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Abstract

Conditional logistic regression (CLR) is widely used to analyze habitat selection and move-

ment of animals when resource availability changes over space and time. Observations

used for these analyses are typically autocorrelated, which biases model-based variance

estimation of CLR parameters. This bias can be corrected using generalized estimating

equations (GEE), an approach that requires partitioning the data into independent clusters.

Here we establish the link between clustering rules in GEE and their effectiveness to remove

statistical biases in variance estimation of CLR parameters.

The current lack of guidelines is such that broad variation in clustering rules can be found

among studies (e.g., 14–450 clusters) with unknown consequences on the robustness of

statistical inference. We simulated datasets reflecting conditions typical of field studies. Lon-

gitudinal data were generated based on several parameters of habitat selection with varying

strength of autocorrelation and some individuals having more observations than others. We

then evaluated how changing the number of clusters impacted the effectiveness of variance

estimators. Simulations revealed that 30 clusters were sufficient to get unbiased and rela-

tively precise estimates of variance of parameter estimates. The use of destructive sampling

to increase the number of independent clusters was successful at removing statistical bias,

but only when observations were temporally autocorrelated and the strength of inter-individ-

ual heterogeneity was weak. GEE also provided robust estimates of variance for different

magnitudes of unbalanced datasets. Our simulations demonstrate that GEE should be esti-

mated by assigning each individual to a cluster when at least 30 animals are followed, or by

using destructive sampling for studies with fewer individuals having intermediate level of

behavioural plasticity in selection and temporally autocorrelated observations. The simula-

tions provide valuable information to build reliable habitat selection and movement models

that allow for robustness of statistical inference without removing excessive amounts of eco-

logical information.
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Introduction

Spatio-temporal changes in the availability of resources to consumers can have profound

effects on the patterns of animal distributional dynamics [1–3]. Arthur et al. [4] developed a

design to account for such frequent spatio-temporal changes in the availability of habitat fea-

tures by defining availability separately for each observation of habitat use. Every observed

location (case) is paired with several potential locations (controls) that are locally available to

the individual at a given time. The resulting dataset is comprised of a binary response variable

(1 = case, 0 = control), where each response is associated with habitat covariates, and each case

and its associated controls are pooled within the same stratum. This matched case–control

design considers that individuals may not have access to their whole home range during the

relocation interval [5]. Early habitat selection studies that considered spatio-temporal changes

in availability did not take advantage of statistics developed for case-control designs [4,6].

Compton et al. [5] then outlined advantages of using paired or conditional logistic regression

(CLR) when resource availability changes over space. Conditional logistic regression compares

use with availability at the same place and time, and is now increasingly used in habitat selec-

tion studies [7]. Even animal movement is becoming analyzed based on CLR [8–10]. By con-

trasting characteristics of observed and random steps with CLR, step selection function (sensu
Fortin et al. [11]) allows for inference on animal movement similar to biased correlated ran-

dom walks [12].

The enhanced performance of Global Positioning Systems in recent years has increased the

relocation frequency of individuals in habitat selection and movement studies [13], such that

individuals are commonly relocated 24 or more times a day [9,14,15]. To provide robust infer-

ence (i.e., robust estimates of the variance of the regression coefficients), conditional logistic

regression has to account for temporal autocorrelation that is inherent to such rich longitudi-

nal datasets. Falsely assuming independence among observations may lead to over- or under-

estimation of the variance associated with estimates of the regression coefficient [16]. It has

become common practice to use generalized estimating equations (GEE) to cope with tempo-

ral autocorrelation in longitudinal data [9,10,17,18]. GEE have also to account for a second

source of non-independence in successive observations [3,19]. Indeed, individuals may react

differently to various habitat features due to differences in their experience, social status, age,

sex, and physical condition [18,20–22]. To fit CLR models with GEE, strata (i.e., groups of

observed and random locations) must be split into independent clusters, which implies that

observations in one cluster must be statistically independent from those in other clusters. The

effectiveness of GEE then depends upon the rules that are used when partitioning the data into

independent clusters.

Even though the scheme for partitioning the data is simple, no common practice has been

noted in the literature for implementing it. The number of independent clusters that are used

varies from one study to another, ranging as broadly as 14 to 450 clusters [9,23]. Some studies

create a single cluster per individual [24], whereas others have split the strata of each animal

into several clusters [25]. This broad diversity in GEE designs could be explained by the cur-

rent lack of clear guidelines. In fact, the consequences of such broad variation in clustering

rules that can be exerted on the robustness of statistical inferences remains poorly docu-

mented, despite the increasing use of GEE in habitat selection and movement studies [26].

Our aim was to determine how clustering rules in GEE affect their ability to decrease the

statistical bias in variance estimation due to correlation in longitudinal data. More specifically,

1) we tested for the effect of the number of clusters on robust estimates of variance according

to the strength and source of correlation in the response variable (i.e., inter-individual hetero-

geneity and temporal autocorrelation), 2) we determined when destructive sampling, which
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consists of removing blocks of strata so that strata in different clusters are temporally uncorre-

lated for a given individual [11], improves the robust estimate of variance, and 3) we tested the

effect of having an unbalanced dataset on robust estimates of variance.

Materials and Methods

When a GEE is used to estimate a conditional logistic regression, naive and robust estimates of

the variance of the regression coefficients are typically computed. To test for the effect of clus-

tering rules on the robust and naive estimates of variance, we simulated datasets that consisted

of independent clusters but dependent strata (Dataset simulation) for which we considered

different clustering scenarios (Data processing). We then estimated the parameters of the CLR

model for each simulated sample, obtained their naive and robust variance estimates and com-

pared the averages of these variance estimates over all samples to the true variance of the CLR

coefficient estimates (Statistical analysis).

Notation and model

Consider K independent clusters: one cluster represents successive data from one individual,

with all individuals (i.e., clusters) being independent of one another. Consider ~Y ðkÞ1 ; . . . ; ~Y ðkÞT , T
Bernoulli random variables from which we generate S Bernoulli random vectors Y ðkÞ1 ; . . . ;Y ðkÞS ,

which represent successive data from cluster k, k � {1,. . .,K}. Each random vector Y ðkÞj , j � {1,. . .,S},
is a vector of {0,1} observations Y ðkÞj ¼ ðy

ðkÞ
j1 ; . . . ; yðkÞjN Þ

T
;N � 2, where the number of cases (i.e.,

yðkÞji ¼ 1) is fixed atm,m� 1 such that

PN
i¼1
yðkÞji ¼ m; k � f1; . . . ;Kg; j �f1; . . . ; Sg: ð1Þ

For each random vector Y ðkÞj , we have N vectors of P covariates XðkÞj ¼ ðX
ðkÞ
j1 ; . . . ;XðkÞjN Þ

T
such

that XðkÞji ¼ ðx
ðkÞ
ji1 ; . . . ; xðkÞjiP Þ

T
; i �f1; . . . ;Ng. For a given cluster k and a given stratum j, we sup-

pose that

P yðkÞji ¼ 1jXðkÞji

� �
¼

e βT XðkÞji

� �

PN
i¼1
e βT XðkÞji

� � ; ð2Þ

where β = (β1,. . .,βP)
T are the coefficients of the P covariates. In the following, we refer to the

N observations Y ðkÞj ¼ ðy
ðkÞ
j1 ; . . . ; yðkÞjN Þ as a stratum, and a cluster is then composed of S strata.

Robust estimates of variance using GEE

Inference using generalized estimating equation in conditional logistic regression is explained

and illustrated in detail in Craiu et al. [27]; here we develop a brief overview of GEE using

notation defined in the previous section. Let μk = E (Y(k)|X(k)), the mean response for cluster k,

k 2 {1,. . .,K}, Dk ¼
dmk
db

, a derivative matrix of the mean response μk with respect to the coeffi-

cients β and Vk the working covariance matrix of Y(k) that is a function of μk and a correlation

structure specified by the user. A point estimate of β, denoted bβ, is obtained by solving the gen-

eralized estimating equation for β:

XK

k¼1

DT
k V � 1

k fY
ðkÞ � mkg ¼ 0: ð3Þ
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The naive estimate of variance of bβ is given by

B ¼
XK

k¼1

DT
k V � 1

k Dk

 !� 1

: ð4Þ

It supposes that the user correctly specified the correlation structure. However, because this

correlation structure might be mispecified, the naive estimate of variance of β can be corrected

to produce a robust estimate of variance using the following equation:

covðbβÞrobust ¼ B
XK

k¼1

DT
k V � 1

k covðY ðkÞÞV � 1

k Dk

 !

B; ð5Þ

where, covðYk
j Þ is the true covariance of Y(k) estimated using its empirical version

ccovðY ðkÞÞ ¼ ðY ðkÞ � bμkÞðY
ðkÞ � bμkÞ

T
: ð6Þ

Robust and naive estimates of variance of bβ are thus the diagonal values of covðbβÞrobust and

B, respectively [28]. A detailed example of use of GEE to estimate step selection functions can

be found in Craiu et al. [27].

Dataset simulation

To test for the effect of the number of clusters (K) on robust and naive estimates of variances,

we created datasets of a binary response variable that was associated with either two or ten

dependent covariates (P) and organized into K clusters of S dependent strata, with each stra-

tum being composed of ten observations (N = 10) for which one case (m = 1) is associated with

nine controls. We varied the number of clusters from one dataset to another, but the total

number of observations (Ntot) was held constant. As introduced earlier, two sources of auto-

correlation can emerge in the response variable: 1) observations from one individual can be

more similar than observations from two different individuals; and 2) observations of an indi-

vidual can be more similar when they have been collected closely in time.

To simulate correlated Bernoulli random variables ~Y ðkÞt , t � {1,. . .,T}, we followed seven steps:

1. We generated K cluster-level random intercepts θ(k), independent and identically distrib-

uted (i.i.d) sampled in Ɲð0;s2
HÞ.

2. We generated P � K cluster-level random coefficients bðkÞp ; p � f1; . . . ;Pg, P 2 {2,10}, i.i.d
sampled in Ɲð0; s2

HÞ.

3. For the kth- cluster, we generated P � T random coefficients g
ðkÞ
pt , using an AR(1) model as

follows: g
ðkÞ
pt ¼ r g

ðkÞ
pt� 1 þ ε

ðkÞ
pt , where g

ðkÞ
p0 � Ɲð0; 1Þ and εðkÞpt � Ɲð0; 1Þ i.i.d.

4. We then calculated b
ðkÞ
pt ¼ bfixedp þ bðkÞp þ g

ðkÞ
pt .

5. We generated i.i.d covariates X ðkÞpt , each sampled in Ɲð0;s2
XÞ.

6. We calculatedW ðkÞt ¼ yðkÞ þ
PP

p¼1 b
ðkÞ
pt X

ðkÞ
pt and pðkÞt ¼ eW

ðkÞ
t =ð1þ eW

ðkÞ
t Þ.

7. We generated a series of Bernoulli random variables ~Y ðkÞt , such that Pð~Y ðkÞt ¼ 1Þ ¼ pðkÞt .

Second, we formed each stratum j, j � {1,. . .,S}, by successively sampling one case (i.e.,

~Y ðkÞt ¼ 1) and nine controls (i.e., ~Y ðkÞt ¼ 0) and their associated covariates XðkÞ1t . . . XðkÞPt within

Robust Inference from Selection Analysis
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the kth cluster’s series of Bernoulli random variables ~Y ðkÞt . We denote the obtained strata

Y ðkÞj ¼ ðy
ðkÞ
j1 ; . . . ; yðkÞjN Þ.

Several fixed parameters were held constant for all simulations: s2
X = 0.5; T = 20 000;

Ntot = 600; when P = 2: b
fixed
1
¼ 0:75 and b

fixed
2
¼ 0:5; when P = 10: b

fixed
1
¼ 0:75; b

fixed
2
¼ 0:75;

b
fixed
3
¼ 0:75; b

fixed
4
¼ 0:5; b

fixed
5
¼ 0:5; b

fixed
6
¼ 0:5; b

fixed
7
¼ 0:2; b

fixed
8
¼ 0:2; b

fixed
9
¼ 0:2 and

b
fixed
10
¼ 0:2. The number of clusters and the number of strata per cluster varied such that: K =

{3,5,10,20,30,50} and S = Ntot/K. We varied the strength of inter-individual heterogeneity ðs2
HÞ

and temporal autocorrelation (ρ) such that their values cover the usual range of values that are

observed in mixed logistic regression in practice. ρ ranges between 0 and 1, and the simula-

tions were based on ρ = {0,0.3,0.5,0.7}. Whereas s2
H can range inR+, in practice it typically

takes values lower than 2. The simulations were thus based on s2
H ¼ f0; 0:2; 0:5; 1; 1:5; 2:5g.

Data processing

We tested the effect of K on the naive and robust estimates of variance in different scenarios.

To do so, we simulated different datasets where the total number of cases (Ntot) was held con-

stant but the number of clusters varied following the method described in Dataset simulation.

As a result, the number of strata in each cluster depended upon the number of clusters in the

dataset. We proceeded in this manner, because in practice, the number of observations is often

fixed (e.g., depends on the predetermined schedule of GPS collars). Besides, we were interested

in testing the effect of clustering rules on the estimators of the variance of regression coefficient

estimates, rather than on the coefficient estimates themselves. The statistical properties depend

upon the number of clusters [28], and the number of strata should have much less influence

on variance estimates. We included either inter-individual heterogeneity (simulated by be-

tween cluster heterogeneity) or temporal autocorrelation (simulated by temporal correlation

within clusters), or both in the response variable. We varied the strength of heterogeneity and

temporal correlation by respectively changing the values of s2
H and ρ: a low value of s2

H or r

indicates low heterogeneity between clusters or low temporal correlation within clusters, and

vice-versa. Once we had created a dataset of K clusters, which were each composed of S strata,

we ran the GEE analysis that is described in the following section (see Statistical analysis).

Destructive sampling is a common strategy that is used to increase the number of clusters

for GEE analysis. Thus, we tested the effect of this method on the robust and naive estimates of

variances when varying the number of clusters. Initially, we simulated 500 datasets of K clus-

ters and S strata with either between cluster heterogeneity or within cluster temporal autocor-

relation or both (see Statistical analysis). Following Forester et al. [25], we then estimated the

lag beyond which there is no longer significant temporal correlation for each dataset. The max-

imum lag (LK) among the 500 was used to resample each dataset: for each cluster, we kept the

first (S − LK)/2 successive strata that we assigned to a new cluster. We then dropped the next

LK successive strata and kept the last (S − LK)/2 successive strata that we had assigned to a new

cluster (Fig 1). Thus, we obtained 2K clusters that were composed of (S − LK)/2 strata. Once we

had reorganized the dataset, we ran the GEE analysis from the section Statistical analysis.

It is also common to have an unbalanced dataset (i.e., the number of observations that were

collected per individual varies), which we modelled as a dataset of K clusters with different

number of strata S(k). We tested the effect of having unbalanced datasets on the robust and

naive estimates of variance when varying the number of clusters. We created a dataset of K
clusters and S strata with either between cluster heterogeneity or within cluster temporal auto-

correlation, or both. We then proceeded to one of the following unbalancing: 1) we selected

one-third of the K clusters in the initial dataset and retained only the first half of their strata,

Robust Inference from Selection Analysis
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i.e., 2K/3 clusters with S strata and K/3 clusters with S/2 strata, thereafter referred to as weakly

unbalanced dataset; 2) we selected two-thirds of the K clusters in the initial dataset and re-

tained only the first quarter of the strata for the first third and the first half of the strata for the

second third, i.e. K/3 clusters with S strata, K/3 clusters with S/2 strata and K/3 clusters with S/

4 strata, thereafter referred to as strongly unbalanced dataset. We analyzed the resulting unbal-

anced dataset.

Statistical analysis

From the simulated binary response vector Y ðkÞj and its associated covariates XðkÞ1j , . . ., XðkÞPj , P 2

{2, 10} we estimated bbp; p � {1, . . ., P} by solving Eq 3, and computed their respective robust

(denoted VR) and naive (denoted VN) variance estimates using the function coxph in the ‘sur-

vival’ package [29] which is available from the Comprehensive R Archive Network (CRAN).

We ran R = 500 simulations and obtained 500 estimates of bbpr; p � {1, . . ., P}, r � {1, . . .,

500}, for each scenario. We first checked that coefficient estimates bbpr remained consistent

regardless of clustering schemes by averaging the 500 estimates (S3 Fig). Then, the Monte

Carlo estimation of the true variances (denoted VT) of estimates bbpr, were calculated using

VTp ¼
1

R � 1

XR

r¼1

bbpr �
1

R

XR

r¼1

bbpr

 !2

; ð7Þ

To evaluate if the robust and naive estimates of variance are good estimators of the true var-

iance, we calculated the average ratios VRp=VTp and VNp=VTp over the 500 simulations [16].

Ratios that were close to 1 reflect small estimation errors. An unbiased estimator should have

an average ratio that is not significantly different from 1. For the sake of simplicity, we thereaf-

ter drop index p.

Results

Naive estimate of variance

When datasets were simulated without correlation in the response variable (i.e., ρ = 0 and

s2
H ¼ 0), the naive variance was nearly equal to the true variance (average VN/VT� 1), inde-

pendent of the number of covariates (i.e., P = {2,10}), the number of clusters and the manner

in which the data were processed (balanced, weakly unbalanced, strongly unbalanced or destruc-

tive sampling, Fig 2). When considering the other scenarios (i.e., ρ> 0 or s2
H > 0), the naive

variance systematically underestimated the true variance by at least 17% for any of the model’s

covariates (i.e., average VN/VT never exceeded 0.83 for any bbp; p 2 f1; . . . ; Pg; P ¼ f2; 10g),

regardless of type of data processing (Fig 2 for first coefficient (bb1) of model including ten covari-

ates, S2 Fig for the remaining bbp; 1 � p � P).

Fig 1. Details on how to resample datasets using destructive sampling. S represents the number of

strata from one individual. LK represents the lag i.e., the number of strata to remove to meet the assumption of

temporal independence.

doi:10.1371/journal.pone.0169779.g001
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Inter-individual heterogeneity

When inter-individual heterogeneity was included in the response variable (i.e., ρ = 0 and

s2
H > 0), the bias of the robust estimate of variance depended upon the number of clusters

(Figs 2 and S2). Regardless of the number of covariates (i.e., P = {2,10}) and whether or not the

number of observations per cluster was fixed, the average ratio VR/VT increased with the num-

ber of clusters towards an asymptote of 1, which was essentially reached with 20 independent

clusters. With further increases in the number of clusters, the average ratio fluctuated around

the value 1, meaning that the lowest bias was attained (Fig 2A, 2B and 2C). With 20 clusters,

however, the robust estimate of variance still had rather low precision (i.e., large fluctuations

between simulations independently of the number of parameters, S1 Fig), and precision con-

tinued to increase up until approximately 30 independent clusters were used (S1 Fig).

Fig 2. Comparison of average ratios between robust estimates of variance (VR/VT, dashed lines) or naive estimates of variance

over true variance (VN/VT, dotted lines) of coefficient bβ1 when P = 10 for different number of clusters (K), as a function of temporal

autocorrelation (ρ) and inter-individual heterogeneity (σ2
H on the right side of the panels), as well as different data processing: a)

Balanced, each cluster has the same number of strata (S = N/K); b) Weakly Unbalanced, K/3 clusters have S/2 strata and 2K/3

clusters have S strata; c) Strongly Unbalanced, K/3 clusters have S/4 strata, K/3 clusters have S/2 strata and K/3 clusters have S

strata; d) Destructive sampling, each initial cluster of S strata has been split into 2 clusters, a variable number of strata had been

dropped in between to meet the assumption of independence between clusters. Robust or naive estimates of variance are unbiased

when ratios are not significantly different from 1 at the 5% level (solid line).

doi:10.1371/journal.pone.0169779.g002
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When using destructive sampling (i.e., cluster split into smaller clusters by removing strata),

the robust estimate of variance systematically underestimated the true variance for datasets

that included inter-individual heterogeneity, but not temporal autocorrelation (i.e., s2
H > 0

and ρ = 0, Fig 2D). Indeed, the robust variance underestimated the true variance by at least

18% (i.e., average VR/VT never exceeded 0.82 for any bbp, p 2 {1,. . .,P}), regardless of the num-

ber of covariates, the number of clusters and the strength of inter-individual heterogeneity

(Fig 2D for bb1 of model including ten covariates, S2D Fig for the remaining bbp, 1� p� P).

Temporal autocorrelation with or without inter-individual heterogeneity

When observations of the response variable were temporally autocorrelated (i.e., ρ> 0), the

bias in the robust estimate of variance could be largely corrected with the use of at least 20

independent clusters regardless of the number of covariates and inter-individual heterogeneity

(i.e., P = {2,10} and s2
H � 0, Figs 2 and S2). Also the precision of the robust estimate of variance

largely increased until 30 independent clusters were used (S1 Fig). These results hold for both

balanced and unbalanced datasets (Figs 2, S1 and S2).

When using a destructive sampling scheme with autocorrelated response variables (i.e., ρ>
0), we obtained a robust estimate of variance without significant bias only for a certain range

of inter-individual heterogeneity and a certain number of clusters after having split the data.

Specifically, 60 clusters were necessary to get unbiased robust estimate of variance when s2
H �

0:2 independently of the strength of temporal autocorrelation. When s2
H > 0:2, the robust var-

iance systematically underestimated the true variance regardless of the number of clusters

included in the analysis. This finding holds independently of the number of covariates in-

cluded in the regression model (Figs 2 and S2).

Coefficient estimates

S3 Fig shows that the sampling design (data processing, number of clusters) does not have any

impact on the average value of the coefficient estimates (bβ), which remain consistent estima-

tors of the marginal covariate effects. They do illustrate, however, how the difference between

the marginal effects and the conditional effects (values of b
fixed
p ; p �f1; . . . ; Pg, used in the simu-

lations) increases as the heterogeneity or autocorrelation increase (see detailed discussion of

this phenomenon in Craiu et al [19] and Fieberg et al. [17]).

Discussion

Conditional logistic regression (CLR) is frequently used to analyze animal movements and

habitat selection [7], but the lack of clear guidelines that would insure the robustness of stati-

stical models may hamper the gain of ecological knowledge. Our simulations can provide

guidance to minimize the risk of bias when estimating the variance of CLR parameters from

correlated field observations. With the rapid technological advances that have taken place in

recent years (e.g., GPS collars getting smaller, geographic information system with progres-

sively higher resolution; [13]), the need to correct for biases in CLR variance estimates induced

by autocorrelation is likely to become increasingly common and for a larger range of species,

especially in light of recent studies that highlight the advantages of using resource and step

selection functions that are derived from CLR [12,25]. Our simulation study shows how to

obtain robust resource and step selection functions estimates of variance parameters with such

datasets. Simulations of longitudinal data revealed that: 1) a rather small number of clusters is

required to obtain unbiased variance estimation of CLR parameter estimates even when the

Robust Inference from Selection Analysis
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number of covariates is large; 2) clusters can be created with destructive sampling, but only

under specific circumstances; and 3) robust estimates of variance for CLR parameters can be

obtained even with unbalanced datasets. We discuss each of these simulation outputs to pro-

vide general guidelines for the use of CLR.

Simulations show that the robust estimate of variance becomes unbiased when the number

of independent clusters is higher than 20, regardless of the strength of inter-individual he-

terogeneity or temporal autocorrelation and the number of parameters considered in habitat

selection studies. However, variation in robust estimates of variance kept decreasing even

when the number of independent clusters exceeded 20, but the gain in precision became

much less noticeable past 30 clusters. Because the precision of the robust variance increased

with the number of clusters, analyses should be conducted with as many independent clusters

as possible to attain maximum precision [30]. Logistic and financial constraints, however,

often restrict the number of individuals that can be monitored in ecological studies. Ziegler

et al. [31] suggested that at least 30 independent clusters should be used when they are formed

of 4 strata for a low to moderate degree of correlation to fit logistic regression with GEE.

They further suggested the use of an even greater number of clusters for a high degree of corre-

lation. Yet the authors did not base their conclusions on simulations as we did. We tested a

broad range of correlations and still found that 30 independent clusters remained sufficient to

draw robust inferences in habitat selection and movement studies that were based on CLR,

even when habitat selection is based on several parameters and data are sampled at high rates

with strong behavioural plasticity among individuals. This finding can be helpful to fix and jus-

tify the number of individuals to monitor when setting-up habitat selection or movement

studies.

The number of independent individuals may not always be sufficiently large to obtain rea-

sonably robust variances (i.e., less than 30 independent individuals), in which case the dataset

can be resampled using destructive sampling to increase the number of clusters according that

the sampling frequency is high and the behavioural plasticity among individuals is low. If ap-

plied when there is no temporal autocorrelation or when individuals have largely distinct be-

haviours, the robust estimate of variance remains biased, and conclusions regarding resource

selection behaviour may be unreliable. Thus, an assessment of the presence of temporal auto-

correlation (using an autocorrelation function for example, see [25]) and inter-individual het-

erogeneity (using individual-level random coefficients, see [19]) should be performed before

using destructive sampling.

Whereas destructive sampling should remove statistical bias in temporally autocorrelated

datasets with low heterogeneity among individuals, the process can reduce statistical power

when a large proportion of the data are dropped. For example, removing 95% of the initial

dataset led to a change in conclusions on habitat selection by woodland caribou (Rangifer tar-
andus caribou) compared to analyses that were based upon the entire dataset [16]. Reducing

sample size not only decreases statistical power in such extreme cases [16,32], it can also lead

to the loss of biological information [33]. Therefore, the analysis should consider the compro-

mise between the need to obtain robust inferences on CLR parameters by excluding data to

create statistically independent clusters, and the need to maintain high power to clarify the

movement or habitat selection behaviours by retaining as many observations as possible. The

number of observations should be dropped in accordance with the number of clusters that are

necessary to get robust inference. In retrospect, a number of studies might have discarded an

excessive number of field observations. For example, Babin et al. [34] resampled their initial

dataset, which was composed of GPS locations from 8 individuals, by dropping repeatedly seg-

ments of 20 successive locations until they obtained 112 clusters of 7 strata per individual. By

doing so, they dropped 75% of the initial data while they could have dropped less than 5% by
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creating 64 clusters (i.e., 8 clusters for each individual) that would potentially be needed to

obtain robust estimates of variance for the CLR parameters.

The simulations also demonstrated the effectiveness of GEE in correcting for biases in the

variance of CLR parameters even when the number of observations differs among individuals.

We showed for two different magnitudes of unbalanced datasets that 30 clusters were still suf-

ficient to correct for the bias. Fitzmaurice et al. [30] pointed out, however, that GEE might not

be reliable when the design is extremely unbalanced. In fact, when datasets become highly

unbalanced by including individuals with only few observations, issues may arise, not only

with respect to the statistical analysis, but also with the ecological information. Because ani-

mals with few observations may offer relatively poor information about space use patterns in

the first place [35], a common approach is then to discard individuals with too few observa-

tions [36]. Moreover, those individuals might not be comparable to individuals followed over

extended time periods because animal-habitat relationships tend to vary over time [37,38].

This is why, in practice, most studies have datasets with a number of observations that are

rather similar among individuals [11,39,40], in which case our simulations showed that GEE

would be an effective approach to remove biases in CLR variance estimates and robust infer-

ences can be made without losing biological information by removing individuals.

Supporting Information

S1 Appendix. Zipped folder containing R codes used to do the simulations and a descrip-

tion file (Readme.txt).

(ZIP)

S1 Fig. Ninety-five percent confidence intervals of average ratios between robust estimates

of variance over true variance (light grey) of coefficients bβp for different number of co-

variates (P) and different number of clusters (K), as a function of different strengths of

temporal autocorrelation (ρ) and inter-individual heterogeneity (σ2
H on the left side of

the panels) as well as different data processing: a) Balanced, b) Weakly Unbalanced, c)

Strongly Unbalanced and d) Destructive sampling. Confidence intervals have been calcu-

lated using a non-parametric method: upper and lower bounds are the 0.975 and 0.025 quan-

tiles of the 500 observed VR/VT’s, respectively. Average ratios between robust estimates of

variance and true variances (VR/VT) of coefficient bbp are represented by dashed lines on the

figure.

(PDF)

S2 Fig. Comparison of average ratios between robust estimates of variance (VR/VT, dashed

lines) or naive estimates of variance over true variance (VN/VT, dotted lines) of coefficients

bβp, for different number of covariates (P) and different number of clusters (K), as a func-

tion of temporal autocorrelation (ρ) and inter-individual heterogeneity (σ2
H on the left side

of the panels) as well as different data processing: a) Balanced, b) Weakly Unbalanced, c)

Strongly Unbalanced and d) Destructive sampling. Robust or naive estimates of variance are

unbiased when ratios are not significantly different from 1 (solid line).

(PDF)

S3 Fig. Average estimates of bβp for different number of covariates (P) and different num-

ber of clusters (K), as a function of temporal autocorrelation (ρ) and inter-individual het-

erogeneity (σ2
H on the left side of the panels) as well as different data processing: a)

Balanced, b) Weakly Unbalanced, c) Strongly Unbalanced and d) Destructive sampling.
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Fixed values of βp, p 2 {1,. . .,P} were equal to: b
fixed
1
¼ 0:75 and b

fixed
2
¼ 0:5 when P = 2 and

b
fixed
1
¼ 0:75; b

fixed
2
¼ 0:75; b

fixed
3
¼ 0:75; b

fixed
4
¼ 0:5; b

fixed
5
¼ 0:5; b

fixed
6
¼ 0:5; b

fixed
7
¼ 0:2;

b
fixed
8
¼ 0:2; b

fixed
9
¼ 0:2 and b

fixed
10
¼ 0:2 when P = 10.

(PDF)
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