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Enterobacter cloacae is a well-characterized opportunistic pathogen that is closely
associated with various nosocomial infections. The O-antigen, which is one of the
most variable constituents on the cell surface, has been used widely and traditionally
for serological classification of many gram-negative bacteria. E. cloacae is divided
into 30 serotypes, based on its O-antigen diversity. In this study, by using genomic
and comparative-genomic approaches, we analyzed the O-antigen gene clusters of
26 E. cloacae serotypes in depth. We also identified the sero-specific gene for each
serotype and developed a multiplex polymerase chain reaction (PCR) method. The
sensitivity of the assay was 0.1 ng for genomic DNA and 103 colony forming units
for pure cultures. The assay reliability was evaluated by double-blinded testing with 81
clinical strains. Furthermore, we established a valid, genome-based tool for in silico
serotyping of E. cloacae. By screening 431 E. cloacae genomes deposited in GenBank,
304 were classified into current antigenic scheme, and 112 were allocated into 55
putative novel serotypes. Our results represent the first genetic basis of the O-antigen
diversity and variation of E. cloacae, providing a rationale for studying the O-antigen
associated evolution and pathogenesis of this bacterium. In addition, we extended
the current serotyping system for E. cloacae, which is important for detection and
epidemiological surveillance purposes for this important pathogen.

Keywords: Enterobacter cloacae, serotype, O-antigen, gene cluster, multiplex PCR

INTRODUCTION

Enterobacter cloacae, which is ubiquitous in soil, water, and sewage, is a well-known human
opportunistic pathogen that is frequently responsible for nosocomial infections contributing
to bacteremia, endocarditis, septic arthritis, osteomyelitis, skin/soft tissue infections, and lower
respiratory tract, urinary tract, and intra-abdominal infections (Fata et al., 1996; Mezzatesta et al.,
2012; Davin-Regli and Pagès, 2015). E. cloacae has been implicated repeatedly as a nosocomial
pathogen in neonatal units, and several outbreaks of E. cloacae infections have been reported
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(Marra et al., 2011; Qureshi et al., 2011; Pestourie et al., 2014). In
recent decades, E. cloacae has emerged as the third most frequent
and lethal Enterobacteriaceae species involved in bloodstream
infections (Wang et al., 2017). Moreover, with the extensive use
of broad-spectrum antibiotics over extended periods of time, the
increasing prevalence of multidrug-resistant isolates in different
populations has become a growing concern (Mezzatesta et al.,
2012; Annavajhala et al., 2019).

Lipopolysaccharide (LPS), which is a hallmark structural
entity, is essential for membrane stability and cell survival
and is a key virulence determinant for many gram-negative
bacterial species. LPS molecules are typically composed of three
segments: lipid A anchoring LPS to the outer membrane; a
core oligosaccharide, that is a non-repeating oligosaccharide
commonly consisting of monosaccharides as such as heptose
and keto-deoxyoctulosonate; and O-antigen (O-polysaccharide),
which is a polymer of repeating oligosaccharide (O-units), each
ranging from two to seven residues from a broad range sugars and
their derivatives (Valvano, 2003; Merino et al., 2016). In many
cases, the O-antigen contributes the most to cell-surface diversity
in gram-negative bacteria, thus offering a selective advantage in
its specific niche (Reeves, 1992; Wang et al., 2010), and is also
an key virulence factor associated with bacterial pathogenesis
(March et al., 2013; Sarkar et al., 2014; Caboni et al., 2015). In
particular, considerable variation of the O-antigen composition
provides a basis for serotyping schemes with many gram-negative
bacteria, which has been recognized one of the most important
cell constituents in typing strains, and a basic tool utilized
in outbreak investigations and epidemiological survey (Kenyon
et al., 2017; DebRoy et al., 2018; Guo et al., 2018; Qian et al., 2018).

The major genes for O-antigen synthesis are generally
clustered at a chromosomal locus that maps between two
housekeeping genes, namely O-antigen gene cluster (O-AGC).
These genes are commonly classified into three main classes:
nucleotide sugar precursor synthesis genes for sugars that
are specific to the particular polysaccharide; glycosyltransferase
genes that are associated with the O-unit assemblies and
are specific for donor and acceptor sugars, and generate a
specific linkage between them; and O-unit processing genes for
O-unit translocation and polymerization. Furthermore, three
different pathways are known for their involvement in O-antigen
synthesis, which are generally named after the proteins involved:
the Wzx/Wzy-dependent pathway, the ATP-binding cassette
(ABC) transporter (Wzm/Wzt)-dependent pathway, and the
synthase-dependent pathway (Keenleyside and Whitefield, 1996;
Samuel and Reeves, 2003; Liu et al., 2008, 2014). All O-antigen
biosynthesis pathways are initiated by the transfer of a sugar
phosphate from an NDP-sugar to the carrier lipid, undecaprenyl
phosphate (Und-P), forming Und-PP-sugar (Reeves and Wang,
2002). In the Wzx/Wzy pathway, sugars are transferred one by
one from the respective sugar nucleotides to Und-PP-sugar by
glycosyltransferases to form O-unit, then, the Und-PP-linked
O-units are flipped by the flippase protein, Wzx, across the inner
membrane to the periplasm, where the O-unit is polymerized
by the polymerase protein, Wzy, to generate the polymer
(Reeves and Wang, 2002). In the ABC transporter pathway,
the O-antigen is synthesized directly on the Und-PP-sugar, and

the translocation of the Und-PP linked O-antigen is carried
out by an ABC transporter. The ABC transporter is typically
composed of two transmembrane domains (Wzm) and two
nucleotide binding domains (Wzt), with the former forming the
translocation channel and the latter driving the transport cycle by
hydrolyzing ATP (Cuthbertson et al., 2007; Whitfield and Trent,
2014). Following translocation and polymerization, the resultant
O-antigen is then attached to the lipid A-core by the ligase, WaaL,
to generate mature LPS molecules (Han et al., 2011; Ruan et al.,
2012), and the LPS will be transported to the outer membrane by
the Lpt pathway (Silhavy et al., 2010).

In Sakazaki and Namioka (1960) firstly reported on the
serology of 170 E. cloacae strains, and 53 O-antigens and 56 H-
antigens of E. cloacae were distinguished in agglutination tests. In
1983, an antigenic scheme comprising 28 heat-stable O-antigen
types, which is still currently accepted, was developed by Gaston
et al. (1983), followed by the subsequent addition of another
two serotypes1.

The O-AGC of E. cloacae has been reported to be located
between two housekeeping genes, galF and gnd, and shows
perfect correlations with each O-antigen structure in several
isolates (Filatov et al., 2014; Perepelov et al., 2014, 2015, 2016,
2017; Han et al., 2017). These previous studies shed clear
genetic and evolutionary information regarding O-AGC of
E. cloacae. However, the isolates used in those studies were not
reference strains and their serotypes were not indicated. Here,
we present a detailed analysis of the O-AGCs of 26 E. cloacae
reference strains with available O-serotypes. Moreover, a sero-
specific multiplex polymerase chain reaction (PCR) assay was
developed, and its specificity and sensitivity were evaluated.
We also screened the serotype distribution of 431 isolates
with available genomes deposited in GenBank, using the sero-
specific genes characterized in this study, and 55 putative novel
gene clusters were characterized by us, extending dramatically
the current antigenic scheme of E. cloacae. Our current work
provides a valuable framework for further assessing the evolution
of E. cloacae, and the developed molecular-serotyping assay
gives a potential for molecular diagnostics and epidemiological
surveillance of this important pathogen.

MATERIALS AND METHODS

Bacterial Strains and Genomic-DNA
Extraction
Details for all bacterial strains used in this study are summarized
in Table 1. These strains included 26 reference strains with
known serotypes and 81 clinical isolates. Sixteen other strains
from eight species within the Enterobacteriaceae family were
used to assess the specificity of our multiplex PCR. All strains
were grown overnight in Luria-Bertani medium at 37◦C with
shaking, and genomic DNA was extracted using the TIANamp

1https://www.phe-culturecollections.org.uk/products/bacteria/detail.jsp?refId=
NCTC+11932&collection=nctc and https://www.phe-culturecollections.org.uk/
products/bacteria/detail.jsp?refId=NCTC+11933&collection=nctc
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TABLE 1 | Bacterial strains used in this study.

Species Strain No. (sourcea) Total

E. CLOACAE REFERENCE STRAINS

O1 11570 (NCTC) 1

O3 11572 (NCTC) 1

O4 11573 (NCTC) 1

O5 11574 (NCTC) 1

O6 11575 (NCTC) 1

O7 11576 (NCTC) 1

O8 11577 (NCTC) 1

O9 11578 (NCTC) 1

O10 11579 (NCTC) 1

O11 11580 (NCTC) 1

O12 11581 (NCTC) 1

O13 11582 (NCTC) 1

O14 11583 (NCTC) 1

O15 11584 (NCTC) 1

O16 11585 (NCTC) 1

O17 11586 (NCTC) 1

O18 11587 (NCTC) 1

O19 11588 (NCTC) 1

O20 11589 (NCTC) 1

O21 11590 (NCTC) 1

O22 11591 (NCTC) 1

O23 11592 (NCTC) 1

O24 11593 (NCTC) 1

O26 11595 (NCTC) 1

O27 11596 (NCTC) 1

O30 11932 (NCTC) 1

E. cloacae clinical isolates 81

Strains From Other Species (n = 16)

Enterobacter aerogenes 12058 (DSM), 30053 (DSM), 51697 (ATCC),
35029 (ATCC)

4

Enterobacter sakazakii 3460 (CCM), 3461 (CCM), 24133 (JCM) 3

Klebsiella pneumonia 46102 (CMCC), 46112 (CMCC) 46105 (ATCC) 3

Yersinia enterocolitica 51872 (ATCC), 35669 (ATCC) 2

Proteus vulgaris 49990 (ATCC) 1

Salmonella typhi 50071-9 (CMCC) 1

Salmonella paratyphi 50017-15b (CMCC) 1

Shigella flexneri 2a 700930 (ATCC) 1

aNCTC, National Collection of Type Cultures, United Kingdom; ATCC, American
Type Culture Collection, USA; DSM, German National Resource Centre for
Biological Material; CCM, Czech Collection of microorganisms; CMCC, National
Centerfor Medical Culture Collections; JCM, Japan Collection of Microorganisms.

Bacteria DNA Kit (Tiangen, Beijing, China) according to the
manufacturer’s protocol.

Sequencing and Bioinformatics Analysis
Whole-genome sequencing (WGS) of 26 E. cloacae reference
strains was performed with Solexa paired-end sequencing
technology. In general, the genomic DNA were sheared,
polished, and prepared using the Illumina Sample Preparation
Kit. Genomic libraries were constructed containing 500 bp
paired-end inserts, and sequencing was then performed via

Solexa sequencing technology (Illumina, Inc.) for ∼100-
fold coverage. The reads obtained were assembled using
the de novo genome-assembly program, Velvet, to generate
a multi-contig draft genome. Gaps within the O-AGCs
were closed by directed PCR, and the products were
sequenced using BigDye terminator chemistry on ABI 3730
capillary sequencers.

The Artemis program (Rutherford et al., 2000) was used for
annotation and the lockMaker program (Henikoff et al., 1995)
was used to identify conserved motifs. The BLAST and PSI-
BLAST programs (Altschul et al., 1997) were used to search
available databases, including GenBank2 and the Pfam protein
motif databases3. The TMHMM v2.0 analysis program4 was used
to identify potential transmembrane domains within protein
sequences. O-AGC sequences, between galF and gnd genes of
each strain, were retrieved from the genomes for further analysis.

Development of a Multiplex PCR Assay
All sero-specific primers were designed based on the wzy gene
sequences determined in this study, except for serotype O23,
for which the wzt gene was targeted (Table 2). The specificity
of each individual primer pair was confirmed using the BLAST
program and was subsequently validated by a single PCR
amplification, using the strains listed in Table 1. Each PCR was
performed in a 25 µl reaction mixture containing 50 ng genomic
DNA, 1 × Goldstar PCR buffer, 0.04 mM deoxynucleoside
triphosphates, 0.1 µM each primer, and 1 unit Goldstar DNA
polymerase. The PCR program used was as follows: denaturation
at 95◦ C for 10 min; 30 cycles of denaturation at 95◦ C for 30 s,
annealing at 55◦ C for 30 s, and extension at 72◦ C for 1 min;
followed by a final extension at 72◦ C for 5 min.

The multiplex PCR assay consisted of three groups (Table 2).
Group 1 comprised serotypes O1, O3, O4, O5, O6, O7, O8, and
O9/10/11; group 2 comprised serotypes O12, O13, O14, O15 O16,
O17, O18, and O19; and group 3 comprised serotypes O20, O21,
O22, O23, O24, O26, O27, and O30. The PCR mixtures and the
PCR program used were the same as those for the singleplex
PCR amplifications.

Construction of an in silico Serotyping
Program
A Python script was constructed for E. cloacae serotyping
using genomic data (Supplementary Data S1). Generally, a
database was first generated based on the sero-specific genes
characterized and tested in this study, i.e., the wzy genes for
25 of the 26 serotypes and the wzt gene for serotype O23.
Next, genomic assemblies were employed to a BLASTn search
against the database with an identity cutoff of >99%. The
script outputs contained the best-matching genes via BLASTn
analysis, as well as the identity level between sero-specific gene(s)
and homologous genes(s) in the query genome, which enabled
determination of the exact serotype.

2www.ncbi.nlm.nih.gov/genbank
3pfam.sanger.ac.uk
4http://www.cbs.dtu.dk/services/TMHMM-2.0/
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TABLE 2 | Primers used in this study.

Group Serotype Targeted gene Froward primer (5′–3′) Reverse primer (5′–3′) Amplicon size (bp)

1 O1 wzy ATTTTCTGAACGAGGTCTTGATA AAGATAAGTGGTTAGCACGAGG 211

O3 wzy TGATGGCTATTCTGCTCTGG TTCCCAACCACCGTAGCC 311

O4 wzy TGCTCCTGCTGAAGGTGTC ATGGCAGTTCCTATTATTCCG 411

O5 wzy AGTTTCGTTTGCTTGGCTC TTCTCCCACGGTCCTCTGT 523

O6 wzy TATGAAAACAATCGGTTACGC GCCAATCTATACCAACCAACAT 657

O7 wzy CTGTTCGTCTTCTTGTTAATCGT CAAATAATCTAATGTGTATCCCCTG 714

O8 wzy ATCTCCCTGTATTACTTTTATTTAGC GCTGAGGTAATTAGAGGTCTAACAG 850

O9/O10/O11 wzy AGCGTTTATATATTTCCTGCTTACT GCTATCCCATTAGACACGCT 1008

2 O12 wzy TATGCCTGTATGTTGTCTTTGC TAACTAATACCAAAAAGCGGC 400

O13 wzy CTATCGCAGGTTTTAGACCCA AAAGGTATTGTTAAAAATCCGAAT 841

O14 wzy GTCACTTTATTTTGTTGGTTTGG GTTCCGTGATCGTTAAGACAA 215

O15 wzy TTTTGGCAGGAAGTCGTAAG CGCTCTACCAAAGAAATTCAG 308

O16 wzy GTGCTTTGCGATAATACCTGA ACCCGCAGTAACATAGACATAAA 475

O17 wzy ATGGCTTTCTCGTTTAGTTCG GACTTCCCCACCACTCAACT 651

O18 wzy TTCTGGCTGTGATGTTTTCG CAGCGTTAAATCCAATCAAGAC 1137

O19 wzy TGGATACAGGGTATTCCGCTA AATCGCAAACTCATTGAAGAAG 738

3 O20 wzy AACGACGCTATGTTTCTTTTG CCGAACCACATAACCACAAA 537

O21 wzy CATTTATTCCATTTTTAAGCTCTG CGCATAAACTTTCTCCCGA 938

O22 wzy GAGATTCGGAAACGGACTTG TATATCACAATGTTTATCACTGCC 342

O23 wzt GGCTCCATTTCTTGTCTGCT TATCCGAGTCAAGATGAGCAC 241

O24 wzy TATTTGTATGCGTGCCAGAAG ACTCAGATAGTATATTACCCGCAA 441

O26 wzy GCATCGGTCAATCCTCAAG ACAAGCCAGCACATCCAAC 206

O27 wzy ATGGTTTACCGATGTCTACTGG TTATACACCTTTTAATCGCCTATTA 832

O30 wzy GTAATTGATGGTTTATGGCGTT AGTGAGCAAAGGAATGAGAAAGT 722

Nucleotide Sequence Accession Number
The DNA sequences of the O-AGCs from all 26 E. cloacae
reference strains were deposited in GenBank database under
accession numbers MK595714 to MK595739.

RESULTS

Analysis of the E. cloacae O-AGCs
Twenty-six O-AGCs of E. cloacae reference strains collected
from National Collection of Type Cultures, United Kingdom
(NCTC) were obtained via genome sequencing. All O-AGCs
are located between two housekeeping genes, galF and gnd,
and range from 4,473 to 16,323 bp, with all genes being
transcribed from galF and gnd (except the fdtC gene of
O27) and five to 16 open reading frames (ORFs) being
encoded. Generally, the main three classes of genes within the
O-AGC were annotated in each serotype. In addition, several
pyruvyl transferases, acetyl transferases, and hypothetical protein
encoding genes were also assigned for individual strains. Figure 1
shows a schematic representation of all 26 O-AGCs, and the
characteristics of all ORFs within each O-AGC are summarized
in Supplementary Table S1.

Some normal sugars, including D-GlcNAc, D-Glc, D-GlcA,
and D-GalA, are also found in other structures in the
Enterobacteriaceae family and the biosynthesis genes are
normally found at various loci outside the O-AGCs. Here, the
biosynthesis pathway of 13 rare occurring sugars was proposed

based on the occurrence of their corresponding nucleotide sugar
precursor synthesis genes (Figure 2).

The O-antigen synthesis pathway is initiated by transfer
of a sugar phosphate from an NDP-sugar to Und-P. In
most E. coli and Shigella strains, and in a high proportion
of Salmonella strains, WecA, encoded by wecA gene of the
enterobacterial common antigen gene cluster, mediates this
step by transferring UDP-GlcNAc to Und-P (Alexander and
Valvano, 1994; Rick et al., 1994; Al-Dabbagh et al., 2016).
Among the 26 serotypes, 17 (65%) possess no initial transferase
(IT) gene, which probably means that O-antigen synthesis is
mediated by WecA in those serotypes. Indeed, we discovered
a homolog of the wecA gene by screening each genome for
all of them (data not shown). In serotypes O9 to O12, O16,
and O27, the homologs of wbpL gene were found, whose
product has been identified as an IT and transferred UDP-D-
FucNAc to Und-P to initiate O-antigen synthesis in Pesudomonas
aeruginosa (Rocchetta et al., 1998). We also assigned wbpM
and wbpK genes in these serotypes, whose products were
characterized collectively in terms of UDP-D-FucNAc formation
in P. aeruginosa (King et al., 2009). Thus, we deduced that
the initial sugar of the O-antigens of O9 to O12, O16, and
O27 is very likely D-FucNAc. Another IT gene, wbaP, was
assigned to O3, O14, and O21. WbaP was previously identified
as an IT that transfer Gal-1-P to Und-P to initiate O-antigen
synthesis (Reeves et al., 2013). We therefore propose that the
initial sugar of the O-antigens of these three serotypes should
be D-Gal.
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FIGURE 1 | Schematic diagram of the O-AGCs identified from the 26 E. cloacae reference strains. Genes are represented by arrows and colored according to the
gene key at the bottom with gene names indicated above each arrow.
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FIGURE 2 | Biosynthesis pathways for the putative sugars in the E. cloacae O-antigens. MnaA, UDP-N-acetylglucosamine-2-epimerase (Campbell et al., 2000);
FnlA, 4,6-dehydratase, 3- and 5-epimerase; FnlB, reductase; FnlC, C-2 epimerase (Kneidinger et al., 2003); GalE, UDP-glucose-4-epimerase (Samuel and Reeves,
2003); Glf, UDP-galactopyranose mutase (Nassau et al., 1996); GalU, UTP-glucose-1-phosphate uridylyltransferase (Bonofiglio et al., 2005); GlmU,
UDP-N-acetyl-glucosamine pyrophosphorylase (Mengin-Lecreulx and van Heijenoort, 1993); GlmM, phosphoglucosamine mutase (Mengin-Lecreulx and van
Heijenoort, 1996); GlmS, L-Glutamine:D-fructose-6-phosphate amidotransferase (Badet et al., 1987); Pgm, phosphoglucomutase (Lu and Kleckner, 1994); Gpi,
Glucose-6-phosphate isomerase (Winkler, 1970); NnaA, UDP-N-acetylglucosamine-2-epimerase; NnaB, N-acetylneuraminic acid synthetase; NnaC,
CMP-N-acetylneuraminic acid synthetase (Annunziato et al., 1995); RmlA, glucose-1-phosphate thymidylyltransferase (Zuccotti et al., 2001); RmlB, dTDP-D-glucose
4,6-dehydratase (Allard et al., 2001); RmlC, dTDP-4-keto-6-deoxy-D-glucose 3,5-epimerase (Giraud et al., 1999a); RmlD,
dTDP-6-deoxy-L-mannose-dehydrogenase (Giraud et al., 1999b); ManA, phosphomannose isomerase; ManB, phosphomannomutase; ManC,
mannose-1-phosphate guanylyltransferase (Samuel and Reeves, 2003); Gmd, GDP-mannose-4,6-dehydratase (Somoza et al., 2000; Kneidinger et al., 2001); Fcl,
GDP-L-fucose synthetase (Rosano et al., 2000); FdtA, dTDP-6-deoxy-hex-4-ulose isomerase; FdtB, dTDP-6-deoxy-D-xylo-hex-3-ulose aminase; FdtC,
dTDP-D-Fuc3N acetylase (Pfoestl et al., 2003); WbpM, UDP-D-GlcNAc 4,6-dehydratase; WbpK, 4-reductase (King et al., 2009); PseB, C6 dehydratase/C5
epimerase; PseC, aminotransferase; PseH, N-acetyltransferase; PseG, nucleotidase; PseI, condensase; PseF, cytidylyltransferase (Schoenhofen et al., 2006); Fcf1,
dTDP-6-deoxy-D-xylo-hex-4-ulopyranose reductase (Wang et al., 2008); Tll, dTDP-6-deoxy-L-lyxo-4-hexulose reductase (Nakano et al., 2000).

Three different pathways have been reported for O-antigen
synthesis. For E. cloacae, 96% (25 of 26 serotypes) O-AGCs
contain wzx/wzy genes, meaning very likely that most E. cloacae
strains utilize the Wzx/Wzy-dependent pathway for O-antigen
translocation and polymerization. The only exception is O23,
which possess wzm/wzt genes instead of wzx/wzy genes,
suggesting that the O23-antigen is synthesized via the ABC
transporter (Wzm/Wzt)-dependent pathway. An anomaly here
is that only wzy gene is annotated in O13, and we propose that
wzx gene of O13 must be located elsewhere in the chromosome.
This atypical feature has been reported in other strains, such
as Klebsiella K11 and K34 (Pan et al., 2015), and Salmonella
serotypes A, B, and D1 (Wang et al., 2002).

Development of a Multiplex PCR Assay
Compared with the nucleotide sugar precursor synthesis genes
and glycosyltransferase genes, the O-antigen processing genes
(wzx/wzy and wzm/wzt) are much more highly serotype-
determinative (Li and Reeves, 2000; Ballmer et al., 2007). We
constructed neighbor-joining phylogenetic trees for wzx and wzy,
which showed high diversity levels among the different serotypes,
except for O9/O10/O11, of which the O-AGCs shared 100%

identity (Supplementary Figure S1). Therefore, wzy was selected
as the target gene in terms of primer design for 25 of the 26
serotypes. Because wzy is lacking in the O-AGC of O23, wzt was
selected instead. The 24 primer pairs were divided into three
groups to generate target DNAs (Table 2).

The multiplex PCR method was tested against each of the
26 O-standard E. cloacae reference strains and 16 strains of
other species within the Enterobacteriaceae family (Table 1). In
the presence of each target strain, only the corresponding sero-
specific primer pair worked, and only one band of the expected
size was generated (Figure 3). The amplicons ranged in size from
211 to 1,137 bp in length (Table 2). The representative E. cloacae
strains belonging to other serotypes or other bacterial strains
did not generate PCR products of the correct size. The results
showed that all 24 primer pairs were specific and compatible in
the multiplex PCR runs.

Furthermore, O3 from group 1, O17 from group 2, and O26
from group 3 were selected to determine the detection limit of
our multiplex PCR assay. To determine the detection limit, serial
10-fold dilutions (10 ng to 0.1 pg) of genomic DNA from each
strain were tested, which showed that the sensitivity of our assay
was 0.1 ng for genomic DNA. To determine the sensitivity for
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FIGURE 3 | Agarose gel electrophoresis of representative Multiplex PCR products from 26 E. cloacae reference strains. M, DL2000 DNA molecular standard.
(A) products of group 1, (B) products of group 2, and (C) products of group 3.

pure cultures, the three serotypes were serially diluted 10-fold
from 108 down to 100 colony forming units (CFUs) and used as
templates for multiplex PCR. Our test demonstrated that positive
signals could be generated for templates containing 103 CFUs
of pure culture.

A double-blinded test using 81 E. cloacae strains with
unknown serotypes was performed to evaluate our multiplex
PCR system. Among them, 73 were typeable, including 11
assigned to O1, 24 assigned to O3, 12 assigned to O9/10/11, and
10 assigned to O13, with the other serotypes each representing
<10%. This result was confirmed to be correct by ABI3730
sequencing. The distribution of serotypes is generally consistent
with Gaston’s study by using agglutination test against 300
clinical isolates (Gaston et al., 1983), with exception of O8, which
accounted for >13% in his investigation.

In silico Serotyping of Genomic Data for
E. cloacae Strains
To evaluate our molecular serotyping scheme, we downloaded
431 E. cloacae genomes from GenBank and screened them using
all sero-specific genes identified in our study. Among them, 304
could be assigned to certain serotypes, with O3 representing
the predominant group (38%), followed by O8 (15%) and O13
(10%), and other serotypes assigned each <7%. The result of our
in silico analysis is also in line with the allocation of serotypes
studied by Gaston et al. (1983).

Among the remaining 127 genomes, the O-AGC was
either not found or was too fragmented for 15 genomes,
thus, these genomes were excluded from further analysis.
The genetic region between galF and gnd in 112 strains
was then extracted and analyzed, and 55 novel putative
O-AGCs (temp 1–55) were obtained (Supplementary Table S2
and Supplementary Figure S2).

DISCUSSION

At present, the O-antigen structure has only been elucidated for
one reference strain (NCTC 11579, serotype O10), by Wilkinson’s
group (Moule et al., 1989). The O-AGC of O10 in this study
showed a perfect correlation with the structure (Figure 4A). In
general, ManB and ManC, combined with ManA, are responsible

for the formation of GDP-D-Man, the nucleotide sugar precursor
of D-Man, whereas manA is always located outside of the O-AGC
(Samuel and Reeves, 2003). WbpM and WbpK are responsible for
the formation of UDP-D-FucNAc, the nucleotide sugar precursor
of D-FucNAc (King et al., 2009). The products of two glycosyl
transferase genes are proposed for the synthesis of two D-Man-
(α1→2)-D-Man linkages and one D-Man-(β1→3)-D-FucNAc
linkage, however, the exact functions of each could not be
inferred. The presence of wzx and wzy genes probably means that
the O-antigen of O10 is synthesized by the Wzx/Wzy-dependent
pathway. We noticed that there is a D-Glc side branch attached
to the β D-Man residue of the backbone of O10 antigen. This
is commonly mediated by the Gtr process, which is involved by
three enzymes, GtrA, GtrB, and GtrC, with all genes (gtrA/B/C)
always being clustered in prophage genomes. GtrA and GtrB
are highly conserved among different serotypes, and GtrC is
unique to each serotype and is therefore the sero-specific glucosyl
transferase (Allison and Verma, 2000; Wang et al., 2007). By
screening the genome sequence of O10, we observed gtrA and
gtrB homologs, but gtrC could not be annotated due to its low
identity shared with the analogs. However, we consider that the
gene just downstream of gtrB is most likely a gtrC gene unique to
E. cloacae O10, as the protein encoded by it possesses 12 potential
transmembrane domains, as predicted using TMHMM v2.0,
being consistent with the topology of GtrC of Shigella flexneri
(Korres and Verma, 2004). We also characterized the gtr gene
set in O9 and O11, respectively. Pairwise comparison showed
that the % identity level of GtrA among the three serotypes
is 86–100, and GtrB 93–96, however, the % identity level of
GtrC, the serotype determinant, ranges only from 30 to 34. In
addition, O9, O10, and O11 possess almost identical O-AGCs
with > 99% overall identity (Figure 4A), suggesting that the
O-AGCs of these serotypes may be recently transferred from
one isolate to the others and that their O-antigens very likely
contain identical backbones. Although O9/O10/O11 appeared to
represent an antigenic group, the distinct numbers for them were
still be retained as high-titer-specific sera could be prepared by
absorption (Gaston et al., 1983). Therefore, the minor antigenic
difference among these serotypes must be accounted for by the
variations in the side branches or modifications encoded by genes
located elsewhere in the chromosome. On the other hand, the
possibility could not be entirely excluded that each of the three
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FIGURE 4 | Comparison of closely related O-AGCs within E. cloacae strains and between E. cloacae and E. coli strains. (A) Comparison of O-AGCs of E. cloacae
O9/O10/O11, with the O-antigen structure of O10 being shown. (B) Comparison of O-AGCs of E. cloacae O4 and E. coli O4, O16 and E. coli O45, O20 and E. coli
O149/S. bodyii type 1, and O26 and E. coli O84, with the O-antigen structures of the latter in each group being shown.

serotypes possesses unique O-antigen structure, since a few gene-
product pairs share 99% identity level which may influence the
activity of them due to non-synonymous mutations, as the case
in E. coli O9/O9a (Kido and Kobayashi, 2000).

In addition, we also observed a few strains whose O-AGCs
are closely related to those of some serotypes of E. coli: they
are O4 and E. coli O4 (Jann et al., 1993), O16 and E. coli
O45 (Jann et al., 1995), O20 and E. coli O149/S. bodyii type
1 (Adeyeye et al., 1988; Liu et al., 2008), and O26 and E. coli
O84 (Knirel et al., 2016) (Figure 4B). Overall, strains in
each group share almost identical gene order, and significant
protein identity level (55–97%). In these pairs of O-AGCs in
E. cloacae and E. coli excluding the O16/E. coli O45 group,
the average level of protein identity encoded by nucleotide
sugar precursor synthesis genes, glycosyltransferase genes, and
O-unit processing genes, is 82, 64, and 59%, respectively. We

assume that each pair has evolved from a gene cluster located
in a common ancestor, but that the three classes of genes
underwent different selective pressures after divergence, as is the
case in some Salmonella O-antigens (Liu et al., 2014). For the
O16/E. coli O45 group, the overall identity of each pair of gene
products is similar (84–97%), and we suppose that the O-AGCs
of them probably also originated from a common ancestor
recently and still underwent rapidly-evolving events. Elucidation
of the O-antigen structures of more E. cloacae serotypes will
undoubtedly enhance our understanding of the evolution of
O-AGCs of this bacterium, as well as the genetic relatedness of
intra- and inter-species.

Efforts have been made to develop a method for timely clinical
diagnosis, epidemiological surveillance, and outbreak detection
for E. cloacae, including biotyping, phage typing, and ribotyping
(Gaston, 1987; Garaizar et al., 1991; Weischer et al., 1993).
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However, these assays are not highly discriminatory and
reproducible methods for E. cloacae typing. Subsequently, a
multilocus sequence-typing scheme was presented (Miyoshi-
Akiyama et al., 2013) and employed to characterize E. cloacae
isolates (Viau et al., 2017; Wang et al., 2017; Miao et al., 2019).
More recently, WGS-based methods were presented, showing
enhanced discriminative power and shedding new insights into
the phylogeny and resistance mechanisms of E. cloacae (Chavda
et al., 2016; Beyrouthy et al., 2018); however, the WGS data
analysis has not been fully standardized.

Conventional serotyping by using agglutination test is always
delicate, laborious, time-consuming, and expensive. For decades,
several molecular assays targeting sero-specific genes and
showing fast, reliable, and cost-effective detection were developed
for bacterial serotyping (Azzari et al., 2010; Lin et al., 2011; Bai
et al., 2015). Compared to normal PCR and Taqman probe-
based real-time PCR methods that amplify individual or only
at most four target gene(s), the multiplex PCR assay could
simultaneously detect multiple targets in a single reaction,
and generate the same accuracy while saving time and effort.
Because of these advantages, multiplex PCR has been applied
widely for the detection of many bacterial strains (van der
Veer et al., 2018; Kwack et al., 2020; Collins et al., 2020).
In the past few years, several WGS-based in silico serotyping
approaches have been presented and showed better resolution
compared to conventional methods, and have been utilized for
epidemiological investigation and tracing (Thrane et al., 2016;
Ibrahim and Morin, 2018; Wu et al., 2019). However, all of
those studies are based on a key prerequisite that is the full
and deep understanding of the O-antigen and the genetic basis
for its diversity/variation. To date, the O-antigens and O-AGCs
(or the capsular antigen and its genetic determinant) of several
pathogenic species, especially in the Enterobacteriaceae family,
including Escherichia coli (Iguchi et al., 2015), Shigella (Liu et al.,
2008), Salmonella (Liu et al., 2014), Klebsiella (Pan et al., 2015),
and Yersinia pseudotuberculosis (Kenyon et al., 2017) have been
characterized in depth.

Although more O-antigen structures need to be elucidated to
support our study, the work here, for the first time, presented
the genetic basis regarding the O-antigen diversity and variation
of E. cloacae, which also may partially help in understanding
the evolution of this important pathogen. It should be noted,
however, that using a conventional agglutination test or our

multiplex PCR assay targeting only the present serotype groups,
10–23% isolates could not be assigned to certain serotypes,
meaning that other novel serotypes are still evolving and remain
to be discovered. Indeed, a large number of putative novel
serotypes were characterized by screening the E. cloacae genomes
deposited in GenBank. The antigenic scheme for E. cloacae
has not been updated since the 1990s; therefore, our current
findings have expanded the existing serotyping system for
E. cloacae, which is significant for detection and epidemiological
surveillance purposes for this important pathogen.
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