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Abstract

Myelin loss and iron accumulation are cardinal features of aging and various neurodegenerative 

diseases. Oligodendrocytes incorporate iron as a metabolic substrate for myelin synthesis and 

maintenance. An emerging hypothesis in Alzheimer’s disease research suggests that myelin 

breakdown releases substantial stores of iron that may accumulate, leading to further myelin 

breakdown and neurodegeneration. We assessed associations between iron content and myelin 

content in critical brain regions using quantitative magnetic resonance imaging (MRI) on a cohort 

of cognitively unimpaired adults ranging in age from 21 to 94 years. We measured whole-brain 

myelin water fraction (MWF), a surrogate of myelin content, using multicomponent relaxometry, 

and whole-brain iron content using susceptibility weighted imaging in all individuals. MWF was 

negatively associated with iron content in most brain regions evaluated indicating that lower 

myelin content corresponds to higher iron content. Moreover, iron content was significantly higher 

with advanced age in most structures, with men exhibiting a trend towards higher iron content as 

compared to women. Finally, relationship between MWF and age, in all brain regions investigated, 

suggests that brain myelination continues until middle age, followed by degeneration at older 

ages. This work establishes a foundation for further investigations of the etiology and sequelae 

of myelin breakdown and iron accumulation in neurodegeneration and may lead to new imaging 

markers for disease progression and treatment.
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1. Introduction

Iron is involved in several biological processes that are paramount for normal 

neurologic function, including oxygen transportation, mito-chondrial respiration, oxidative 

phosphorylation, and synthesis of neurotransmitters. In addition, it is an essential cofactor 

for enzymatic activity related to myelin production and maintenance. Oligodendrocytes, the 

cells that produce myelin, are the main iron-containing cells of the CNS and incorporate 

iron as a substrate for myelin production (Todorich et al., 2009; Möller et al., 2019). The 

importance of iron for myelin production has been demonstrated through observations of 

demyelination accompanying decreased dietary iron (Ortiz et al., 2004; Hare et al., 2013; 

Stankiewicz et al., 2014), and the fact that in animal models, injection of ferritin, the main 

iron storage protein, into white matter promotes oligodendrogenesis (Schonberg et al., 2012; 

Schonberg and McTigue, 2009). However, studies have also shown that iron may accumulate 

in several brain regions with aging. If iron homeostasis is not maintained, excess iron has the 

potential to catalyze free radical reactions; this promotes oxidative damage of brain tissue, 

ultimately potentiating impairments in cognition and behavior (Ghadery et al., 2015; Emerit 

et al., 2001; Hallgren and Sourander, 1958). Indeed, it has been shown that dysregulation 

of iron homeostasis is a critical feature of various neurodegenerative diseases, including 

Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (Lane et al., 

2018; Mills et al., 2010).

An emerging hypothesis in AD research, put forward by Bartzokis et al., suggests that 

myelin breakdown and degeneration of oligodendrocytes release substantial stores of iron 

that, absent appropriate clearance, may accumulate in the brain leading to further myelin and 

tissue damage including neurodegeneration (Möller et al., 2019; Hallgren and Sourander, 

1958; Bartzokis, 2004; Bartzokis, 2011; Bartzokis et al., 2003; Bartzokis et al., 2004; G 

Bartzokis et al., 2007; Bartzokis et al., 2000). This paradigm is increasingly supported by 

preclinical and clinical studies demonstrating substantial iron release from damaged myelin 

sheets or oligodendrocytes (Heidari et al., 2016; SE Nasrabady et al., 2018). Further, in 

a recent magnetic resonance imaging (MRI) study of animals and humans, it has been 

shown that mutations within the hemochromatosis gene, which results in increased iron 

overload, lead to white matter degradation; this was interpreted as a direct consequence 

of demyelination (Meadowcroft et al., 2016). Moreover, Hametner and colleagues, in their 

immunohistochemistry study of iron distribution and expression of iron-related proteins 

in human brain tissue affected by multiple sclerosis (MS) (Hametner et al., 2013), have 

shown that in active MS lesions, iron was released from dying oligodendrocytes resulting 

in extracellular accumulation of iron which leads to cell degeneration (Haider, 2015). 

Further, Steiger and colleagues have demonstrated that ventral striatum iron accumulation 

is linked to demyelination and impairments in declarative memory in healthy young and 

elderly participants (Steiger et al., 2016). Notwithstanding these findings, the association 
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between myelin breakdown and cerebral iron accumulation in normal aging requires further 

investigation.

MRI provides a unique tool to quantify, in-vivo, iron and myelin contents. Ferritin and 

neuromelanin polymer pigments are the main reservoirs of iron in the human brain. Inside 

these complexes, iron forms aggregates that lead, in the presence of an external magnetic 

field, to the creation of strong magnetic susceptibility inhomogeneities and consequent 

local field distortions. These distortions are detectable at submillimeter resolution using 

various susceptibility-sensitive MRI techniques, such as susceptibility weighted imaging 

(SWI) (EM Haacke et al., 2009). In SWI, iron depositions exhibit negative regional phase, 

resulting in decreased image intensity in the vicinity of iron (Wang et al., 2012; Pfefferbaum 

et al., 2009; Xu et al., 2008; Haacke et al., 2004; Haacke et al., 2007). SWI, and its 

advanced version, namely, quantitative susceptibility mapping (QSM), have been shown to 

be sensitive techniques for investigating age-dependent iron deposition in normal aging, 

neurodegeneration, and dementia (Wang et al., 2012; Pfefferbaum et al., 2009; Xu et al., 

2008; C Liu et al., 2015; Sehgal et al., 2005; EM Haacke et al., 2009; Harder et al., 

2008; van der Weijden et al., 2019; Acosta-Cabronero et al., 2016; Betts et al., 2016; 

Keuken et al., 2017; Zhang et al., 2018; Bilgic et al., 2012; Lin et al., 2015; Killiany 

et al., 2020; Li et al., 2021; Darki et al., 2016; Chen et al., 2021). Furthermore, MRI 

mapping of myelin water fraction (MWF), a proxy of myelin content, provides important 

insights for understanding brain maturation and neurodegeneration (Bouhrara and Spencer, 

2016; MacKay and Laule, 2016; Whittall et al., 1997; Does, 2018; Alonso-Ortiz et al., 

2015; Piredda et al., 2021; MacKay et al., 1994; Vavasour et al., 2006). Advanced analysis 

methods based on multicomponent relaxometry have been introduced to improve both 

sensitivity and specificity of MR-based myelin quantification (Bouhrara and Spencer, 2016; 

MacKay and Laule, 2016; Whittall et al., 1997; Does, 2018; Alonso-Ortiz et al., 2015; 

Piredda et al., 2021; Jones et al., 2003; Prasloski et al., 2012; Bonny et al., 2020; M 

Bouhrara et al., 2021; Bouhrara et al., 2015); these methods have been extensively applied 

to characterize cerebral demyelinating diseases and neurodevelopment (MacKay and Laule, 

2016; Borich et al., 2013; Laule et al., 2006; Sirrs et al., 2007; Kolind et al., 2012; Kolind 

et al., 2015; Dean et al., 2017; Dean et al., 2014; Dean et al., 2016; Deoni et al., 2012; 

M Bouhrara et al., 2020; M Bouhrara et al., 2020; Bouhrara et al., 2018; M Bouhrara 

et al., 2020; Qian et al., 2020; Dvorak et al., 2021; Papadaki et al., 2019). Using MWF 

and QSM, Yao and colleagues have shown an association between focal iron accumulation 

and myelin loss in patients with chronic MS lesions (Yao et al., 2018). Using the same 

MRI techniques, Pu and colleagues have shown a negative correlation between myelin and 

iron content in the basal ganglia and in the connecting white matter fibers in macaques 

(Pu et al., 2020). These findings provide compelling support for the unique sensitivity and 

specificity of MRI-based approaches to quantify, in-vivo, myelin and iron, and shed light on 

the intimate relationship between myelin breakdown and iron deposition. We refer the reader 

to an excellent review by Möller and colleagues of the clinical role of multiparametric MR 

imaging in quantifying local iron and myelin content as emerging important biomarkers for 

white matter and cerebral tissue integrity (Möller et al., 2019).

In this work, we investigate the regional associations between iron content and 

myelin content in normative aging of the human brain using advanced quantitative 
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MR neuroimaging. For mapping myelin, we use the Bayesian Monte-Carlo analysis 

of multicomponent driven equilibrium steady-state observation of T1 and T2 (BMC­

mcDESPOT) method, developed in our laboratory and applied extensively (Bouhrara and 

Spencer, 2016; M Bouhrara et al., 2021; M Bouhrara et al., 2020; M Bouhrara et al., 

2020; Bouhrara et al., 2018; M Bouhrara et al., 2020; Qian et al., 2020; Bouhrara et 

al., 2016; Bouhrara and Spencer, 2015; Bouhrara and Spencer, 2017; M Bouhrara et al., 

2021; M Bouhrara et al., 2017; M Bouhrara et al., 2017). Iron content is measured using 

our implementation of high-resolution SWI. Our study is conducted on a cohort of 92 

well-characterized healthy adults over an age range of 21 to 94 years, with the main goal of 

developing further insights into the biochemical mechanisms of iron deposition in the human 

brain.

2. Material & methods

2.1. Participants

Participants were drawn from the Baltimore Longitudinal Study of Aging (BLSA) (Shock, 

1985; Ferrucci, 2008), and the Genetic and Epigenetic Signatures of Translational Aging 

Laboratory Testing (GESTALT) study. The study populations, experimental design, and 

measurement protocols of the BLSA have been previously reported (Shock, 1985; Ferrucci, 

2008). The BLSA is a longitudinal cohort study funded and conducted by the NIA 

Intramural Research Program (IRP). Established in 1958, the BLSA enrolls community­

dwelling adults with no major chronic conditions or functional impairments at enrollment. 

The GESTALT study is also a study of healthy volunteers, initiated in 2015, and funded 

and conducted by the NIA IRP. The goal of the BLSA and GESTALT studies is to evaluate 

multiple biomarkers related to aging. We note that the inclusion and exclusion criteria 

for these two studies are essentially identical. Participants underwent testing at the NIA’s 

clinical research unit and were excluded if they had metallic implants, or major neurologic 

or medical disorders. All participants underwent a Mini Mental State Examination (MMSE). 

Seven participants with cognitive impairment were excluded from the analysis. The final 

cohort consisted of 92 cognitively unimpaired volunteers (mean ± standard deviation MMSE 

= 28.6 ± 1.7) ranging in age from 21 to 94 years (54.3 ± 22.3 years) of which 50 were 

men (56.4 ± 23.8 years) and 42 were women (51.8 ± 20.3 years). Age (p >.05) and MMSE 

(p >.05) did not differ significantly between men and women. The number of participants 

per age-decade was: 12 (7 women) within 20–29 years, 15 (5 women) within 30–39 years, 

26 (15 women) within 40–49 years, 4 (1 woman) within 50–59 years, 4 (3 women) within 

60–69 years, 12 (5 women) within 70– 79 years, 16 (6 women) within 80–89 years, and 3 (0 

woman) within 90–99 years. Experimental procedures were performed in compliance with 

our local Institutional Review Board, and participants provided written informed consent.

2.2. MR imaging

MRI scans were performed on a 3T whole body Philips MRI system (Achieva, Best, The 

Netherlands) using the internal quadrature body coil for transmission and an eight-channel 

phased-array head coil for reception. For each participant, the imaging protocol was as 

follow:
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• BMC-mcDESPOT for MWF mapping (Bouhrara and Spencer, 2016; Bouhrara et 

al., 2016; Bouhrara and Spencer, 2015; Bouhrara and Spencer, 2017): 3D spoiled 

gradient recalled echo (SPGR) images were acquired with flip angles (FAs) of 

[2 4 6 8 10 12 14 16 18 20]°, echo time (TE) of 1.37 ms, repetition time (TR) 

of 5 ms, bandwidth (BW) of 1478 Hz/pixel, and acquisition time of ~5 min. In 

addition, 3D balanced steady state free precession (bSSFP) images were acquired 

with FAs of [2 4 7 11 16 24 32 40 50 60]°, TE of 2.8 ms, TR of 5.8 ms, BW of 

1918 Hz/pixel, and acquisition time of ~6 min. The bSSFP images were acquired 

with radiofrequency (RF) excitation pulse phase increments of 0 or π in order 

to account for off-resonance effects (Deoni, 2011). All SPGR and bSSFP images 

were acquired with an acquisition matrix of 150 × 130 × 94, voxel size of 1.6 

mm × 1.6 mm × 1.6 mm, and 94 slices. TEs and TRs were set to the minimum 

values to improve detection of the signal from the rapidly relaxing component of 

myelin water and to reduce the total acquisition time, while the FA values were 

based on suggested values from literature as well as on our extensive simulation 

analyses conducted previously to define the set of FAs required to maximize 

accuracy and precision in derived MWF values (Bouhrara and Spencer, 2016; 

Bouhrara et al., 2016; Bouhrara and Spencer, 2015; Bouhrara and Spencer, 2017; 

Deoni, 2011; Deoni et al., 2013; Deoni et al., 2008). Further, we used the double­

angle method (DAM) to correct for excitation RF inhomogeneity (Stollberger 

and Wach, 1996). For that, two fast spin-echo images were acquired with FAs of 

45° and 90°, TE of 102 ms, TR of 3000 ms, acquisition voxel size of 2.6 mm 

× 2.6 mm × 4 mm, 38 slices, and acquisition time of ~4 min. All images were 

acquired with a field-of-view (FoV) of 240 mm × 208 mm × 150 mm. The total 

acquisition time was ~21 min.

• SWI for iron content mapping (Wang et al., 2012; Pfefferbaum et al., 2009; Xu 

et al., 2008; C Liu et al., 2015): 3D single-echo SW image was acquired using 

a gradient-echo sequence with flow compensation, FoV of 240 mm x 240 mm x 

185 mm, voxel size of 0.64 mm × 0.64 mm × 0.64 mm, 290 slices, EPI-factor of 

15, TR of 47 ms, TE of 27 ms, and 2 signal averages. The total acquisition time 

was ~3 min. Both magnitude and phase images were saved.

All images were acquired with a SENSE factor of 2 and reconstructed to a voxel size of 

1 mm × 1 mm × 1 mm. We emphasize that all MRI studies and ancillary measurements 

were performed with the same MRI system, running the same pulse sequences, at the same 

facility, and directed by the same principal investigator for both BLSA and GESTALT 

participants.

2.3. Image processing

After thorough visual inspection of data quality for each participant, the scalp, ventricles, 

and other nonparenchymal regions within the images were eliminated using the BET tool as 

implemented in the FSL software (Smith, 2002). For each participant, using FSL (Jenkinson 

et al., 2012), all SPGR, bSSFP, or DAM images were linearly registered to the SPGR 

image obtained at FA of 8° and the respective derived transformation matrices were then 

applied to the original SPGR, bSSFP, or DAM images. Then, a whole-brain MWF map 
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was generated using BMC-mcDESPOT from these co-registered SPGR, bSSFP, and DAM 

datasets (Bouhrara and Spencer, 2016; Bouhrara et al., 2018; Bouhrara and Spencer, 2015; 

Bouhrara and Spencer, 2017), while a whole-brain SWI phase map was generated using the 

phase and magnitude SWI dataset (Wang et al., 2012; Pfefferbaum et al., 2009; Xu et al., 

2008; C Liu et al., 2015) (Fig. 1). Using the FSL software, the averaged SPGR image over 

FAs was nonlinearly registered to the MNI atlas, and the computed transformation matrix 

was then applied to the corresponding MWF map. Similarly, the magnitude SWI image was 

nonlinearly registered to the MNI atlas, and the computed transformation matrix was then 

applied to the corresponding SWI phase map (Fig. 1).

Twenty white matter (WM) and deep gray matter (DGM) regions of interest (ROIs) within 

the cerebrum were defined from the MNI atlas. Twelve WM regions were defined from 

the Johns Hopkins University (JHU) ICM-DTI-81 atlas encompassing the entire brain, the 

frontal, parietal, temporal and occipital lobes, as well as the corpus callosum, internal 

capsules, cerebellum, forceps, fronto-occipital fasciculus and longitudinal fasciculus, while 

eight DGM regions were defined encompassing the hippocampus, amygdala, caudate, 

thalamus, putamen, red nucleus, insula, substantia nigra and globus pallidus (Fig. 3), 

corresponding to regions previously identified in studies of cerebral iron or myelin content, 

as the focus of our investigation (Steiger et al., 2016; Wang et al., 2012; Pfefferbaum et al., 

2009; Xu et al., 2008; M Bouhrara et al., 2020; Dvorak et al., 2021; Aquino et al., 2009; 

Persson et al., 2015; Faizy et al., 2018; Faizy et al., 2020; Uddin et al., 2019; J Zhang et 

al., 2015; Arshad et al., 2016). Mean SWI phase and MWF values were calculated for each 

ROI; these regional measures are provided in the Supplementary Material. In the SWI phase 

maps, regions with strong magnetic susceptibility or high iron concentration are surrounded 

by bright areas or rims exhibiting abnormally high phase values (Pfefferbaum et al., 2009; 

Xu et al., 2008). Therefore, to avoid introducing bias into derived mean SWI phase values, 

voxels belonging to these regions were excluded, as per conventional practice (Pfefferbaum 

et al., 2009; Xu et al., 2008), through application of a signal intensity threshold (Fig. 2). 

Furthermore, all ROIs were eroded to avoid partial volume bias from adjacent structures or 

from the edges of the brain which are affected by strong air-tissue magnetic susceptibility 

interfaces.

2.4. Statistical analyses

To investigate the effects of age and sex on SWI phase, multilinear regression was applied 

using the mean SWI phase within each ROI as the dependent variable and sex and age as the 

independent variables. In all cases, the interaction term between sex and age was found to be 

non-significant and was therefore omitted from the final model.

A similar analysis was performed to assess the effects of age and sex on MWF, with mean 

MWF within each ROI as the dependent variable and sex, age, and age2 as the independent 

variables, after mean age centering. The inclusion of age2 as an independent variable is 

based on our and others’ recent observations that MWF follows a quadratic relationship with 

age (M Bouhrara et al., 2020; M Bouhrara et al., 2020; Qian et al., 2020; Dvorak et al., 

2021; Arshad et al., 2016). In all cases, interaction terms between sex and age or sex and 

age2 were found to be non-significant and were therefore omitted from the final model.
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Finally, as the main focus of this work, we investigated the association between SWI phase 

and MWF using multilinear regression, with the mean SWI phase within each ROI as the 

dependent variable and the MWF within the ROI, age, and sex as the independent variables.

For all analyses, the threshold for statistical significance was p <.05 after correction 

for multiple ROI comparisons using the false discovery rate (FDR) method (Benjamini, 

2010; Benjamini and Hochberg, 1995). All calculations were performed with MATLAB 

(MathWorks, Natick, MA, USA).

3. Results

3.1. Age and sex effects on iron and myelin contents

Fig. 4 shows SWI phase and MWF maps for representative participants of three different 

ages. Results are shown for two representative axial slices covering the main brain structures 

investigated. Visual inspection indicates lower SWI phase values at higher ages, while MWF 

exhibited a quadratic, inverted U-shape, association with age; this is attributed to the process 

of myelination from youth through middle age, followed by demyelination afterward. 

Furthermore, we note that different regions exhibit different patterns of association between 

SWI phase or MWF and age, as expected.

Fig. 5 shows quantitative results for mean SWI phase values from all participants as a 

function of age for the indicated 20 WM and DGM cerebral regions. These results show 

lower mean SWI phase, that is, higher iron content, with age in most examined ROIs 

(p <.05, FDR corrected), except the red nucleus, the globus pallidus, and the substantia 

nigra which showed no trend with age (Table 1). The best-fit curves indicate that while 

the fundamental linear decreasing relationship between mean SWI phase and age was 

consistent across most of the ROIs, there was, as expected, some regional variation. The 

steepest negative slopes in SWI phase with age were found in the caudate, putamen, and 

internal capsule regions, while the smallest slopes were found in the temporal and parietal 

lobes. In addition, the lowest mean SWI phase values across age, that is, the highest iron 

content, were found in the DGM ROIs, namely, the caudate, thalamus, putamen, red nucleus, 

insula, substantia nigra and globus pallidus, while the highest SWI phase values, that is, the 

lowest iron content values, were found in the WM ROIs, especially the temporal lobe and 

cerebellum. Finally, the effect of sex on SWI phase was not significant in any of the cerebral 

regions investigated (Table 1), although in most ROIs, men exhibited nonsignificant trends 

toward lower SWI phase values, that is, greater iron content, than women (Table 1).

Fig. 6 shows quantitative results for MWF values from all participants as a function of 

age for the 20 indicated WM and DGM cerebral regions. Unlike mean SWI phase, MWF 

vs. age exhibits nonlinear trends increasing until middle age and decreasing afterward in 

most ROIs examined. The best-fit curves indicate that while the fundamental inverted U­

shaped relationship between MWF and age was consistent across all ROIs, this relationship 

displayed regional variation. Significant age effects on MWF were observed in all the 

brain regions evaluated, except the caudate, putamen, substantia nigra, amygdala and 

hippocampus ROIs (Table 2), with reduced MWF with advancing age. The steepest decline 

of MWF with age was found in the corpus callosum while the slowest decline was seen 
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in the internal capsules. Similarly, the quadratic effect of age, age2, was significant in all 

brain structures evaluated (Table 2). Furthermore, as expected, the highest MWF values were 

found in the WM ROIs, with the DGM ROIs exhibiting overall lower MWF values. Finally, 

the effect of sex on MWF was not significant in any of the cerebral regions investigated 

(Table 2). In most ROIs, men exhibited nonsignificant trends towards higher MWF values, 

that is, greater myelin content, than women (Table 2).

3.2. Association between iron content and myelin content

Fig. 7 shows the results of the regressions of SWI phase with MWF, after adjusting for age 

and sex, for the 20 indicated WM and DGM cerebral regions studied. As seen, lower MWF, 

that is, lower myelin content, corresponds to lower SWI phase values, that is, higher iron 

content, in most ROIs examined, with the best-fit curves displaying regional variation. Our 

statistical analysis, presented in Table 3, shows that the relationship between MWF and SWI 

phase was significant (p <.05) or close to significance (p <.1) in all brain regions, except 

in the occipital lobes, cerebellum, caudate, insula, putamen, and fronto-occipital fasciculus 

ROIs. In addition, the steepest positive slopes in SWI phase with MWF were found in 

the amygdala and hippocampus, while the smallest slopes were found in the cerebellum, 

putamen, and occipital lobes (Table 3).

4. Discussion

Using advanced MR methodology for myelin and iron content quantification, we 

demonstrate significant associations between iron content or myelin content with age in 

a cohort of healthy volunteers. Further, our results indicate significant negative associations 

between iron content and myelin content; these associations were statistically significant 

in various critical brain regions, even after adjusting for age and sex. While these results 

do not confirm a causal link between iron deposition and myelin breakdown, they provide 

further evidence of a potential link between iron neurochemistry and myelin integrity in 

aging adults.

Our results indicate linear associations between iron content and age in all WM and DGM 

regions investigated (Table 1, Fig. 5) and confirm the significant effects of age on brain iron 

levels (Hallgren and Sourander, 1958; Wang et al., 2012; Pfefferbaum et al., 2009; Xu et al., 

2008; Acosta-Cabronero et al., 2016; Persson et al., 2015; Ramos et al., 2014; Daugherty 

and Raz, 2015; Haacke et al., 2010). These findings are consistent with previous reports, 

indicating overall trends of lower SWI phase values, that is, higher iron content, with age 

in several WM and DGM regions (Wang et al., 2012; Pfefferbaum et al., 2009; Xu et al., 

2008). Our results show that the rates of iron deposition varied across cerebral structures, in 

agreement with several previous in-vivo and post-mortem studies (Hallgren and Sourander, 

1958; Pfefferbaum et al., 2009; Xu et al., 2008; Aquino et al., 2009) (Table 1). Indeed, we 

found that age-differences in iron concentration in the globus pallidus, red nucleus, putamen, 

and caudate were not significant (Xu et al., 2008; Acosta-Cabronero et al., 2016; Aquino et 

al., 2009). Studies have also suggested that iron accumulation in these structures is nonlinear 

over time, with iron levels approaching a distinct plateau in middle age (Hallgren and 

Sourander, 1958; Xu et al., 2008; Aquino et al., 2009). Finally, our data showed that there 
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were no sex related differences in iron content in any of the regions studied, although men 

exhibited nonsignificant trends of higher iron content than women (Table 1); this agrees 

with previous observations (Xu et al., 2008; Persson et al., 2015; G Bartzokis et al., 2007). 

However, the literature regarding sex differences in iron content remains sparse (Xu et al., 

2008), with larger cohort studies required for further definition of this potential effect.

Our results indicate a quadratic association between MWF and age in all cerebral regions 

investigated (Table 2, Fig. 6). These results are consistent with our and previous reports, on 

larger cohorts of cognitively unimpaired participants, indicating an inverted U-shape trend 

of MWF values with age in several white matter regions (M Bouhrara et al., 2020; Dvorak 

et al., 2021; Papadaki et al., 2019; Arshad et al., 2016). This quadratic association between 

myelin and age is attributed to the process of progressive myelination from youth through 

middle age, followed by demyelination in later years (Arshad et al., 2016; Bartzokis et al., 

2010); this pattern is in agreement with postmortem observations (Peters, 2002; Tang et al., 

1997) and with several studies based on myelin-sensitive MRI methods such as diffusion 

tensor imaging and relaxation rates (Bartzokis et al., 2010; Okubo et al., 2017; Westlye et 

al., 2010; Yeatman et al., 2014; Slater et al., 2019).

As expected, our results show variation among brain regions. The DGM structures exhibited 

the steepest slope in the relationship between iron content and myelination (Table 3, Fig. 

7). Postmortem and in vivo studies have shown large amounts of iron in the basal ganglia 

in cognitively unimpaired individuals (Möller et al., 2019; Hallgren and Sourander, 1958; 

Bartzokis et al., 2000; Wang et al., 2012; Pfefferbaum et al., 2009; Xu et al., 2008; Ramos 

et al., 2014; G Bartzokis et al., 2007; Griffiths and Crossman, 1993; Bartzokis et al., 1994; 

Ogg et al., 1999; Loeffler et al., 1995; Ward et al., 2014). Indeed, iron is stored in the ferritin 

protein which is present in high concentration in the basal ganglia (Griffiths and Crossman, 

1993; Griffiths et al., 1999). However, our results must be interpreted with caution. It has 

been shown that diffusion of iron into the extracellular space may decrease the relaxation 

times of the unbound water pool, leading to an artificial overestimation of MWF values 

with increasing iron content (Birkl et al., 2019); this could explain the opposite trends seen 

in the substantia nigra, caudate and red nucleus (Fig. 5), which are known to exhibit the 

highest iron concentrations in the human brain. However, in spite of this potential effect, our 

results in fact show lower MWF with higher iron content. This indicates that a physiologic 

association of demyelination with increased iron content dominates this potential source of 

error in many of the ROIs examined. However, overestimation of MWF due to iron may 

be responsible for rendering the association nonsignificant in other ROIs despite consistent 

trends in the direction of this association. Ongoing studies incorporating additional subjects, 

longitudinal follow up, and histological measures will provide further insight into these 

phenomena.

The relationship between local iron content and myelination may provide important 

insight into their roles in neurodegenerative diseases, especially given the vulnerability 

of oligodendrocyte metabolism to iron neurotoxicity. A powerful argument has emerged 

incorporating impaired myelin homeostasis as a central phenomenon in the pathophysiology 

of Alzheimer’s disease (AD). This concept, introduced by Bartzokis and colleagues 

(Bartzokis, 2004; Bartzokis, 2011; Bartzokis et al., 2004; G Bartzokis et al., 2007), suggests 
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that myelin breakdown releases iron which promotes the development of amyloid plaques, 

which in turn destroy additional myelin. However, myelin and the oligodendrocytes that 

produce it are vulnerable to the accumulation of amyloid-β protein, tau protein, or iron 

(Dean et al., 2017; Bradl and Lassmann, 2010; SE Nasrabady et al., 2018; Desai et al., 

2010). Consequent loss of oligodendrocytes or impairment of their metabolic synthetic 

function in the setting of AD, and possibly other dementias, may therefore result in focal 

myelination deficits. These deficits may in turn serve as the pathophysiologic basis of 

decreased interregional connectivity in the central nervous system (CNS) and subsequent 

decreased cognitive ability, as well as other deficits in CNS function. This myelin paradigm 

is supported by clinical MRI studies showing decreases in myelin content in the setting 

of AD and mild cognitive impairment (MCI) (Bouhrara et al., 2018; Carmeli et al., 2013; 

van der Flier et al., 2002; Arfanakis et al., 2007; Kabani et al., 2002; Gold et al., 2012; 

Haris et al., 2009). Furthermore, growing evidence indicates decreases in myelin production 

with decreased dietary iron (Ortiz et al., 2004; Hare et al., 2013; Stankiewicz et al., 2014). 

All these considerations led us to the plausible hypothesis of an association between iron 

content and myelin content. These studies, our previous report providing evidence of myelin 

loss in MCI and dementia (Bouhrara et al., 2018) and our current findings motivate our 

ongoing studies of the relationship between iron accumulation and myelin loss in MCI 

and dementia, including longitudinal studies designed to evaluate the temporal relationship 

between demyelination and iron deposition. If confirmed, this would establish a therapeutic 

target for AD prevention, namely, maintenance of iron homeostasis through pharmacological 

treatments, such as iron chelation or dietary interventions. In addition, correlations with 

symptomatology would serve to establish MWF and iron quantifications as biomarkers for 

the progression of AD.

Although our work examines a relatively large cohort and uses advanced methodology, 

several limitations remain. Our dataset is cross-sectional, so that the iron and myelin 

associations observed here require further validation through longitudinal studies, which 

may provide insights regarding the causality of these associations. Such work, motivated 

by the present results, is underway. We also note that it was not feasible to obtain optimal 

uniform sampling across all age intervals in this sample of participants. In fact, the number 

of subjects included between 50 and 70 years is much lower as compared to the other 

age decades. This may also influence the overall interpretability of myelination or iron, as 

well as their associations, during the process of aging (Fjell et al., 2010). Nevertheless, 

we obtained a meaningful sample size across the age range of our study. Moreover, other 

metals such as manganese or copper can affect the measured MR signal. However, the 

concentration of these metals in the brain, under normal conditions, is extremely low so 

that the local phase distortions, as depicted in the SWI phase maps, are mainly due to 

iron. Moreover, our SWI analysis was based on a single-echo acquisition (Wang et al., 

2012; Pfefferbaum et al., 2009; Xu et al., 2008). Further studies of the association between 

myelin and iron contents using more quantitative and advanced techniques, such as QSM 

for iron quantification, are needed (Langkammer et al., 2012; C Liu et al., 2015; Wang 

and Liu, 2015). Furthermore, although the susceptibility-weighted contrast in the brain is 

driven primarily by iron (Haacke et al., 2005; Yao et al., 2009; Hametner et al., 2018), 

myelin, whose elevated content in lipids and proteins renders its sheaths diamagnetic, may 
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contribute to susceptibility contrast (Kor et al., 2019; Lee et al., 2012; Li et al., 2011); this 

may introduce some bias in derived SWI phase values. Histological studies are required 

to further explore this potential confounder. Moreover, as indicated above, it has been 

shown that diffusion of iron into the extracellular space may shorten the corresponding 

transverse relaxation time leading to an artificial overestimation of MWF values (Birkl et 

al., 2019; Drayer et al., 1986). Further ex-vivo or histological experiments are required to 

unambiguously elucidate the origin of this observation (Kirilina et al., 2020). Nevertheless, 

we note that since iron could lead to increases in derived MWF values while myelin sheets 

could lead to lower derived SWI phase values, a positive association between iron and 

MWF would be expected. In this case, these effects would be antagonist to our observation 

of regional negative associations between iron and MWF; this provides further support to 

our observation despite the aforementioned competing effects. Interestingly, positive or no 

associations between iron and MWF were observed in a few deep gray matter regions 

(DGM), including the red nucleus, substantia nigra and caudate; these structures exhibit 

very high iron concentrations. We conjecture that these positive associations found in these 

DGM regions are likely driven by a strong bias in derived MWF values due to a high 

iron concentration. In addition, fiber orientation effects may represent another factor that 

could bias iron and MWF estimates (Kor et al., 2019; Lee et al., 2010; Liu, 2010; Birkl et 

al., 2021). Another source of bias in derived MWF values is myelin debris from damaged 

myelin sheets. Indeed, myelin debris can be interpreted as intact myelin in multicomponent 

MRI analysis (Webb et al., 2003; McCreary et al., 2009; Kozlowski et al., 2008). Moreover, 

contamination due to partial volume issues may have been introduced in the calculated 

MWF or SWI values. To mitigate this contamination, all ROIs were eroded followed by 

careful visual inspections. Nevertheless, some partial volume effects could have persisted, 

especially in small structures including the deep gray matter ROIs. In addition, age-related 

tissue atrophy could lead to nonoptimal image registration, potentially introducing some bias 

in derived parameters values. Nevertheless, our visual inspection indicates that age-related 

tissue atrophy was limited to a very few participants belonging to the oldest age decade 

of our cohort. Finally, several physiological and experimental parameters could bias MWF 

determination. These include, but are not limited to, exchange between water pools (West et 

al., 2019; Kalantari et al., 2011; Myint and Ishima, 2009), magnetization transfer between 

free water protons and macromolecules (West et al., 2019; J Zhang et al., 2015), iron content 

(Birkl et al., 2019), internal gradients (Washburn et al., 2008; Seland et al., 2004), and 

differential signal attenuation due to water diffusion in underlying compartments (Ziener et 

al., 2010; Carney et al., 1991; Le Bihan et al., 1989), which are not considered in either 

the BMC-mcDESPOT formalism or the other MWF measurement methods available. The 

importance of these effects in a particular experiment will depend both on the specifics 

of the sample or subject under investigation and on the details of the pulse sequence, 

including the selection of parameters such as TE, TR, FA, RF pulse characteristics and 

gradient durations and amplitudes (Does, 2018; Alonso-Ortiz et al., 2015; Dvorak et al., 

2021; Levesque et al., 2010; Lazari and Lipp, 2021; Bouhrara and Bonny, 2012). However, 

it must be emphasized that multi-spin echo-based MRI sequences, namely the Carr–Purcell–

Meiboom–Gill sequence or its accelerated version, the gradient and spin echo sequence, 

remain the reference methods for MWF mapping (MacKay and Laule, 2016; Alonso-Ortiz et 

al., 2015; Piredda et al., 2021; Dvorak et al., 2021; Lazari and Lipp, 2021; Lee et al., 2021; 
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Heath et al., 2018). This is likely due to the availability of these imaging sequences on most 

preclinical and clinical MRI systems, the simplicity of the signal model, and the extensive 

histological validation conducted over the last two decades (Laule et al., 2006; Laule et al., 

2008).

In this study, examining the association between local myelination and iron accumulation in 

the human cerebrum, we showed that higher iron content is associated with lower myelin 

content across a wide age range of cognitively normal subjects.
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Fig. 1. 
Diagram of the A) SWI phase mapping and B) MWF mapping, and registration workflow.

Khattar et al. Page 21

Neuroimage. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Examples of SWI phase maps before (original) and after signal thresholding. A threshold 

was applied to discard abnormally high phase values seen in areas with strong magnetic 

susceptibility or high iron concentration. Black voxels represent the discarded areas. Results 

are shown for three different slices.
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Fig. 3. 
Visualization of the white matter and deep gray matter ROIs investigated in our analysis. 

1) Frontal lobes, 2) Parietal lobes, 3) Occipital lobes, 4) Cerebellum, 5) Corpus callosum, 

6) Internal capsules, 7) Temporal lobes, 8) Insula, 9) Caudate, 10) Putamen, 11) Thalamus, 

12) Forceps, 13) Globus pallidus, 14) Red nucleus, 15) Substantia nigra, 16) Longitudinal 

fasciculus, 17) Fronto-occipital fasciculus, 18) Amygdala, and 19) Hippocampus.
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Fig. 4. 
SWI phase and MWF maps derived from the brains of three men participants of different 

ages. For each participant, results are shown for two representative slices.
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Fig. 5. 
Regressions of SWI phase with age (N = 92). Results are shown for twenty WM and 

DGM brain structures. The coefficient of determination, R2, and the significance, p-value 

(FDR corrected), of the multiple linear regression model are as shown. Most ROIs exhibited 

significant negative correlations between SWI phase, that is, positive correlations between 

iron content, and age.
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Fig. 6. 
Regional myelin water fraction (MWF) trends as a function of age (N = 92). Results 

are shown for twenty WM and DGM brain structures. For each ROI, the coefficient of 

determination, R2, and the significance, p-value (FDR corrected), of the multiple linear 

regression model are as shown. All regions investigated show significant inverted U-shaped 

trends of MWF with age, with differences in detail between regions.
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Fig. 7. 
Regressions of SWI phase with MWF (N = 92) adjusted for age and sex. Results are 

shown for twenty WM and DGM brain structures. The coefficient of determination, R2, and 

the significance, p-value, of the multiple linear regression model are as shown. All ROIs 

exhibited significant positive correlations between SWI phase and MWF indicating that 

lower MWF corresponds to lower SWI phase, that is, higher iron content.
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Table 1

Slope, β, and significance, p, of the regression terms incorporated in the multiple linear regression given 

by: SWI phase ∼ β0 + βage × age + βsex × sex. All p-values presented are obtained after FDR correction. 

Underlined p-values indicate close to significance before FDR correction.

SWI phase

Age Sex

βage (× 10−4) p age βsex(× 10−3) p sex

WB −1.39 < 0.01 −0.27 > 0.1

FL −1.40 < 0.01 0.32 > 0.1

OL −1.93 < 0.01 0.28 > 0.1

PL −1.10 < 0.01 −0.85 > 0.1

TL −1.09 < 0.01 −0.14 > 0.1

CRB −1.81 < 0.01 −1.19 > 0.1

CC −1.58 < 0.01 −2.15 > 0.1

IC −3.86 < 0.01 −2.31 > 0.1

FOR −1.37 < 0.01 −1.39 > 0.1

FOF −2.31 < 0.01 −3.10 ≥ 0.1

LF −1.55 < 0.01 0.08 > 0.1

Hip −3.03 < 0.01 −4.13 ≥ 0.1

CN −5.66 > 0.1 −7.76 > 0.1

Put −4.09 > 0.1 1.18 > 0.1

Th −3.59 < 0.01 −1.25 > 0.1

Am −3.45 < 0.01 −1.86 > 0.1

RN 1.43 > 0.1 4.75 > 0.1

SN 3.88 < 0.1 3.99 > 0.1

GP −2.86 > 0.1 23.56 ≥ 0.1

Ins −1.89 < 0.01 −0.56 > 0.1

SWI: susceptibility weighted imaging, WB: whole brain, FL: frontal lobes, PL: parietal lobes, TL: temporal lobes, OL: occipital lobes, CRB: 
cerebellum, CC: corpus callosum, IC: internal capsules, FOR: forceps, FOF: fronto-occipital fasciculus, LF: longitudinal fasciculus, Hip: 
hippocampus, CN: caudate nucleus, Put: putamen, Th: thalamus, Am: amygdala, RN: red nucleus, SN: substantia nigra, GP: globus pallidus, 
Ins: insula. Bold indicates significance (p <.05) or close to significance (p <.1).
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