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Abstract: A novel nano-β-FeOOH/Fe3O4/biochar composite with enhanced photocatalytic per-
formance and superparamagnetism was successfully fabricated via an environmentally friendly
one-step method. The structural properties of the prepared composite were characterized by scanning
electron microscopy, transmission electron microscopy, energy-dispersive spectroscopy, X-ray photo-
electron spectroscopy, and a vibrating sample magnetometer. The XPS spectrum of the as-prepared
composites confirmed the presence of Fe-O-C bonds between β-FeOOH and biochar, which could be
conducive to transfer photo-generated electrons. UV-vis spectroscopy confirmed the existence of an
electron–hole connection between β-FeOOH and biochar, which promoted the rapid interface transfer
of photogenerated electrons from β-FeOOH to biochar. These novel structures could enhance the
response of biochar to accelerate the photoelectrons under visible light for more free radicals. Electron
spin resonance analysis and free radical quenching experiments showed that •OH was the primary
active species in the photodegradation process of methyl orange by nano-β-FeOOH/Fe3O4/biochar.
In the synergistic photocatalytic system, β-FeOOH/Fe3O4/biochar exhibited excellent catalytic
activity for the degradation of azo dye (methyl orange), which is 2.03 times higher than that of
the original biochar, while the surface area decreased from 1424.82 to 790.66 m2·g−1. Furthermore,
β-FeOOH/Fe3O4/biochar maintained a stable structure and at least 98% catalytic activity after reuse,
and it was easy to separate due to its superparamagnetism. This work highlights the enhanced
photocatalytic performance of β-FeOOH/Fe3O4/biochar material, which can be used in azo dye
wastewater treatment.

Keywords: graphene-like structure; β-FeOOH; photocatalysis; superparamagnetism

1. Introduction

Water pollution has further aggravated the contradiction of water shortage, among
which azo dye wastewater is one of the primary harmful industrial wastewaters [1]. Methyl
orange with azo bonds is classified as a difficult-to-handle organic dye because of its rel-
atively high biological toxicity and difficult decomposition [2,3]. In view of the water
pollution caused by azo dyes, there is an urgent need to develop effective treatment tech-
nologies. The traditional technologies used in azo dye wastewater treatment include
adsorption [4,5], membrane filtration [6,7], biological methods [8], and advanced oxida-
tion methods [9,10]. At present, the promising technology of wastewater treatment has
focused on the characteristics of materials used in water treatment with the high removal
performance, available feedstock, low cost, and easy operation for both adsorption and
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advanced oxidation methods [11,12]. The adsorption removal of pollutants in wastewater
is simple, low-cost, high-speed, and high-efficiency, but the pollutants still cannot be eradi-
cated [13,14]. The advanced oxidation process through free radicals generated by adding
strong oxidants can degrade organic pollutants indiscriminately. However, these methods
can lead to the secondary pollution problem for strong oxidants and adsorbents [15]. The
photocatalytic method in the oxidation method can be green to degrade organic pollu-
tants without adding an oxidant through the superoxide, and hydroxyl radicals generated
by photosensitization nonselectively destroy the structure of the most refractory organic
pollutants in wastewater [16,17].

The photocatalytic process does not need to add any oxidants except for the addition
of photocatalysts and will not cause secondary pollution to the environment [18]. However,
photocatalysts are still dominated by high-cost graphene materials, precious metals [19],
and metal semiconductors [20]. Thus, there is an urgent need to develop an eco-friendly
photocatalyst for potential application in the remediation of wastewater. Biochar has the
characteristics of structures such as photocatalysts with graphene-like structures and carbon
quantum dots that can be proved to stimulate the oxygen in water to generate hydroxyl
radicals under visible light to degrade pollutants in our previous studies. Although the
graphite-like structure on the biochar can promote the rapid transfer of photogenerated
electrons [21], there is a synergy on the electron holes in the large π bond structure used
as electron acceptors and donors to promote transfer carriers [22]. The enhancement of
photocatalytic efficiency through the increase in the number of electron transfer channels
should mainly accelerate the number of electrons transferred, which can be the reason for
the better photocatalytic effect [23]. In order to improve the photocatalytic performance
of biochar for more photogenerated electrons, nano-metal photocatalytic materials are
introduced into the biochar to obtain the performance of a comprehensive response range
and strong photocatalytic ability [24]. β-FeOOH loaded on biochar as a very common
material due to its high oxidation activity, excellent qualitative properties, and low cost
has electron holes that can obtain a strong visible light response in the process of the
photodegradation of organic pollutants [25]. However, the synergistic mechanism of the
enhancement of photocatalytic efficiency by the biochar with the structure of the graphene-
like layer and carbon quantum dots is still unclear.

Magnetic separation technology has been considered an effective method to separate
solid-phase nanomaterials from heterogeneous systems [26]. Nano-iron oxide particles
are superparamagnetic and can effectively separate them, especially because the crystal-
lographic defect on the surface of Fe3O4 can promote the decomposition of hydrogen
peroxide in the photocatalytic process to improve the photocatalytic process’ ability [27].
In addition, with its rich pore structure and abundant surface functional groups, biochar
can be used as an excellent carrier to prevent the agglomeration effect of iron oxides [28].

In this study, a simple one-pot method was adopted to prepare a novel β-FeOOH/Fe3O4/
biochar composite photocatalyst based on the photogenerated electrons effect by the
organic combination among corn cob biochar, β-FeOOH, and Fe3O4. Water and oxygen
are excited under visible light to produce green oxidants such as hydrogen peroxide
to obtain photodegradation and magnetic separation. The novel photocatalysts were
characterized by SEM, TEM, FTIR, XRD, XPS, Raman spectroscopy, UV-vis, EPR, and
a vibrating sample magnetometer (VSM). The photocatalytic activity of magnetic nano-
β-FeOOH/Fe3O4/biochar composites was investigated through the photodegradation
of methyl orange. The synergistic photocatalysis of β-FeOOH/Fe3O4/biochar was also
investigated, including the carbon quantum dots on the biochar, structure of β-FeOOH,
photocatalytic performance under visible light, and the magnetic performance, which can
enhance the photocatalytic efficiency by inhibiting the quenching of hydroxyl radicals. The
nano-β-FeOOH/Fe3O4/biochar composites have potential prospects for application in the
photodegradation of azo dye wastewater treatment.
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2. Materials and Methods
2.1. Chemicals

The corn cob was collected from rural areas in Shandong, China. Ferrous chloride
(FeCl2) and ferric chloride (FeCl3), sodium hydroxide (NaOH), ethanol, sodium dodecyl
benzene sulfonate (SDBS), methyl orange (MO), and tert-butanol (TBA) were all supplied
by China Pharmaceutical Reagent Co., Ltd. (Tianjin, China). All chemical reagents were of
analytical grade.

2.2. Preparation of Catalysts
2.2.1. Preparation of Biochar

The corn cob was crushed and ground, and then the corn cob powder was obtained by
using a 100-mesh sieve. The biomass powder was then put into the corundum ark, heated
to 600 ◦C at a temperature rising rate of 10 ◦C/min in a nitrogen atmosphere tube furnace,
and then kept for two hours to cool to room temperature to obtain biochar powder.

2.2.2. Preparation of β-FeOOH/Fe3O4/Biochar

β-FeOOH/Fe3O4 was synthesized by the one-step method. In short, 1 g of biochar
was dispersed in 100 mL of deionized water, and then SDBS (1 g), FeCl3 (1.8 g), and FeCl2
(0.35 g) were dissolved in 50 mL of deionized water, and then mixed. After that, it was
sonicated for 5 min, and then stirring was continued at 80 ◦C for 1 h gently. Then, 10 mL of
aqueous ammonia solution was dropped into the mixture to stabilize the pH at 9. After
aging the product for 2 h, it was allowed to cool naturally. Finally, the powder was collected
by magnetic separation, repeatedly washed with deionized water and absolute ethanol, and
dried overnight under vacuum at 50 ◦C to obtain 1.5 g of nano-β-FeOOH/Fe3O4/biochar
composites. The mass ratio of biochar to iron oxide was 2:1, and the mass ratio of β-FeOOH
to Fe3O4 in iron oxide was also 2:1.

2.3. Characterization of Catalysts

The structure of biochar and catalyst was tested and analyzed by an X-ray diffrac-
tometer (XRD, D8 Advance, Bruker, Karlsruhe, Germany), Cu target, Kα (λ = 0.154056 nm,
U = 40 kV, I = 50 mA). Secondary scanning electron microscopy (SEM, Nava 400, FEI,
Waltham, MA, USA) and transmission electron microscopy (TEM, JEM-100CXII, JEOL,
Tokyo, Japan) were used to characterize the morphology of the catalyst, and the energy
analyzer (EDX Nava 400, FEI, Waltham, MA, USA) was used for elemental analysis. Fur-
ther, the N2 adsorption and desorption experiments were used to show the pores of the
catalyst and structure, and calculate its specific surface area. The oxidation state of the
elements in the biochar and catalyst was tested and identified by an X-ray photoelectron
spectrometer (XPS, Multilab 2000, VG, Waltham, MA, USA). Fourier-transform infrared
spectroscopy (FTIR) of the sample was carried out by a Nicolet 6700 Fourier Transform
Infrared Spectrometer (Thermo Fisher, Waltham, MA, USA). The hysteresis loop of the
composite catalyst was measured with a JDAW-2000D vibrating sample magnetometer
(VSM, Yingpu Corp., Shanghai, China).

2.4. Degradation of MO

In the photocatalytic degradation experiment, 0.1 g of the catalyst was utterly dis-
persed in 100 mL of 100 mg/L MO solution, and the mixture was magnetically stirred in
a dark environment at 25 ◦C to have it shaded and adsorbing for 4 h. The pH value of
the reaction was 5.6, which is the initial value of the methyl orange solution. After that,
the 350 W xenon lamp with a 420 nm cut-off filter mimicked visible light for degradation
experiments. In a certain interval, a pipette was used to remove a sample of the solution
and immediately magnetically separate the supernatant from obtaining the supernatant,
and the MO concentration was measured with a spectrophotometer. The concentration
of methyl orange was detected by a spectrophotometer at a wavelength of 463 nm. In
the control experiment, only one variable was changed at a time. In the free radical de-
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tection experiment, tert-butanol was added to the solution. For repeated experiments of
photocatalytic degradation, the spent catalyst was collected by magnetic separation after
the degradation experiment and washed with deionized water and ethanol three times
before the next test run. After that, the catalyst was dispersed in a system with the same
parameters. All experiments were repeated three times, the average value was taken, and
an error bar analysis chart was made.

3. Results and Discussion
3.1. Structural Analysis of Biochar and Composite Catalyst

It can be seen from the SEM images that the corn cob biochar in Figure 1a,b shows
that the corn cob biochar has a unique pore structure and contains a graphene-like layer
structure, which can provide active sites for the loading of β-FeOOH and Fe3O4. It can
be seen from Figure 1c,d that the catalyst is attached to the surface of the biochar in the
form of nanoparticles and nanorods, and the loading of the catalyst does not change the
morphology of the biochar. Among them, Fe3O4 is loaded on biochar with nanoparticle
sizes of 15–30 nm, and β-FeOOH is loaded on biochar in a rod shape [27].
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Figure 1. SEM images of biochar and β-FeOOH/Fe3O4/biochar: (a,b) Biochar. (c,d) β-FeOOH/
Fe3O4/biochar.

The spatial distribution of elements, dispersive energy X-ray (EDX) spectrum, and
element mapping is shown in Figure 2, where Figure 2b shows the distribution of C atoms,
Figure 2c shows the distribution of O atoms, and Figure 2d represents the distribution of Fe
atoms. It can be seen from the figure that the C, O, and Fe atoms are uniformly distributed,
indicating that the catalyst is evenly combined with biochar, which also corresponds to the
SEM results [29].

It can be seen from Figure 3a that the biochar is gradually graphitized, and the
graphene-like layered structure can be seen under TEM at the edges. Moreover, in Figure 3b,
it can be seen that biochar has carbon quantum dots, which provides a guarantee for the
photocatalytic performance of biochar and the hybridization of β-FeOOH quantum dots. It
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can be seen from Figure 3c,d that β-FeOOH/Fe3O4 shows the prepared TEM image, which
indicates that biochar has successfully combined with β-FeOOH/Fe3O4.
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The FTIR spectra of Biochar and β-FeOOH/Fe3O4/biochar are shown in Figure 4a.
Near 3403 cm−1, both biochar and composite materials have firm peaks [30]. Generally,
the absorption band near 3410 cm−1 is attributed to the vibration of OH in β-FeOOH.
The peak in biochar indicates that it contains phenolic hydroxyl groups. The reason for
the decrease in the composite material peaks is that β-FeOOH and Fe3O4 combine with
part of the phenolic hydroxyl groups during the loading process, and the peak of biochar
decreases at 1250~1750 cm−1. This proves that β-FeOOH and Fe3O4 are successfully
combined with oxygen-containing functional groups on biochar. The typical low-frequency
band of β-FeOOH and Fe3O4 samples near 578 cm−1 involves FeIII-O vibrations at the
parts, and the 429 cm−1 in the Fe3O4 sample is attributed to the FeII-O vibrations at the
octahedral position. The band of β-FeOOH in the composite material at 578 cm−1 confirms
the connection of β-FeOOH/Fe3O4 and biochar. As shown in Figure 4b, the peak position
of β-FeOOH/Fe3O4 is shown in the figure. The peak intensity of β-FeOOH is weaker
than that of Fe3O4, which is caused by the insignificant vibration of Fe III-O in β-FeOOH.
All diffraction peaks of the synthesized solid conform to the standard data of the Fe3O4
face-centered-cubic crystal and tetragonal β-FeOOH, which correspond to the results of
SEM and TEM.
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XPS spectroscopy is used to detect the oxidation state of various elements in the sample
and further analyze the composition and valence of the sample surface elements. Scanning
XPS spectra of biochar and β-FeOOH/Fe3O4/biochar composites shown in Figure 4c,e
show that C and O elements are present both samples, but only the β-FeOOH/Fe3O4/Fe
element can be observed in biochar. The corresponding high-resolution XPS spectra of
biochar are shown in Figure 4c,d. The two characteristic binding energies of C-O and C=O
from biochar appear at 159.16 and 164.47 eV, respectively, and the spin–orbit splitting is
5.31 eV. As shown in Figure 4e,f, the characteristic peaks of Fe2+ and Fe3+ are at 711.60
and 725.50 eV, and 718.83 eV, respectively. Compared with the average amounts of Fe3O4
and β-FeOOH, the Fe2+ in the composite ratio is higher than β-FeOOH and lower than
Fe3O4. After β-FeOOH/Fe3O4 is deposited, the C-O binding energy of the sample β-
FeOOH/Fe3O4/biochar remains unchanged, which indicates that β-FeOOH/Fe3O4 is
located on the surface of the biochar and is not integrated into the crystal lattice through
the formation of chemical bonds [31].

The Raman spectra confirmed structural changes in biochar with respect to the com-
posite. As shown in Figure 5a, biochar shows two peaks at 1339 and 1587 cm−1, which
are the D band and the G band. The Raman peaks of the composite are widened and
the baseline has been raised, comparing with the Raman spectrum of pristine biochar.
Compared with biochar, the increase in the intensity ratio (ID/IG) of the D band and
the G band confirms the reduction in the carbon sp2 domain. Clear G and D bands are
observed in the Raman spectrum, which confirms the formation of β-FeOOH/Fe3O4 on
the graphene-like structure. It is obvious that the β-FeOOH/Fe3O4 nanoparticles inlay in
the graphene-like structure and the grain size of Fe nanoparticles ranges from 10 to 50 nm.
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Figure 5. (a) Raman spectral analysis image. (b) Nitrogen adsorption–desorption isotherms of
biochar; the inset is the pore size distribution. (c) Nitrogen adsorption–desorption isotherms of
β-FeOOH/Fe3O4/biochar; the inset is the pore size distribution. (d) Vibrating sample magnetometer
(VSM) pattern of β-FeOOH/Fe3O4/biochar.
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The tissue structure of biochar and the connection structure ofβ-FeOOH/Fe3O4/biochar
can be determined by the nitrogen adsorption–desorption isotherms shown in Figure 5b,c,
respectively. As shown in the figure, this means that the aggregated particles form an
irregular mesoporous structure. The specific surface area of biochar is 1424.82 m2·g−1, and
the specific surface area of β-FeOOH/Fe3O4/biochar is 790.66 m2·g−1, which also indicates
that the combination of β-FeOOH/Fe3O4/biochar will occupy part of the active surface
sites, resulting in a decrease in the specific surface area. The existence of a high surface
area and the high proportion of mesopores can provide abundant active sites, which can
shorten the transfer path of photogenerated electrons, thereby improving the photocatalytic
performance of β-FeOOH/Fe3O4/biochar composites.

As shown in Figure 5d, the VSM hysteresis loop’s detection line shows that the
prepared composite catalyst’s detection line passes through the origin, indicating that it has
superparamagnetism. However, biochar has almost no magnetism, which indicates that
the source of magnetism in the β-FeOOH/Fe3O4/biochar composite is Fe3O4. Compared
with ordinary filtration and separation, superparamagnetism makes the catalyst easier to
separate and more efficient [32,33].

3.2. Adsorption Experiment

Figure 6a,b are the results of shading adsorption of biochar andβ-FeOOH/Fe3O4/biochar
composites. In the shading adsorption experiment, the adsorption capacity of biochar is
better than that of the catalyst. First, in the same quality of β-FeOOH/Fe3O4, the mass of
biochar only accounts for two-thirds of the total mass. Second, when the β-FeOOH/Fe3O4
is loaded on the biochar, the β-FeOOH/Fe3O4 will block the pores on the biochar or occupy
the oxygen-containing functional groups on its surface. This can also be directly reflected
in the results of the specific surface area.
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Figure 6. (a) Adsorption experiment and nonlinear fitting of dynamics, (b) adsorption experiment and nonlinear fitting of
thermodynamics.

3.2.1. Kinetic Experiment

In the adsorption kinetic experiment, 100 mL of methyl orange solution is taken with
an initial concentration of 100 mg/L, 0.1 g of adsorbent is added, a series of reaction time
gradients are set, and the concentration of methyl orange is measured after adsorption
from 0 to 24 h. The pseudo first-order adsorption kinetic model and pseudo-secondary
adsorption kinetic model are commonly used to analyze the adsorption process and
calculate the adsorption rate [34].

The pseudo-first-order kinetic equation is expressed in Equation (1):

ln(Qe −Qt) = lnQe − k1t (1)
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where Qe is the amount of adsorption at adsorption equilibrium, mg/g; Qt is the amount
of adsorption at time t, mg·g−1; k1 is the rate constant of the model equation, min−1.

The pseudo-second-order kinetic equation is expressed in Equation (2):

t
Qt

=
1

k2Q2
e
+

1
Qe

t (2)

where k2 is the rate constant of the model equation, g·(mg·min)−1.
According to Figure 6a and Table 1, the adsorption of MO by biochar and β-FeOOH/

Fe3O4/biochar is fitted with a pseudo-second-order kinetic model. The linear correlation
coefficient is 0.99, which is similar to the pseudo-first-order kinetic model. Compared with
the correlation coefficient obtained by fitting 0.87, the fitting effect is better. The pseudo-
second-order kinetic equation also shows that the sharing or exchange of free electrons
occurs during the adsorption process, and chemical adsorption involving covalent forces
occurs. In β-FeOOH/Fe3O4/biochar, the combination of β-FeOOH and carbon quantum
dots will reduce the adsorption performance, but can enhance the ability of electron sharing.

Table 1. Adsorption kinetic parameters.

Sample
Pseudo-Second-Order Kinetic Model

Qe(exp)
(mg·g−1)

k2
(g·mg−1·min−1)

Qe(cal)
(mg·g−1) R2

Biochar 86.15 0.2316 ± 0.0421 88.28 0.99
β-FeOOH/Fe3O4/biochar 57.93 0.1645 ± 0.0352 58.11 0.99

3.2.2. Thermodynamic Experiment

In the adsorption isotherm experiment, 20 mL of a series of the concentration gradients
(50–300 mg/L) of methyl orange solution was taken, 20 mg of adsorbent was added,
and the adsorption time was set to 480 min. The commonly used adsorption isotherm
models are the Langmuir and Freundlich models. The Langmuir model is based on the
adsorption of adsorbates on the surface of the adsorbent in a single molecular layer, and
Freundlich is based on the adsorption on heterogeneous surfaces. Langmuir and Freundlich
isotherm model fitting analysis was performed on the data obtained from the adsorption
experiment [35].

The Langmuir isothermal equation is expressed in Equation (3):

Ce

Qe
=

Ce

Qm
+

1
KLQm

(3)

where Ce is the concentration when the adsorption reaches equilibrium, mg·L−1; Qe is
the amount of adsorption when the adsorption reaches equilibrium, mg·g−1; Qm is the
maximum adsorption, mg/g; KL is the adsorption equilibrium constant, L·g−1;

The Freundlich isotherm equation is expressed as Equation (4):

lnqe = lnKF +
1
n

lnCe (4)

where KF [(mg·g−1) (L·mg−1)1/n] is the Freundlich capacity constant, and n is the Fre-
undlich intensity constant.

The linear and nonlinear fitting results of Langmuir and Freundlich adsorption
isotherm equations can be obtained from Figure 6b and Table 2. The 1/n value of the
adsorption constant according to the Freundlich model can be used to determine the dif-
ficulty of adsorption. If l/n > 2, the adsorption is not easy. If 1/n is between 0.1 and 0.5,
the adsorption reaction is easier to proceed. From the analysis results in the table, the
adsorption reaction is easy if 1/n is between 0.2 and 0.3.
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Table 2. Adsorption isotherm parameters.

Sample
Freundlich Isotherm Model

KF
(mg·g−1) (L·mg−1)1/n n R2

Biochar 9.9132 ± 0.0751 0.26 0.99
β-FeOOH/Fe3O4/biochar 6.4634 ± 0.0482 0.25 0.99

3.3. Photocatalytic Degradation Performance
3.3.1. Adsorption Performance

Figure 7a,b show the shading adsorption results and visible light photocatalytic
degradation of biochar and β-FeOOH/Fe3O4/biochar composites, respectively. Under
light-shielding adsorption conditions, biochar and β-FeOOH/Fe3O4/biochar composites’
adsorption capacity when adsorbing the same concentration of methyl orange solution is
significantly different. The reason is that when the catalyst is loaded, some active sites on
the biochar are occupied, which can be obtained from the FTIR diagram. Furthermore, in
the BET results, it can be seen that as the catalyst is loaded, the catalyst particles may block
some delicate pore structures, resulting in a significant decrease in adsorption capacity.
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Figure 7. (a) Experiment of shading adsorption and photocatalytic degradation of biochar. (b)
Experiment of shading adsorption and photocatalytic degradation of β-FeOOH/Fe3O4/biochar.
(c) Kinetic analysis of photocatalytic degradation experiment of biochar. (d) Kinetic analysis of
photocatalytic degradation experiment of β-FeOOH/Fe3O4/biochar.

3.3.2. Performance of Photocatalytic

Under the same conditions, due to the excellent adsorption effect of pure biochar, the
biochar degradation system has a good treatment effect within one hour in the beginning.
Then, over time, the catalyst has a good effect on MO due to its excellent photocatalytic
properties. The processing capacity gradually increases, and the final degradation time is
faster than that of biochar [36].
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The degradation kinetics is used to indicate the degradation rate constant of methyl
orange in the photocatalysis experiment, and the formula is as follows:

ln(Ct/C0) = kt (5)

where k is the rate constant of photocatalytic degradation; t is the moment of photocatalytic
reaction, min−1; Ct is the MO equilibrium content at time t, mg·L−1; C0 is the MO content
before the reaction, mg·L−1.

Figure 7c,d show the linear fitting graphs of ln(Ct/C0) of biochar and β-FeOOH/Fe3O4/
biochar versus t, where the slope of the fitting line is the degradation rate constant k. As shown
in Table 3, the photodegradation k of β-FeOOH/Fe3O4/biochar is 2.03 times that of biochar
photodegradation. From the perspective of degradation rate, β-FeOOH/Fe3O4/biochar
can generate more hydroxyl radicals faster, which indicates that hydroxyl radicals play an
essential role in the degradation of methyl orange.

Table 3. Kinetic parameters of photocatalytic degradation.

Sample k R2

Biochar 0.2012 ± 0.0457 0.82
β-FeOOH/Fe3O4/biochar 0.4087 ± 0.0586 0.92

When β-FeOOH/Fe3O4 is loaded on biochar, it can improve the photocatalytic perfor-
mance of biochar. The reasons for this situation may be the following: First, the graphene-
like structure on biochar has a π–π conjugated structure, which is rich in electrons and holes.
When combined with β-FeOOH/Fe3O4, they will form a Fe-O-C structure. This structure
quickly flows photogenerated electrons from β-FeOOH/Fe3O4 to the graphene-like struc-
ture. Therefore, the separation efficiency and photocatalytic activity of electron–hole pairs
are improved. Secondly, some photogenerated electrons also directly react with oxygen
and H2O2 adsorbed on β-FeOOH and Fe3O4 to form hydroxyl radicals, thereby further
improving the ability of biochar to absorb and convert visible light [37].

3.4. Research on Photocatalytic Mechanism of Catalyst

To determine why the combined action of β-FeOOH/Fe3O4/biochar can significantly
improve the degradation of methyl orange, XPS was used to analyze the connection state
between the C, O, and Fe of biochar and β-FeOOH/Fe3O4/biochar. The results were
obtained and are given in Figure 8a,b. According to the XPS spectrum of 2p, the peaks
appearing at 711.6 and 725.2 eV correspond to the 2p 3/2 and 2p 1/2 of Fe(III), and the
peaks appearing at 710.3 and 723.7 eV corresponding to Fe(II) 2p 3/2 and 2p 1/2 indicate
that β-FeOOH and Fe3O4 phases are formed in the composite. The binding energy position
of β-FeOOH/Fe3O4/biochar is positively shifted by 0.2 eV. The two prominent peaks
are located at 712 and 726 eV, indicating an electronic interaction between biochar and
β-FeOOH/Fe3O4. The O1s spectrum of the composite material contains two characteristic
peaks in Figure 4c. The peak at 531.2 eV indicates the C-O-iron bond, which implies
that the biochar and FeOOH are connected by the C-O-Fe bond. XPS analysis and FT-IR
analysis echo each other. It is confirmed that the existence of Fe-O-C bonds can inhibit the
recombination of photo-generated electron–hole pairs on biochar, thereby improving light
absorption and photocatalysis.

UV-Vis diffuse spectroscopy (UV-Vis-DRS) was used to study the prepared samples’
light absorption characteristics. Figure 8c shows the UV-Vis-DRS of biochar and the β-
FeOOH/Fe3O4/biochar composite. Note that compared with pure biochar, the edge of
the absorption band of β-FeOOH/Fe3O4/biochar is shifted to low energy (redshift phe-
nomenon), which indicates that the introduction of β-FeOOH/Fe3O4 can expand the visible
light response range of biochar and increase the visible light utilization efficiency. The
calculated band gap energies of biochar and β-FeOOH/Fe3O4/biochar are 2.66 and 2.36 eV,
respectively, which indicates that the β-FeOOH/Fe3O4 deposited on the biochar carbon
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quantum dots helps to broaden the visible light response range of the catalyst and ulti-
mately enhance photocatalytic activity. By confirming the visible light response intensity
and photogenerated electron transfer in the studied materials, the materials’ photoelectric
properties were evaluated. β-FeOOH as a photocatalytic sensitive material has a wide spec-
tral absorption range, which can greatly improve biochar’s visible light absorption capacity.
The light absorption characteristics of biochar and β-FeOOH/Fe3O4/biochar composites
were compared. The enhanced light absorption capacity can better capture photoelec-
trons, thereby improving the conversion efficiency and transfer capacity of photogenerated
electrons, thereby enhancing the photocatalytic degradation of methyl orange.
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Figure 8. (a,b) XPS spectra analysis image of β-FeOOH/Fe3O4/biochar. (c) UV-vis diagrams. (d) EPR di-
agrams of biochar. (e) EPR diagrams of β-FeOOH/Fe3O4/biochar. (f) Free radical quenching experiment.

It can be seen from Figure 8d,e that both biochar and β-FeOOH/Fe3O4/biochar can
produce a characteristic peak of 1:2:2:1 under visible light. This characteristic peak indicates
that biochar and β-FeOOH/Fe3O4/biochar generated under visible light are hydroxyl
radicals. Among them, β-FeOOH/Fe3O4/biochar is stronger than the characteristic peaks
produced by biochar, which indicates that β-FeOOH/Fe3O4/biochar can transfer photo-
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generated electrons and generate free radicals faster under visible light, which improves
the photocatalytic efficiency.

As a common hydroxyl radical scavenger, tert-butanol can qualitatively illustrate the
existence of •OH. In the photocatalysis experiment, different concentrations of tert-butanol
were added as a control experiment, as shown in Figure 8f, the experiment was carried out
under visible light, and the other conditions were the same as the previous photocatalysis
experiment conditions. The experimental results clearly show that the photocatalytic
degradation reaction is inhibited after adding tert-butanol. When the concentration of
tert-butanol continues to increase to 20 mg/L, there is no degradation reaction in the
whole system. The possible reason is that the concentration of tert-butanol is so high that
it completely quenches the hydroxyl radicals to inhibit the degradation reaction. It can
be seen that the generation of hydroxyl radicals is the main degradation factor for the
photo-induced degradation of methyl orange.

In the process of photocatalysis, photo-generated electrons e– and photo-generated
holes h+ will recombine to produce photons hv. It promotes photogenerated electrons’
transfer from the conduction band of β-FeOOH to the empty orbital of the graphene-like
structure and carbon quantum dots through conjugated π-bond molecules [38]. It produces
directional motion on the biochar to avoid simple recombination with photogenerated
holes h+. The photo-generated holes [39] h+ have strong oxidizing properties and react with
water molecules to generate •OH and H+. The photogenerated electron e can stimulate the
graphene-like structure and the carbon quantum dots to react with oxygen in the water to
make it negatively charged to produce •O−2 and CR−. The charged graphene-like structure
can interact with oxygen molecules in the water to produce oxidizing H2O2. H2O2 can
further interact with H+ and photo-generated electrons e− or •O−2 . Simultaneously, H2O2
can also be excited and converted into ·OH by absorbing the photon. •O−2 generated by
the excitation of the photogenerated electron e can react with H+ to generate H2O2. So
far, through the above reaction [40], strong oxidizing oxidants such as h+, •OH, and •O−2
can be produced, which oxidize the target degradation products in the solution to carbon
dioxide and water. The reaction equation is shown in Equations (6)–(12):

Fe−O−C + hv→ e− + h+ (6)

O2 + e− → •O−2 (7)

h+ + H2O→ H+ + •OH (8)

•O−2 + H+ → HO2• (9)

e− + CR→ CR• (10)

2CR•+ O2 + 2H+ → 2CR + H2O2 (11)

Fe3O4 + H2O2 + 2e− → Fe3O4 + •OH + OH− (12)

3.5. Reused Performance of β-FeOOH/Fe3O4/Biochar

It can be seen from Figure 9a that under the condition that other conditions are not
changed, the photocatalytic effect of β-FeOOH/Fe3O4/biochar photocatalyst is still 98% of
the first time after repeated use for three times. This shows that the β-FeOOH/Fe3O4/biochar
catalyst has a good repeated-use effect and can still maintain high-efficiency photocat-
alytic performance after repeated use. It can be seen from Figure 9b that the magnet
can separate β-FeOOH/Fe3O4/biochar in a very short time, which also shows that β-
FeOOH/Fe3O4/biochar is very magnetic. It can also be seen from the previous VSM data
that the composite is superparamagnetic [33,41].
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Figure 9. (a) Recycling experiment. (b) Magnetic separation image of β-FeOOH/Fe3O4/biochar. (c)
FTIR diagram before and after use. (d) XPS diagram of before and after use.

It can be seen from Figure 9c,d in the FTIR and XPS diagrams ofβ-FeOOH/Fe3O4/biochar
before use and after the third use that the structure of β-FeOOH/Fe3O4/biochar has no special
effects, which also verifies that β-FeOOH/Fe3O4/biochar can maintain excellent photocat-
alytic activity after reuse [42].

4. Conclusions

A superparamagnetic nano-β-FeOOH/Fe3O4/biochar composite catalyst was pre-
pared through a simple and feasible one-step method. XPS spectroscopy confirmed the
formation of a stable Fe–O–C structure, and β-FeOOH and Fe3O4 could be fixed on biochar
by the images of SEM and EDS. UV-vis spectroscopy confirmed the existence of an electron–
hole connection between β-FeOOH and biochar, which promoted the rapid interface
transfer of photogenerated electrons from β-FeOOH to biochar. These novel structures
could enhance the response of biochar to accelerate the photoelectrons under visible light
for more free radicals. In the synergistic photocatalytic system, β-FeOOH/Fe3O4/biochar
exhibited excellent catalytic activity for the degradation of azo dye (methyl orange), which
is 2.03 times higher than that of the original biochar while the surface area decreased
from 1424.82 to 790.66 m2·g−1. Furthermore, β-FeOOH/Fe3O4/biochar maintained a
stable structure and at least 98% catalytic activity after reuse and was easy to separate
due to its superparamagnetism. Therefore, nano-β-FeOOH/Fe3O4/biochar, as an efficient
and green heterogeneous photocatalyst, has greater potential application prospects in the
photocatalytic treatment of organic wastewater.
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