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B cells in the balance: Offsetting
self-reactivity avoidance with
protection against foreign

Clara Young1,2*†, Angelica W. Y. Lau1,2† and Deborah L. Burnett1,2*

1Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia, 2St
Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst,
NSW, Australia
Antibodies are theoretically limitless in their diversity and specificity to foreign

antigens; however they are constrained by the need to avoid binding to self.

Germinal centers (GC) allow diversification and maturation of the antibody

response towards the foreign antigen. While self-tolerance mechanisms

controlling self-reactivity during B cell maturation are well recognized, the

mechanisms by which GCs balance self-tolerance and foreign binding

especially in the face of cross-reactivity between self and foreign, remain

much less well defined. In this review we explore the extent to which GC self-

tolerance restricts affinity maturation. We present studies suggesting that the

outcome is situationally dependent, affected by affinity and avidity to self-

antigen, and the extent to which self-binding and foreign-binding are

interdependent. While auto-reactive GC B cells can mutate away from self

while maturing towards the foreign antigen, if no mutational trajectories allow

for self-reactive redemption, self-tolerance prevails and GC responses to the

foreign pathogen are restricted, except when self-tolerance checkpoints are

relaxed. Finally, we consider whether polyreactivity is subject to the same level

of restriction in GC responses, especially if polyreactivity is linked to an increase

in foreign protection, as occurs in certain broadly neutralizing antibodies.

Overall, the outcomes for GC B cells that bind self-antigen can range from

redemption, transient relaxation in self-tolerance or restriction of the antibody

response to the foreign pathogen.

KEYWORDS

somatic hypermutation, autoantibody redemption, B cell tolerance, germinal center,
affinity maturation, autoreactivity, anergy
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Introduction

In a world of virtually limitless number of antigenic

possibilities, it is unsurprising that a significant overlap of

antigenic composition and structural epitopes can be found on

those presented on pathogens and those expressed on self-

tissues. Whilst B cells have evolved with the ability to undergo

B cell receptor (BCR) rearrangements during early development

and in the periphery to combat the inevitable antigenic

similarities and diversity, the competing interests of balancing

self-tolerance while maintaining foreign protection are

undeniably complex. Despite this inherent overlap in the

majority of instances B cells are able to generate highly specific

foreign binding antibodies while avoiding self-reactivity. The

exact mechanisms by which these B cells affinity mature and to

what extent this avoidance of self-binding is at the expense of

reduced binding, is not yet fully elucidated. Complex

experimental models and repertoire sequencing datasets in

recent times highlight that a variety of factors may be at play,

depending on the complexity of foreign antigen and its similarity

to self, genetic factors and antibody stability. In some scenarios,

in the process of avoiding self-reactivity, B cells may restrict their

response to foreign pathogens. However, in other situations

there appears to be demonstratable evidence of self-reactivity

forming no barrier, or even providing a selective advantage to B

cells maturing to foreign antigens near-identical to self. In this

review we have sought to explore the mechanisms of B cell

tolerance that might affect the response to foreign pathogens and

have highlighted some of the complexity and paradoxical

evidence provided by experimental models defining the role of

B cell response to pathogens mimicking self.
Central and peripheral self-
tolerance shapes the
B cell repertoire

Astonishing diversity within the pre-immune antibody

repertoire is achieved by the stochastic recombination of

germline immunoglobulin genes; generating an estimated 1012

unique specificities during early B cell development (1–5). The

price of such an efficient and random process, however,

inevitably results in primary BCR rearrangements with

significant reactivity against a variety of soluble, cellular, or

structural self-antigens (6). While self-reactive early B cells form

a majority of the pre-immune antibody repertoire, nature has

evolved elegant counter-selection mechanisms during early B

cell development.

Developing B cells in the bone marrow carrying a BCR with

high affinity or high avidity binding to surface self-antigens, are

either clonally deleted or undergo the process of receptor editing

(7–16). Alternatively, potent ligation by self-antigens through
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the immature self-reactive BCR reactivates the recombinase-

activating genes to initiate immunoglobulin V(D)J

rearrangements in an attempt to reduce self-reactivity followed

by further rounds of clonal selection (17, 18); as a result, the

revised self-reactive B cells escape clonal deletion and

incidentally contribute to the increasing diversity of the

primary B cell repertoire. These central tolerance processes of

clonal deletion and receptor editing inhibit strongly self-reactive

B cells from escaping into the peripheral circulation.

However, despite multiple brakes cohesively censoring self-

reactive B cell clones during B cell development in the bone

marrow, between 6-30% of B cells with reactivity to self-antigens

enter the periphery (7, 19, 20). For example, the germline

IGHV4-34 heavy chain immunoglobulin which confers

potentially pathogenic autoantibody reactivity by binding N-

linked N-acetyllactosamine expressed by the l/i blood group of

self-glycoproteins present on red blood cells and B cells, in fact

encodes 5% of the B cell repertoire in a healthy individual (21–

23). Instead of being deleted, these self-reactive B cells are

maintained in a state of reduced responsiveness or “anergy”

triggered by continuous BCR signaling (7, 9, 24–32). The

discovery of anergy raised the following question – why would

self-reactive B cells, with the potential to produce harmful

autoantibodies, be maintained in the circulation? This question

is perhaps heightened by the fact that anergy is an active process,

requiring ongoing BCR engagement and signaling, and thereby

is inherently not infallible (33, 34).

The answer likely lies in the hypothesis that anergy serves a

dual purpose, and that anergy is used as a compromise by the

immune system to firstly avoid generating “holes” within the B

cell repertoire which could be exploited by pathogens and

secondly, to retain these cells within the repertoire for defense

against foreign antigens that structurally resemble self (35–37). If

self-reactive anergic B cells are actively maintained in

circulation, it suggests that anergic self-reactive B cells must be

available to partake in B cell responses against foreign antigens,

at least in some circumstances.
The germinal center response to
foreign antigens

During immune responses to foreign pathogens, activated B

cells are recruited to germinal centers (GCs) to facilitate affinity

maturation towards the foreign antigen. In order to achieve high

affinity foreign binding, GC B cells undergo highly competitive

rounds of somatic hypermutat ion (SHM) of their

immunoglobulin variable region genes where they engage with

foreign antigens presented on follicular dendritic cells and

stimuli delivered by T follicular helper cells (Tfh) (38–43).

The mechanisms driving selection of GC B cell clones that

bind the foreign antigen with high affinity have been described in
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detail in several recent reviews (42, 44–47). In brief, the current

prevailing mechanism for selection of B cells with high affinity

for the foreign antigen is thought to be driven by competition for

limited Tfh cell help. GC B cells that carry a BCR which acquired

higher affinity for foreign antigen via random SHM of their BCR

become the most efficient at capturing and presenting the

foreign antigen to cognate Tfh cells via MHC class II, and as a

result, these GC B cells receive a strong survival signal (39, 48).

The GC B cells with low affinity for the foreign antigen either

submit to apoptosis i.e., “death by neglect” or undergo lower

rates of proliferation and eventually become out-competed over

time, because they are not able to receive sufficient Tfh-derived

stimuli (49, 50). Recent studies have demonstrated that GC

positive selection is also driven by isotype class-switching to IgG,

which occurs independent of BCR affinity (51, 52). Overall, the

final result is that high affinity class-switched GC B cells are

selected for differentiation into antibody-producing plasma

cells (41, 53–58). In this way, the GC response results in an

affinity matured class-switched antibody response against

foreign antigens.
Avoidance of self-reactivity in the
germinal center

While the mechanisms governing GC selection against

foreign antigens are well studied, the mechanisms which

govern avoidance of self-reactivity in the GC, remain largely

undefined. During a GC response, there are two major pathways

leading to self-reactivity. The first pathway is the de novo

generation of self-reactivity via SHM and the second is

through the recruitment and expansion of cross-reactive naïve

self-reactive precursor B cells during an anti-foreign response.

In the scenario where a self-reactive B cell is generated de

novo in the GC, the acquisition of self-reactivity through SHM

can sometimes decrease in foreign antigen binding, triggering

their “negative selection” due to reduced competitiveness during

affinity-based selection. In instances where de novo acquisition

of GC self-reactivity also concurrently increases foreign binding,

experimental models have shown self-reactive GC B cells are

counter selected (59). Thus, the requirement to maintain

foreign-binding is critical during decision-making in GC self-

tolerance mechanisms. However, what remains largely

unknown, is the mechanisms driving “negative selection” of

the GC B cells that increase specificity for foreign but also cross

react with self-antigens.

Despite our lack of understanding towards the mechanism,

the absence of sustained autoantibody production in most

individuals clearly indicates that self-tolerance mechanisms do

shape the GC-derived antibody repertoire. This extraordinary

capacity of B cells to achieve foreign binding while avoiding self-

reactivity of cross-reactive antigens is well evidenced in the
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antibody response to Campylobacter jejuni. The vast majority

of individuals are able to generate antibodies that effectively bind

foreign lipooligosaccharide, while effectively avoiding specificity

for near identical self-gangliosides that could result in

autoimmune Guillian-Barré syndrome (60–62). However the

mechanism driving this exquisite self/foreign discrimination of

this antigen remains undefined.
Balancing tolerance and pathogen
response through autoantibody
redemption

It is now recognized that in certain situations this avoidance

of self-reactivity can be facilitated through the process known as

“autoantibody redemption” (Figure 1). Autoantibody

redemption refers to the phenomenon whereby anergic self-

reactive B cells enter the GC response and selectively acquire

mutations which decrease self-binding. This process was

originally described using models which traced the antibody

mutation trajectory of HyHEL10 B cells in mice expressing

variants of self-antigens Hen Egg Lysozyme (HEL) as model

self-antigens immunized with variants of HEL with varying

degrees of self-reactivity (36, 63, 64). “Redeemed” self-reactive

B cells have since also been found as a component of the

antibody response to vaccinia virus and the rhesus D

alloantigen (RhD) responses (65), and the response to malaria,

whereby a number of B cell clones have shown evidence of a

large insertion of LAIR1, which abolishes binding to self-

collagen (66, 67).

Interestingly, in some cases, avoidance of self-reactivity by

autoantibody redemption during GC responses may actually

result in improved antibody responses to the foreign pathogen

(Figure 1). In the responses to malaria and RhD alloantigen

described above, the pre-immune antibodies showed limited

binding to the foreign antigen but were significantly increased

in the final post immune antibody repertoire (65–67). The

HyHEL10 mouse models have shed further light on this

phenomenon, revealing that in certain instances the

presence of a self-antigen forced the self-reactive B cells to

explore different mutational trajectories to those explored by

their non-self-reactive counterparts. The alternative

mutational pathways undertaken by the self-reactive

precursors were beneficial and resulted in higher affinity

outcomes than in the absence of self-antigen (36, 37, 64).

This indicates that counterintuitively, in some cases, self-

reactive precursors may instead generate antibody responses

to the foreign antigen that are improved, rather than

restricted. This observation suggests targeting certain

anergic self-reactive B cells in the periphery may be the key

in designing vaccine strategies to generate broadly

neutralizing antibodies for self-mimicking pathogens.
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FIGURE 1

Schematic illustration of the possible fates of an individual antibody receptor encountering self versus foreign antigen. (A). If a B cell possesses
an antibody receptor which binds strongly to the foreign antigen, but exhibits minimal binding of the self-antigen and minimal polyreactivity,
there is no restriction of entry into the GC. Within the GC, B cells undergo affinity maturation of its BCR and affinity-based selection. If this B
cell acquires mutations that increase self-reactivity de novo it undergoes negative selection by self-tolerance mechanisms. GC B cell with
improved anti-foreign binding without detectable increased self-reactivity undergo positive selection to produce high affinity anti-foreign
antibodies. (B). If a B cell binds to a foreign antigen but possesses low cross-reactivity or polyreactivity to self-antigens it may still be recruited
transiently into the early extrafollicular plasmablast response without entering the GC, releasing unmutated germline polyreactive antibodies.
De novo generated GC B cells bearing low self-reactivity or polyreactivity may also leave the GC as terminally differentiated antibody-producing
plasma cells, likely in situations where the foreign antigen binding is inherently linked to their polyreactivity properties e.g. broadly neutralizing
antibodies. (C). B cell with high cross-reactivity to both self and foreign antigens can enter the GC response but largely by-passes recruitment
into the early extrafollicular response. Within the GC, this B cell acquires mutations that reduce its autoreactivity. If mutational trajectories are
found which decrease self-binding while concurrently maintaining or enhancing foreign binding, these will undergo positive selection and
eventually outcompete mutational trajectories which concurrently decrease self and foreign binding. If no mutational trajectories are possible
which reduce autoreactivity while concurrently maintaining foreign binding, B cells with high self-binding will be deleted or outcompeted.
Only B cells with diminished binding to both the self and the foreign antigen will be positively selected. The processes that facilitate the
selection of GC B cells with reduced foreign and self-binding, are currently undefined.
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Evidence that avoidance self-
reactivity restricts the foreign
binding response

Despite the above evidence that in some situations avoidance

of self-reactivity can enhance the foreign binding response, an

equivalent body of evidence exists that for certain antigens self-

reactivity cannot be removed or “redeemed,” and in these

instances, on most occasions self-tolerance prevails over

foreign protection (Figure 1). Evidence from the HyHEL10

model antigen system has shown that when there is no

pathway to avoid of self-reactivity while increasing foreign

binding, the B cell clones mutate away from both self and

foreign binding, and thus are referred to as “unredeemable”

antibodies (63, 64).

The phenomenon of “unredeemable” antibodies has also

been recognized in the human antibody repertoire. When

IGHV4-34 B cells paired with IGLV3 light chains, acquire

mutations that remove binding to self-poly-N-acetyl-

lactosamine, these mutations also simultaneously removed

binding to foreign RhD (65, 68). The inability to redeem

self-reactivity for foreign binding, is also likely a key factor

limiting the production of broadly neutralizing antibodies e.g.

broadly neutralizing antibodies to HIV. Despite an

extraordinary SHM mutational profile, some broadly

neutralizing antibodies to HIV are unable to remove self-

binding to N-linked glycans without simultaneously reducing

foreign binding (69, 70).

The predominance of self-tolerance over foreign binding is

also highlighted by experiments using the HyHEL10 mouse

model system. Even when the B cells do not express a pre-

existing BCR that binds to self-antigen, they fail to acquire

mutations which increase both foreign reactivity and self-

binding (59).

In addition to avoidance of self-reactivity, affinity

maturation against foreign also appears to be restrained by

host mechanisms to avoid antibodies with reduced solubility,

at the risk of developing cryoglobulinemia (19). A specific

example has been recognized with the CNTO607 monoclonal

antibody, which acquires CDR3 mutations which increase

solubility, but at the extent of decreasing foreign binding (71,

72). GC B cells that acquired somatic mutations which

damage structural immunoglobulin integrity are eliminated

via apoptosis (45, 49, 73–75). Hence, antibody responses to

foreign pathogens may also be restricted by an attempt to

eliminate antibodies with solubility issues which could

become pathogenic. However, unlike self-reactivity, it is

unlikely that mechanisms that prevent antibody solubility

would ever be exploited for vaccine design as the risk of

pathogenicity is too high.
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Facilitating foreign binding at the
expense of relaxation of
self-tolerance

Interestingly several studies have shown for certain antigens,

anergic self-reactive B cells can be reawakened when immune

checkpoints are dysregulated to disrupt self-tolerance,

consequently allowing recruitment in the GC and selection of

high-affinity and broadly neutralizing anti-foreign B cell clones.

Case studies have shown patients with systemic lupus

erythematous (SLE) and certain autoimmune mouse models,

including the MRL and LPR mice which lack FAS, are more

readily capable of generating broadly neutralizing antibodies to

HIV (76–79). Similarly, repertoire sequencing data from SLE

patients indicates these patients may have advantages in

generating broadly neutralizing antibodies to influenza following

seasonal influenza vaccination (80). Immunization with HIV

antigen in combination with antibodies inhibiting tolerance

checkpoints e.g. CTLA-4 blockade or OX40 agonists, increased

the GC response and enhanced production of neutralizing

antibodies to HIV (81). Recruitment of anergic B cells for

broadly neutralizing antibody generation has also shown to

occur in non-auto immune set t ings us ing ant igen

multimerization (82), additional adjuvants or mitogenic signals

(70, 83–85) and T cell stimulation (86, 87). It has also been

suggested that immune tolerance may become relaxed following

severe COVID19, demonstrated by an increase in circulating B

cells with autoreactive antibodies specificities in convalescent

patients and evidence that anergic B cells may display a

heightened state of activation (88). Although much of this

immune activation likely results from combinatorial factors

including inflammatory cytokines, specific evaluation of self-

reactive IGHV4-34 B cells suggests antigen cross-reactivity may

contribute to the expansion of autoreactive B cells in

COVID19 (89).
Permissibility of GC responses
to polyreactivity

In addition to playing a role in the innate-like early response

to pathogens, polyreactivity also appears to be a feature of some

GC-derived antibodies (Figure 1). Polyreactive antibodies have

the ability to bind several different self-antigens with low affinity.

This is in contrast to self-reactive autoantibodies that only bind

one self-antigen with moderate to high affinity. Since

polyreactivity is conflated with self-reactivity in many studies, it

can be difficult to interpret and distinguish the outcome of a

polyreactive GC B cell compared to a self-reactive GC B cell.

Despite this, there is some evidence to suggest that unlike self-
frontiersin.org
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reactivity, GC responses may be permissive to polyreactivity, if

polyreactivity is exclusively linked to an increase in

foreign antigen.

The immune system appears to tolerate some level of

polyreactivity. B cells expressing low-affinity polyreactive

antibodies e.g. “natural innate-like B1” B cells, splenic

marginal zone B cells and extrafollicular, short-lived

plasmablasts, are considered important for the first line of

defense against pathogens producing a transient wave of

polyreactive antibodies (6, 90, 91). The IGHV1-69

immunoglobulin gene is encoded by germline polyreactivity

thanks to a hydrophobic motif in CDR2 capable of binding

hydrophobic grooves frequently found within antigens of

unrelated foreign pathogens e.g. influenza, hepatitis C virus

(HCV), Staphylococcus aureus and HIV (92–96). As such

germline IGHV1-69 has been proposed to form part of the

immediate “SOS” antibody response driving control of certain

infections e.g. seasonal influenza, before affinity-matured

antibody responses are able provide high affinity protection

(97–99).

While polyreactivity is tolerated during short-lived antibody

responses, the extent to which polyreactivity is tolerated in GC-

dependent long-term antibody responses, is less clear. There is

some debate regarding the contribution of the GC response to

polyreactivity. Polyreactivity has been reported to occur in up to

25% of IgG+ memory B cells yet only ~6% of naïve B cells (100),

which indicates the GC response generates polyreactivity.

However, the reverse also been reported. In one study, only

~1-2% of IgG+ memory B cells and plasma cells demonstrated

polyreactivity, representing a decrease of roughly 2-4 fold

compared to the naïve B cell compartment (19). These

conflicting reports may be explained by differences in

experimental assays measuring polyreactivity. Alternatively,

they may be explained by the observation that early IgG+

memory B cells (typically GC-independent memory B cells)

were found to be highly polyreactive (~33%), while late IgG+

memory B cells were devoid of polyreactivity (101). Thus,

despite the contradictory reports, it appears that overall, the

long-term GC-dependent antibody response is not characterized

by polyreactivity. Whether this polyreactivity is actively removed

during the GC response via autoantibody redemption similar to

self-reactive GC B cells, or indirectly as a consequence of affinity

maturation, remains unknown.

While GC responses are generally associated with reduced

polyreactivity, there is evidence to suggest polyreactivity may be

permitted in GC responses when polyreactivity is linked to foreign

binding affinity through “unredeemable” mutations. Polyreactivity

is a recurring feature of broadly neutralizing antibodies, especially

those directed to HIV-1 and the stalk region of influenza

haemagglutinin (102–105). Roughly 95% of anti-haemagglutinin

antibodies targeting a broadly neutralizing epitope at the

haemagglutinin stalk region, were found to be polyreactive (105).

By contrast, anti-influenza antibodies derived from adults either
Frontiers in Immunology 06
infected with or vaccinated against seasonal influenza, did not

demonstrate significant polyreactivity (105). Interestingly, almost a

fifth of the broadly neutralizing anti-haemagglutinin stalk

antibodies with polyreactivity were encoded by IGHV1-69 versus

<3% of non-broadly neutralizing antibodies (105). Most studies

indicate the polyreactivity associated with broadly neutralizing

antibodies is germline-encoded, meaning polyreactive precursors

are recruited, rather than generated by GC responses. Roughly 70%

of polyreactive anti-gp140 HIV-1 antibodies maintained their

polyreactivity following reversion to germline (102). Similarly,

polyreactive anti-haemagglutinin antibodies reverted to germline

demonstrated a reduction in affinity for foreign haemagglutinin

binding, yet levels of polyreactivity remained unchanged (105). In

line with this, SHM is generally associated with a reduction in

polyreactivity (19). The high prevalence of polyreactivity amongst

broadly neutralizing antibodies demonstrates the GC response can

be permissive to polyreactivity, if associated with an increase

towards foreign binding.

Thus, this indicates polyreactive GC responses may not be

restricted by “unredeemable” mutations like self-reactive GC

responses. In support of this, polyreactive antibodies have been

shown to demonstrate heteroligation to self and foreign antigen

i.e. simultaneous binding to high density self-antigen and low-

density foreign antigen (102). One could speculate that

polyreactive GC B cells positively selected due to their

increased competitiveness for foreign antigen binding, fail to

trigger the threshold for self-tolerance that prevails for

“unredeemable” self-reactive GC B cells, because affinities for

self-antigen are too low. Future studies are needed to elucidate

the fate of polyreactive B cells during the GC response including

“unredeemable” polyreactive GC B cells, particularly since some

of the coveted broadly neutralizing antibodies to influenza and

HIV are associated with polyreactivity.
Conclusion

In this review we have sought to explore dualistic and unique

challenges faced by B cells combating foreign pathogens that

cross-react with self-antigens. We highlight several recent studies

in the field that have championed our progress in understanding

how GC B cells mitigate antigenic cross-reactivity through the

process of autoantibody redemption. However, more studies are

required to further address some major outstanding questions in

the field, to allow for the adaption of this understanding to benefit

vaccine design and pathogen defense.

Autoantibody redemption, at least in experimental mouse

model systems, can lead to beneficial and higher affinity

outcomes to the foreign antigen. Although it has been shown to

occur in both natural infections and vaccination responses it

remains currently unknown how frequently these processes

occur and whether the process of autoantibody redemption can

be harnessed in vaccine design to enhance the broadly neutralizing
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antibody response. Ongoing research is required to assess the

feasibility of recruitment of anergic self-reactive B cell precursors

and driving them towards a “redeemable”mutational trajectory via

a combination of a germline-targeting and sequential

immunization, in the setting of pathogens that thus far remain

elusive in universal vaccine development.

Another aspect of the field that remains relatively

unexplored, is the fate of polyreactive B cells during GC

responses (in clear distinction with self-reactive GC B cells).

At a very fundamental level, the field still lacks a clear definition

on how much polyreactivity is present in a typical GC-

dependent antibody repertoire. Additionally, while it appears

polyreactivity is reduced following GC responses, it remains

unclear whether polyreactivity is removed via an active

mechanism e.g. autoantibody redemption similar to self-

reactive GC B cells, or is a passive consequence of SHM

during affinity maturation. Since many broadly neutralizing

antibodies are inherently polyreactive, understanding how GC

responses deal with polyreactivity is also pertinent for the field of

vaccine design.

Finally, one major roadblock to understanding of how GC B

cell responses to foreign antigens might be inhibited by self-

antigens, lies in our complete lack of understanding regarding

the mechanisms controlling GC B cell tolerance in the face of

“unredeemable” mutations. Without elucidating these

mechanisms, we cannot fully understand how GC B cell

responses to foreign antigens are shaped by cross-reactivity to

self-antigens. Understanding how B cells deal with foreign

pathogens that mimic self is important for many aspects of B

cell biology and including the fields of autoimmunity and

vaccine design.
Frontiers in Immunology 07
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