dividing cells stably in tissues in vivo [30,31].

After injection into muscle the AAV vector genome forms

double-stranded DNA episomal circles or concatamers [32]

(figure 2). It has been shown that rare AAV integrations can

cause hepatocellular carcinoma in mice, but the vector design

can be modified to reduce this risk [33]. Completion of

second-strand DNA synthesis for the single-stranded genome

in the vector particles is a rate-limiting step for AAV vector

gene expression [34]. Vectors that package double-stranded

DNA have been developed to overcome this [35]. In §4, the

clinical use of AAV vectors injected locally in the eye, or sys-

temically to target the liver, is described. Interestingly, AAV

has also been shown to mediate homologous recombination

at surprisingly high frequencies [36].

Recently, several methods for editing the cellular genome

have been described. For inherited disorders with a dominant

defective gene, such as Huntington’s disease, this offers

the opportunity to disrupt expression of the pathogenic gene

in the tissues where it causes the worst symptoms. There is

also the possibility of repairing genes in recessive genetic
disorders. In the first of these new technologies synthetic com-

binations of zinc finger DNA-binding domains, targeting a

mutated human genomic sequence, were coupled to an endo-

nuclease domain to generate a zinc finger nuclease (ZFN).

When expressed in human cells, this enzyme induced a

double-stranded break in the genomic target sequence, which

was repaired by homologous recombination when a correct

template was supplied [37]. Homing endonucleases, or mega-

nucleases, cut genomic DNA within the cells that synthesize

them at very low frequency. Repair by the host cell can result

in copying the homing endonuclease gene into the cleavage

site, hence ‘homing’. The I-SceI meganuclease has been

engineered to target specific sites in the mammalian genome

[38]. Transcription activator-like effectors (TALEs) are tran-

scriptional activators from Xanthomonas plant pathogens,

comprising a series of approximately 30 amino acid repeats,

each of which binds to a single target base in a DNA sequence.

Engineered TALE-nuclease chimaeras (TALENs) can also be

used for site-specific genome cleavage and repair in mamma-

lian cells [39]. The advent of these methods for editing the

cellular genome has also allowed targeted integration of

expression cassettes to ‘safe harbours’ such as the AAVS1 site

on chromosome 19 or the endogenous locus. To achieve this,

the expression cassette must be flanked with DNA surround-

ing the nuclease cleavage site to direct homologous repair

and also be delivered efficiently, for example with a

non-integrating lentiviral vector [40].

Most recently, a bacterial clustered regularly interspaced

short palindromic repeats (CRISPR) RNA together with a

CRISPR-associated (Cas) protein has been used to target and

mutate a mammalian cell locus [41]. As this latter technology

uses an RNA sequence to specify the genomic locus, it is less

cumbersome than engineering a protein with novel DNA bind-

ing and cleavage specificity. This technology has been used in

cell culture to inactivate integrated HIV genomes [42], to make

cells resistant to HIV by disrupting the CCR5 co-receptor [43],

and to correct the cystic fibrosis transporter mutation in patient

cells [44]. In adult mice, it has been used to repair a fumary-

lacetoacetate hydrolase mutation in mouse liver, because

corrected cells can be selected in vivo [45]. An efficient delivery

technology will be needed for clinical gene therapy using

CRISPR/Cas, and the off-target toxicity of cleavage elsewhere

in the genome will need critical evaluation.
3. Replacement gene therapy using bone
marrow transplantation

Patients with adenosine deaminase (ADA) deficiency accumu-

late toxic purine metabolites. Their most immediate problem is

a severe combined immune deficiency (SCID), resulting in

multiple life-threatening infections in early childhood. Before

the advent of gene therapy, effective treatment involved

either bone marrow transplantation if a suitable donor was

available, or regular injection of recombinant enzyme. The

first successful gene therapy treated two children without suit-

able bone marrow donors, who did not have funding for

recombinant enzyme therapy. Previous attempts had largely

failed because insufficient numbers of cells were engrafted,

but in this pioneering study, patients also received low-

intensity myelosuppression. Bone marrow stem cells from the

patients were isolated using magnetic beads coated with an

antibody to the surface marker CD34. They were cultured for
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4 days with cytokines and an MLV vector carrying an ADA

cDNA, then reinfused. At the time of the first report, 1 year

later, the patients had substantially reconstituted lymphoid

cells and immune responses [46]. To date 40 patients have

been treated with similar MLV vectors; the best results are simi-

lar to those of matched bone marrow transplantation, and

better in terms of cost and immune reconstitution than

enzyme replacement [47–49]. Future treatment of ADA-SCID

is likely to use HIV-based lentiviral vectors because of greater

efficiency in transduction of bone marrow stem cells and

improved safety, and these studies are under way (see below).

A trial of gene therapy for a second inherited immune

deficiency, SCID-X1, was reported at the same time as the

first ADA-SCID trial [50]. In this X-linked disease, boys lack

expression of the common gamma chain of a cytokine receptor,

critical for T-cell development. The gene-corrected cells,

expressing the receptor, are able to proliferate and differentiate

competitively so no elimination of the patients’ haematopoietic

system was necessary. In the first report, 2 years after gene

therapy, T cells had developed in the five boys and their

immune systems functioned relatively normally. However, in

this trial, and a similar study carried out at Great Ormond

Street Hospital, a number of patients developed a T-cell leukae-

mia that was caused by the inserted MLV gene delivery vector

switching on an adjacent oncogene [51,52]. So for SCID-X1 the

majority of the 19 younger patients gained significant clinical

benefit, but five developed leukaemia, of whom four were suc-

cessfully treated and recovered immunity without the need for

further intervention. Clearly, the long terminal repeat (LTR) of

the MLV vector contains a powerful enhancer, which can cause

insertional oncogenesis, for example, when the wild-type virus

infects tumour-prone mice [53]. A more recent trial treating

SCID-X1 has used an MLV vector without the enhancer in the

LTR. Thus far the patients have reconstituted T cells with no

leukaemia [54]. It is not totally clear why the LTR-containing

MLV vector caused insertional oncogenesis in SCID-X1 but

not ADA-SCID, but similar insertional oncogenesis in patients

treated for chronic granulomatous disease and Wiskott–

Aldrich syndrome suggests that ADA deficiency offers some

intrinsic protection [55,56]. A new clinical trial using a lentiviral

vector to treat Wiskott–Aldrich syndrome has not reported

insertional oncogenesis [57].

Bone marrow can also be used to treat neurometabolic dis-

orders, as migroglial cells or their precursors are able to cross

the blood–brain barrier. For example, X-linked adrenoleukody-

strophy (ALD) is caused by the lack of a transporter involved in

the peroxisomal degradation of very long-chain fatty acids by

oligodendrocytes and microglia. This disrupts maintenance

of myelin by these cells, resulting in serious neurological

consequences and death in childhood. Metachromatic leukody-

strophy is a deficiency of arylsulfatase A that causes build-up of

sulfatide leading to cytotoxicity in oligodendrocytes and micro-

glia. ALD can be treated by bone marrow transplantation, while

the most severe MLD cannot. In both conditions, gene therapy

using lentiviral vectors to transduce bone marrow stem cells

is effective; indeed the supraphysiological level of gene

expression achieved with gene therapy in early-onset MLD

makes it the only effective treatment [58,59].

The improved safety of lentiviral vectors compared with

LTR-containing MLV vectors in bone marrow gene therapy

is because the lentiviral vectors have been engineered to

remove any enhancer activity from the LTR, reducing the

risk of activation of expression of adjacent genes. However,
when a lentiviral vector was used to treat a patient with

b-thalassaemia a different mechanism of cellular gene upre-

gulation was seen, involving truncation of a cellular mRNA

by provision of a splice acceptor in the lentiviral vector (see

above) [60]. Ongoing work in lentiviral vector design aims

to eliminate splice donors and acceptors [61,62].
4. Direct injection of adeno-associated virus
vectors for gene replacement therapy

The eye is an attractive target for direct gene delivery; it is

accessible, one eye only can be treated in case of toxicity,

only a small amount of vector is needed, and the eye is an

immune-privileged site where inflammation and immunity

are suppressed. Furthermore, the retina is a complex tissue;

approximately 1 in 3000 of the population suffers from an

inherited defect in one of over 60 genes that leads to retinal

degeneration and blindness [63]. The first disease to be

tackled by gene therapy was an RPE65 gene defect. The

RPE65 protein is expressed in the retinal pigment epithelium

and is needed for conversion of all-trans retinal, generated

during photoreceptor response to light, back to 11-cis retinal.

Three groups have injected very similar AAV serotype 2

(AAV2) vectors sub-retinally and have reported results on a

total of 21 patients [64–66]. The treatment was safe, and

some improvements in retinal function and visual perform-

ance were found. Improvement of visual acuity has also

been reported in patients treated for a deficiency in the Rab

escort protein REP1 [67]. The safety of these trials will encou-

rage treatment of younger patients, where more improvement

is expected, and ongoing pre-clinical work is developing

therapies for other retinopathies.

AAV vectors have also been used for treatment of patients

with haemophilia B, a deficiency of Factor IX (F.IX) of the

blood-clotting cascade. These patients are reliant on prophy-

lactic or on-demand plasma, or recombinant F.IX injection, to

prevent spontaneous bleeding, and still suffer progressive

joint damage and life-threatening conditions such as intracra-

nial haemorrhage. Because of the cost this therapy is not

available in less-developed countries. As many cells can

secrete F.IX when transduced by AAV, the first clinical trial

used AAV2 encoding F.IX injected into muscle. Levels of

F.IX about 1% of normal could be detected, but clinical

benefit was limited [68]. The same investigators then infused

a higher dose of the same vector into the hepatic artery, with

the aim of transducing hepatocytes the cells that normally

produce F.IX. In this case, therapeutic levels of F.IX were

achieved at the highest vector dose; however, these declined

over the next two months because of an immune response to

the AAV2 capsid, which eliminated the transduced hepato-

cytes [69]. More recently, the use of a self-complementary

AAV8 vector injected intravenously showed great promise,

with a number of patients discontinuing prophylaxis for up

to 3 years thus far [70,71]. The improved results with this

vector are due to more efficient transduction with the self-

complementary vector and the use of the AAV8 serotype,

which is more efficient in gene delivery to hepatocytes. This

allowed intravenous administration with a relatively moderate

vector dose. Exposure to AAV8 in the population is also much

lower than that to AAV2, and there was no evidence of prior

immunity to AAV8 in the patients in the latest clinical trial.

Some patients treated at the highest vector dose developed
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signs of liver inflammation, which could be treated with a

course of steroids. These encouraging results open up the

possibility of other gene therapy applications using the liver

as a site of production and secretion.
alsocietypublishing.org
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5. Gene therapy to treat cancer and infectious
disease

Perhaps because of the seriousness of the condition, cancer

physicians have instigated by far the greatest number of

gene therapy clinical trials to date. A number of these are

cancer vaccine trials using engineered viral vectors. These

are often classified as gene therapy, unlike the use of similar

vectors as prophylactic or therapeutic vaccines for infectious

disease. Correction of the tumour cell genotype, for example,

by restoration of tumour suppressor gene function has been

proposed as on approach for cancer gene therapy [72]. How-

ever, this tumour cell autonomous approach will be very

challenging as gene delivery to every tumour cell will be

very hard to achieve and unmodified cells will outgrow the

modified ones. Moreover, many tumours are widely dissemi-

nated at the time of diagnosis, so gene delivery would need

to be systemic.

Therefore, gene therapy approaches that create a systemic

environment that is hostile to the tumour (e.g. by enhancing

anti-tumour immunity) are more logical. Some forms of

tumour immunity can be stimulated by infusion of mono-

clonal antibodies; for example, targeting receptors on

tumour cells such as Her2 [73], or inhibiting feedback mech-

anisms in the immune system such as PD1/PD-L1

engagement [74,75]. However, there is clear evidence that

links the number of effector T cells infiltrating tumours with

clinical outcome [76]. So gene modification can be used to

generate a large number of tumour-specific T cells, by engin-

eering the patients’ own T cells to recognize the tumour. This

has proven particularly effective in clinical trials when T cells

are transduced with a lentiviral vector expressing a chimaeric

antigen receptor that recognizes the haematopoietic surface

protein CD19. The chimaeric receptor has a single chain anti-

body external domain and a series of T-cell receptor (TCR)

signalling domains on the cytoplasmic tail (reviewed in

[77]). The advantage of this approach is that, unlike the TCR

itself, the chimaeric receptor works in all patients regardless

of HLA genotype. However, it does depend on targeting T

cells to a surface protein that is either tumour-specific or

expressed only on normal cells that are not essential. Direct

infusion of large numbers of activated, tumour-targeted T

cells may well prove easier than trying to generate similar

numbers of effector T cells by vaccination in tumour patients

whose immune system is often suppressed. It should be noted

that insertional oncogenesis has never been observed in gene

therapy applications where T cells have been transduced by

MLV or lentiviral vectors.

Initial proposals for gene therapy for AIDS involved strat-

egies to inhibit virus replication, for example, by delivery of

dominant negative viral proteins to HIV-infected cells [78].

Another idea was to couple an HIV-regulated promoter to a

cytotoxic gene so that virally infected cells would be killed

[79]. However, subsequent understanding of AIDS pathogen-

esis suggested that a better aim would be to supply cells that

are resistant to HIV infection. This was elegantly demonstrated

by bone marrow transplantation of an HIV-infected individual
with marrow from an individual homozygous for a relatively

common deletion in the HIV receptor CCR5, which resulted

in an apparent HIV cure [80]. The first gene therapy clinical

trial to use genome editing took T cells from HIV-infected indi-

viduals and used a ZFN to target the HIV-binding site on

CCR5. In this initial study, one patient who was heterozygous

for the CCR5 deletion had a reduced HIV level after therapy,

which suggests that more efficient editing of both alleles will

improve the effect [8]. Also, if a gene editing protocol were

to be carried out on bone marrow stem cells, then off-target

effects, which could potentially be oncogenic, would need to

be minimized.
6. Gene therapy as a different formulation of a
conventional medicine

As already discussed in the case of haemophilia B, gene

delivery may be a more convenient, reliable and cost-effective

method of supplying biological medicines that are required

systemically. Indeed the first licensed gene therapy medicine

alipogene tiparvovec (Glybera) is an AAV1 vector carrying

human lipoprotein lipase (LPL), to be injected intramuscu-

larly for the treatment of patients with LPL deficiency.

There has recently been much interest in using antibody

gene delivery to muscle for the treatment of infectious

diseases. In the case of a persistent virus such as HIV, perma-

nent expression of a broadly neutralizing antibody could

provide more effective protection than vaccination, which

has thus far failed. The efficacy of this has been demonstrated

in a humanized mouse model [7]. This technology has also

been tested in mice for influenza prophylaxis, delivered

either to muscle [81] or intranasally [82]. Here there may

also be an advantage over vaccination, particularly in the

elderly who do not mount an effective response to influenza

vaccination. Antibody gene therapy as prophylaxis might

also be very effective in a rapidly spreading pandemic,

where vaccination might be too slow, for example, to protect

key health workers. In these types of application, a clini-

cally compatible small molecule that could regulate gene

expression in vivo would be very useful. The antibiotic selec-

tion systems used in vitro (such as the ‘Tet on’ system [83]) are

unsuitable in vivo because the bacterial tetracycline-controlled

transactivator is immunogenic, leading to transduced cell

elimination. A modified human protein that responds to a

clinically suitable small molecule would be a great advance

in this field.

Gene delivery also permits generation of active drugs at the

site where they are needed. For example, Parkinson’s disease is

caused by a deficiency in dopamine in the brain, so dopamin-

ergic neurons die leading to loss of movement control and

debilitating tremors. A common treatment for Parkinson’s

disease is a tablet delivering a dopamine precursor combined

with a drug to enhance blood–brain barrier permeability.

This works well in early-stage disease but declines in efficacy.

A gene therapy approach, delivering the enzymes to synthesize

dopamine directly to the brain, might provide more stable local

dopamine concentration. The first clinical trial used a lentiviral

vector and reported safety and some efficacy [84], but more effi-

cient delivery or higher gene expression will be necessary for

full evaluation.

There have been a number of attempts to improve tissue

vascularization after cardiac ischaemia by delivery of genes



rspb.royalsocietypublishing.org
Proc.R.Soc.B

282:20143003

6
encoding vascular growth factors; however, clinical results

have been disappointing [85]. Recently, local gene delivery

using AAV1 encoding a sarcoplasmic reticulum calcium

ATPase (SERCA2A) gene has reported promising results

in patients with heart failure [86]. An improvement in con-

tractile function was reported as well as an unexpected

reduction in arrhythmia. Further trials of both AAV1 and

adenovirus delivery of SERCA2A are under way. In the

case of lung disease, gene therapy has concentrated on gene

replacement of CFTR in cystic fibrosis patients. A number

of small trials demonstrated expression of CFTR and local

restoration of chloride conductance. However, the only trial

looking for clinical effect, using aerosolized AAV2, did not

demonstrate improved lung function [87]. Gene delivery to

the lung epithelium is particularly challenging in cystic

fibrosis patients due to mucus deposits.

Gene therapy can also be used to improve the efficacy

of existing drugs. For example, temozolomide (TMZ) is

used to treat glioblastoma, usually in combination with

O6-benzylguanine (O6BG) to inhibit methylguanine methyl-

transferase (MGMT). MGMT is over-expressed by many

glioblastomas and inactivates TMZ. Unfortunately, the

amount of O6BG that can be used is limited because it is

very toxic to haematopoietic cells. Gene therapy has been

used to express the O6BG-resistant MGMT mutant P140 K

in haematopoietic cells of glioblastoma patients, which has

allowed them to receive more intensive chemotherapy [88].
7. Where will gene therapy be in another
25 years?

While it is 350 years since the founding of the Royal Society, it is

only 25 years since the feasibility of gene transfer to patients

was first demonstrated [18]. So in the last 25 years, considerable

progress has been made and a number of gene therapy appli-

cations have provided benefit to patients in clinical trials. If

we look forward it seems likely that proteins that are required

systemically for prolonged periods may well be delivered by
gene therapy. Antibodies are prime candidates for this type

of gene delivery, to prevent infectious disease or provide

rapid prophylaxis, and also to treat cancer or autoimmune dis-

ease. In the latter cases, where the antibodies recognize human

molecules, local gene delivery and production of antibody, for

example, at sites of tumour metastases or in inflamed joints in

rheumatoid arthritis, might reduce systemic side effects. Gene

regulation by clinically compatible small molecules may

also be used to fine-tune the dose. Other familiar biological

medicines may be replaced by gene therapy; for example,

if reliable glucose-regulated expression of an insulin gene

can be achieved then gene therapy can also be used to treat

type 1 diabetes.

Many inherited monogenic disorders that have been trea-

ted by bone marrow transplantation with virally modified

cells may in future be amenable to gene correction, although

this requires bespoke treatments to correct different mutations.

Gene editing may also be used for the treatment of monogenic

eye conditions. For the most common inherited monogenic dis-

orders, such as cystic fibrosis or the muscular dystrophies,

effective gene therapy is likely to remain a delivery challenge.

That is because there is not yet a simple way to deliver genes to

a significant proportion of cells in tissues such as the lung epi-

thelium or skeletal muscle. Many commercial gene therapy

activities are likely to focus in the long term on gene addition

therapy for common diseases such as heart disease or cancer.

Injectable vectors are also more attractive as licensed medi-

cines, because they can be manufactured and distributed

in the conventional manner. For treatments requiring ex vivo
cell modification, however, there will be a continued require-

ment for local production of gene-modified cells. Better

production and purification methods for viral vectors are

required; many current protocols are based on scale-up of

research laboratory methods.
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