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ABSTRACT
The first hematopoietic cells are generated very early in ontogeny to support the growth of the
embryo and to provide the foundation to the adult hematopoietic system. There is a considerable
therapeutic interest in understanding how these first blood cells are generated in order to try to
reproduce this process in vitro. This would allow generating blood products, or hematopoietic cell
populations from embryonic stem (ES) cells, induced pluripotent stem cells or through directed
reprogramming. Recent studies have clearly established that the first hematopoietic cells originate
from a hemogenic endothelium (HE) through an endothelial to hematopoietic transition (EHT). The
molecular mechanisms underlining this transition remain largely unknown with the exception that
the transcription factor RUNX1 is critical for this process. In this Extra Views report, we discuss our
recent studies demonstrating that the transcriptional repressors GFI1 and GFI1B have a critical role
in the EHT. We established that these RUNX1 transcriptional targets are actively implicated in the
downregulation of the endothelial program and the loss of endothelial identity during the formation
of the first blood cells. In addition, our results suggest that GFI1 expression provides an ideal novel
marker to identify, isolate and study the HE cell population.
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The development of the vertebrate hematopoietic system is
characterized by 3 successive waves of blood progenitor genera-
tion. The first 2 waves of blood cell emergence take place in the
extra-embryonic yolk sac and generate mainly primitive eryth-
rocytes by E7.5 and erythroid-myeloid progenitors (EMPs) by
E.8.5.1-6 It is only during the third wave of blood development
that the first hematopoietic stem cells (HSCs) with multi-line-
age and long-term repopulating potential arise in the intra-
embryonic aorta-gonad-mesonephros (AGM) region.7-10

Seminal experiments have indicated that blood cells initially
emerge from endothelial cells (i.e. from a hemogenic endothe-
lium).11-14 Recent elegant live imaging studies of the AGM
region15-19 or using differentiated embryonic stem (ES) cells20-23

have provided evidences that endothelial cells directly become
blood cells through an endothelial to hematopoiesis transition
(EHT). This is consistent with the observations that the first pro-
genitors with HSC activity are detected in the major arteries in
the developing embryo24-26 and that the intra-aortic hematopoi-
etic clusters (IAHC) generated through the EHT in the ventral
wall of the dorsal aorta (vDA) contain cells with a HSC pheno-
type.15 Altogether these findings suggest that HSCs directly
originate from hemogenic endothelial cells. More recently,
hemogenic endothelium (HE) cells have been shown to also give

rise to EMPs generated in the yolk sac,3 a process that is recapit-
ulated in vitro in ES cell culture systems.22,27,28 In contrast to
AGM derived HE, yolk sac HE expresses the hematopoietic
marker c-KIT.3 Even reprogramming of fibroblasts to blood cells
was shown to proceed through a HE intermediate.29-31 Together,
these recent results highlight the pivotal role of the HE cell pop-
ulation and the EHT process in the de novo generation of blood
cells.

Although HE has now been clearly established as the cellular
source of the first blood cells in vivo and in vitro, the molecular
and cellular mechanisms orchestrating this intriguing trans-dif-
ferentiation remain largely unknown. The EHT process is char-
acterized by the loss of endothelial identity concomitant with
the acquisition of a round, non-adherent, cellular morphology
and the gain of hematopoietic cell surface marker expression.
One important clue in understanding this process was provided
by the observation that the transcription factor RUNX1 is criti-
cal for the generation of definitive blood cells by EHT.17,21,32-35

In the absence of this transcription factor, HE cells do not lose
their endothelial identity nor do they acquire a hematopoietic
fate. Instead, the cells remain mostly adherent, associated in
tight clusters and the few cells that separate from HE clusters
rapidly die through apoptosis.21,36 Taking advantage of this

CONTACT Valerie Kouskoff Valerie.Kouskoff@cruk.manchester.ac.uk Stem Cell Haematopoiesis, CRUK Manchester Institute, Wilslow Road Manchester, M20
4BX, UK; Georges Lacaud georges.lacaud@cruk.manchester.ac.uk Stem Cell Biology, CRUK Manchester Institute, Wilslow Road, Manchester, M20 4BX, UK
*Current address: Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton
#Current address: Adaptimmune LLC, Abingdon, UK
© 2016 Roshana Thambyrajah, Rahima Patel, Milena Mazan, Michael Lie-a-Ling, Andrew Lilly, Alexia Eliades, Sara Menegatti, Eva Garcia-Alegria, Magdalena Florkowska, Kiran Batta, Valerie Kousk-
off, and Georges Lacaud. Published with license by Taylor & Francis
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.

CELL CYCLE
2016, VOL. 15, NO. 16, 2108–2114
http://dx.doi.org/10.1080/15384101.2016.1203491

http://dx.doi.org/10.1080/15384101.2016.1203491


critical role of RUNX1 in the EHT process, we identified
through genome-wide gene expression studies the transcrip-
tional repressors GFI1 and GFI1B as direct transcriptional tar-
gets of RUNX1 during the EHT.37 These 2 homologous nuclear
zinc finger proteins share a C-terminal domain containing
6 C2-H2-type zing finger motifs mediating their DNA binding
activity and a N-terminal SNAIL/GFI-1 (SNAG) domain
required for their repressive activity.38,39 GFI1 and GF1B have
already been implicated in the adult hematopoietic system.39,40

Gfi1 is expressed in HSCs, granulocyte-macrophage progeni-
tors, B cells, granulocytes and immature T lymphocytes 41-44

whereas Gfi1b is highly expressed in HSCs, erythroid and
megakaryocytic cells.45 To investigate the relevance of these 2
proteins in the EHT, we evaluated their ability to rescue this
transition in Runx1¡/¡ HE cells. We observed that ectopic
expression of Gfi1, or Gfi1b, restored many features of the EHT
process. The cells expressing either GFI1 proteins acquired
both a round, non-adherent morphology and the expression of
early hematopoietic markers, while losing the expression of
endothelial genes. However, these newly generated round cells
were not able to generate hematopoietic colonies, indicating
that the rescue of the EHT was incomplete. To confirm the
association of GFI1 and GFI1B with the EHT in vivo, we ana-
lyzed in detail their expression in the mouse AGM region.46

We observed that during the EHT process, Gfi1 is specifically
expressed within the dorsal aorta in endothelial cells and cells
within emerging IAHC, whereas Gfi1b expression was more
associated with the fully formed IAHC. Furthermore, trans-
plantation of the E11.5 AGM endothelial cells expressing Gfi1
and/or Gfi1b resulted in long-term repopulation of irradiated
recipient mice directly demonstrating that HSC potential at
E11.5 resides within the GFI1(s) expressing endothelial cell
compartment. These results indicate that the expression of Gfi1
in endothelial cells readily distinguishes HE from normal,
non-hemogenic endothelial cells and that GFI1 could be an
important effector of RUNX1 function in the EHT process.
Interestingly, we also found that in the yolk sac, Gfi1 expression
was associated with FLK1C or CD31C endothelial cells at sites
of EMPs emergence (Fig. 1). In contrast, GFI1B was mostly
found in cells negative for endothelial markers. Gfi1 expression
in yolk sac endothelium also coincided with the expression of

c-KIT, a marker of hemogenic endothelial cells in the yolk sac,3

but not in the AGM where its expression marks subsequent
hematopoietic clusters.46 The observation that GFI1 concurs
with c-KIT and endothelial markers expression, and therefore
potential hemogenic endothelium, suggested that GFI1 could
also be critical for the extra-embryonic EHT.

Although these previous findings strongly suggested the
importance of GFI1 and GFI1B in the EHT, none of their
respective knockout recapitulated the early block in EHT and
the embryonic lethality observed at E12.5 in the absence of
RUNX1.47,48 GFI1 deficiency is not embryonic lethal and
results mainly in deafness, neutropenia and reduction in HSC
self-renewal capacity,41,43,44,49,50 whereas Gfi1b knockout leads
to embryonic lethality at E14.5 due to a deficiency in erythroid
and megakaryocyte development.51 We hypothesized that the
lack of an early phenotype might be due to a functional com-
pensation for the loss of one gene by the other. The two GFI1
and GFI1B proteins exhibit very high level of homology in their
functional domains and were previously shown to be function-
ally interchangeable in the adult hematopoietic system.52 In
addition, both proteins auto-regulate themselves and cross-reg-
ulate each other.53-57 In line with a possible functional compen-
sation, we observed the up-regulation of Gfi1b expression in
Gfi1 deficient AGM HE cells 46 although Gfi1b is not normally
expressed in these HE cells in wild type embryos. To therefore
evaluate the functional relevance of GFI1 and GFI1B in EHT,
we examined the consequences of deleting both proteins during
embryonic development using Gfi1 and Gfi1b GFP knock-in
mice. We first observed that deficiency in both proteins resulted
in an earlier lethality than either single deficiency, further sup-
porting the hypothesis of a functional compensation between
these 2 highly homologous proteins. In the double knockout
embryos, strong defects in the EHT were also observed; GFPC

blood cells normally generated from the yolk sac in heterozy-
gous animals were absent from the circulation in the double
knockout animals. Furthermore, IAHC were not observed in
the AGM. Instead, we found GFPC cells accumulating in the
yolk sac or embedded within the endothelial lining of the dorsal
aorta. Interestingly when these yolk sac GFPC cells from the
double knockout embryos were isolated and replated, they
readily generated hematopoietic colonies. These results indicate

Figure 1. Immunostaining on E9.5 and E10.5 Yolk sacs (A) Arrows indicate the expression of GFI1 in flat FLK-1C endothelial cells in E9.5 yolk sac. GFI1B is detected in intra-
vascular round cells. (B) Co-expression of GFI1 and c-KIT in CD31C E10.5 hemogenic endothelial cells. YS D Yolk Sacs. Scale bar D 10mm.
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that although the GFPC cells were not disseminated in the cir-
culation they had already committed to a hematopoietic cell
fate. In contrast, the GFPC endothelial cells present in the dor-
sal aorta did not generate any hematopoietic colonies following
either direct replating or after a maturation step by co-culture
on OP9 cells. These findings suggest that blood commitment
can take place in absence of both GFI1 and GFI1B in the yolk
sac but not in the AGM. Alternatively, committed blood cells
are generated in the AGM in the absence of both GFI1 proteins,
but these hematopoietic cells, such as HSCs, might be more
dependent on the presence of at least one of the GFI1 protein.
Supporting this hypothesis, the conditional deletion of Gfi1b in
the bone marrow of adult Gfi1 deficient animals, generating
double knockout cells, result in complete loss of HSCs indicat-
ing that either GFI1 or GFI1B are required to maintain HSC in
vivo.50,58

Although these data demonstrated the critical requirement
for GFI1 and GFI1B in the EHT, the molecular mechanism
associated with their function in this process still remained
unknown. GFI1 and GFI1B have been shown to repress tran-
scription in MEL (murine erythroleukemia) cell line, by recruit-
ing the chromatin regulatory CoREST complex.59,60 The
CoREST complex includes the histone demethylase LSD1
(KDM1A) and the histone deacetylases, HDAC1 and
HDAC2.61 To investigate if this complex was involved in EHT,
we examined the consequences of pharmacological LSD1 inac-
tivation on this transition during the in vitro differentiation of
ES cells. LSD1 inhibition impaired the emergence of round
non-adherent cells in the supernatant of those cultures, affected
the acquisition of early hematopoietic markers and perturbed
the loss of endothelial markers. A similar phenotype was
obtained upon the genetic deletion of Lsd1 in HE cells gener-
ated from ESCs carrying a tamoxifen-inducible conditional
Lsd1 knockout.62

In order to identify the genome-wide transcriptional
changes induced by GFI1 and GFI1B through the recruitment
of LSD1 during EHT, we compared global gene expression pro-
files upon LSD1 inhibition. We found that genes implicated in
the development of the cardiovascular system were expressed
at higher levels in LSD1-inhibited cells than in control cells.
Conversely, transcripts associated with hematological system
development/function and cell morphology were found at
lower levels. We also mapped GFI1 and GFI1B binding sites in
HE cells using the DamID (DNA adenine methyltransferase
Identification) strategy. This alternative approach to chromatin
immune-precipitation relies on the deposition of “methylation
tags” around the binding sites of the Dam-fused transcription
factor under investigation by the E.coli DNA adenine methyl-
transferase (Dam).63,64 We cross-compared the lists of genes
bound by GFI1 and/or GFI1B with the list of genes differen-
tially expressed when LSD1 activity is blocked to identify direct
transcriptional targets. The resulting list of candidates con-
tained several genes with well-established role in stemness
(Lgr5, Lin28A, Sall1), as well as genes involved in cardiovascu-
lar development, blood vessels maintenance and remodelling.
Interestingly, many of these genes were also previously shown
to be bound by RUNX1 during EHT, or to contain RBPJ bind-
ing sites, suggesting that RUNX1, NOTCH and GFI1(s) might
be participating together in the regulation of these genes.

Altogether, these studies suggest a model of regulation of the
EHT process where RUNX1 is first expressed in HE and indu-
ces the expression of Gfi1 and Gfi1b. These two proteins bind
to genes associated with the global maintenance of endothelium
identity, and cellular adhesion, and recruit the CoREST com-
plex to epigenetically silence the endothelial program (Fig. 2).
This leads to the acquisition of a round non-adherent cellular
morphology, allowing the release of newly formed blood cells
into the circulation. The precise role of NOTCH signaling in
the context of RUNX1 is still unclear but is comprehensively
investigated by other laboratories.65-67 It is interesting to note
here that GFI1, and GFI1B, have also been respectively shown
to be important for the reprogramming of endothelial cells to
blood cells68 or of fibroblasts to hemogenic endothelium.30 We
also recurrently found RUNX1 binding sites with GFI1 and
GFI1B binding sites,46,69 suggesting a model in which RUNX1
and GFI1(s) interact and cooperate to shut down the endothe-
lial program. Indeed, RUNX1 and GFI1 were shown to be part
of common transcriptional complexes in hematopoietic pro-
genitors70 and we observed that these proteins can immuno-
precipitate each other (unpublished data). We therefore
propose that RUNX1 first binds to endothelial genes and
increases the expression of GFI1(s) repressors that along with
LSD1 actively induce the epigenetic silencing of the endothelial
program (Fig. 2).

The observation that the expression of Gfi1, or Gfi1b, in
Runx1¡/¡ deficient HE cells induces the loss of endothelial
identity but does not confer hematopoietic potential suggest
that RUNX1 also activates the expression of a different set of
genes required for blood commitment (Fig. 2). One possibility
is that the acquisition of a blood cell fate proceeds through a
global activation of the expression of hematopoietic genes.
Indeed we found in collaboration with the Bonifer laboratory
that in the absence of RUNX1, many regulatory genes such as
Scl/Tal1, Fli1, Lmo2 and Cebpb are already expressed and
many hematopoietic genes are bound by C/EBPb, SCL/TAL1
and FLI1.69,71 RUNX1 expression causes a rapid shift in the
binding pattern of these transcription factors toward that
observed in hematopoietic precursor cells in the absence of
overt precursor formation. Moreover, RUNX1 initiates the for-
mation of new transcription factor complexes with a

Figure 2. Model of Regulation by RUNX1 and GFI1(s) of the Endothelial to Hemato-
poietic Transition. The model is discussed in the text.
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concomitant increase in histone acetylation at a large number
of newly formed cis regulatory elements. These data suggest
that the acquisition of hematopoietic cell fate might result from
a global reorganization of lineage-specific transcription factor
assembly controlled by RUNX1 rather than the induced expres-
sion of a few critical genes. Nonetheless the exact mechanisms
by which RUNX1 promotes hematopoietic cell fate, the stage at
which this is initiated, as well as the complete inventory and
function of key downstream target genes, remains to be
uncovered.

Intriguingly, although we previously found that Gfi1 is
among the earliest target genes bound and up-regulated by
RUNX1b, the isoform of RUNX1 expressed in HE, the ontology
of RUNX1b regulated genes in early HE revealed an upregula-
tion of the expression of genes involved in angiogenesis, cell
adhesion and migration.63,72 This suggests that at the initial
stage of hematopoietic development, RUNX1b first organizes
the formation of HE clusters that is required for the release of
blood progenitors. Outside of the hematopoietic context, this
endothelial-epithelial RUNX1 transcriptional signature might
also reflect the recently uncovered role of RUNX1 in epithelial-
based tumor formation and progression. In particular RUNX1
targets that associate with cell migration in HE may represent
important regulators of the potential metastatic role of RUNX1
in solid tumors. It is therefore possible that RUNX1 performs 2
seemingly opposite functions in HE, first binding and activat-
ing the expression of genes involved in a cell adhesion program
followed by the recruitment of GFI1(s) to silence the endothe-
lial identity of HE.

In conclusion, our recent studies provided exciting new
insights into the molecular mechanisms driving the EHT
and revealed the critical roles of GFI1(s) in this process.
These findings extend previous studies that have identified
critical transcription factors for the upstream cell fate
choice leading to the development of the HE from meso-
dermal/hemangioblast progenitors27,73,74 or implicated in
the EHT process. These include ETS factors,75-77 in
particular ETV2,78-82 and other transcription factors such as
SOX7,83-86 SCL/TAL1,21,87-90 HOXA3,91 SOX17,92-94

GATA2 95,96 and FOXF1.97 The next challenge will be to
determine how the combination of these transcription fac-
tors and the epigenetic machinery together dynamically
orchestrate the gene regulatory networks that drive the gen-
eration of blood cells.74 Along this line, our finding that
LSD1 is critical for the EHT is starting to unravel how this
process is regulated at the epigenetic level. In addition, it
will be important to identify the components of the cellular
niches that trigger and support the generation of the differ-
ent types of blood cells by EHT in order to reproduce these
processes in vitro to produce cell populations appropriate
for clinical purposes.98-103 Along this line, we recently dem-
onstrated the relevance of a specific combination of cyto-
kines,104 heparin sulfates105,106 and graphene oxide107 in
supporting the development of blood cells in vitro. Alto-
gether the Gfi1 GFP knockin model represents a powerful
tool to address in the future these outstanding questions
and study the EHT process in more detail as the expression
of Gfi1 in the endothelium can be used to accurately
identify and purify hemogenic endothelium and cells

undergoing EHT. This should not only allow a better char-
acterization of the molecular program that underpins blood
cell emergence but should also lead to the identification of
the specific molecular and cellular mechanisms that control
the generation of different lineages during the successive
waves of blood generation.
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