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Microglia are the resident innate immune cells in the central nervous system

(CNS) that serve as the first line innate immunity in response to pathogen

invasion, ischemia and other pathological stimuli. Once activated, they rapidly

release a variety of inflammatory cytokines and phagocytose pathogens or cell

debris (termed neuroinflammation), which is beneficial for maintaining brain

homeostasis if appropriately activated. However, excessive or uncontrolled

neuroinflammation may damage neurons and exacerbate the pathologies

in neurological disorders. Microglia are highly dynamic cells, dependent

on energy supply from mitochondria. Moreover, dysfunctional mitochondria

can serve as a signaling platform to facilitate innate immune responses

in microglia. Mitophagy is a means of clearing damaged or redundant

mitochondria, playing a critical role in the quality control of mitochondrial

homeostasis and turnover. Mounting evidence has shown that mitophagy

not only limits the inflammatory response in microglia but also affects their

phagocytosis, whereas mitochondria dysfunction and mitophagy defects

are associated with aging and neurological disorders. Therefore, targeting

microglial mitophagy is a promising therapeutic strategy for neurological

disorders. This article reviews and highlights the role and regulation of

mitophagy in microglia in neurological conditions, and the research progress

in manipulating microglial mitophagy and future directions in this field are

also discussed.
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nerve protein; PD, Parkinson’s disease; PHB2, prohibitin 2; PINK1, PTEN-induced putative kinase
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Introduction

Mitochondria are the hubs of nutrient metabolism
and the powerhouse of the cell that produces a large
amount of adenosine triphosphate (ATP) through oxidative
phosphorylation. Intriguingly, mitochondria also serve
as a source of reactive oxygen species (ROS) due to the
reaction between oxygen and leaked electrons from the
mitochondrial electron transport chain. ROS act as signaling
molecules in various physiological processes or cause severe
damage to cells when overwhelmingly accumulated. ROS
directly impair mitochondrial proteins, lipids and DNA
(mtDNA), resulting in mitochondrial dysfunction, which
in turn produces more ROS and forms a vicious cycle. The
accumulation of dysfunctional mitochondria is associated
with cancer, aging and neurodegeneration (Sun et al., 2016;
Srivastava, 2017). In addition, some developmental processes,
such as erythrocyte differentiation and maturation, rely
on the elimination of mitochondria (Mortensen et al.,
2010). Therefore, the removal of damaged or redundant
mitochondria is critical for the development, normal function
and survival of cells.

Mitophagy refers to an intracellular process that
selectively eliminates redundant or damaged mitochondria
by autophagosome sequestration and delivers the cargo to
lysosomes for degradation. This term was first described
by Scott and Klionsky (1998) and formally proposed by
Lemasters (2005), highlighting the selective feature of this
process. In the past two decades, an increasing number of
studies have demonstrated the roles of mitophagy in the
quality control and biogenesis of mitochondria and revealed
the contribution of mitophagy defects to aging, cancer and a
variety of diseases.

Regulation mechanism of
mitophagy

Mitophagy is an evolutionarily conserved process. Recent
studies have revealed an intricate crosstalk between signaling
and mitophagy initiation pathways and identified the well-
conserved machinery of mitophagy from yeast to mammals. In
2009, two independent groups led by Yoshinori Ohsumi and
Daniel J Klionsky simultaneously and consistently reported an
indispensable role of Atg32, an outer mitochondrial membrane
(OMM) protein, as the receptor of mitophagy in yeast through
the interaction with Atg8 and Atg11 (Kanki et al., 2009;
Okamoto et al., 2009). Subsequent studies also found a
cooperative regulation of Atg32 expression and phosphorylation
for mitophagy in yeast (Montenarh, 2010; Aoki et al., 2011;
Kondo-Okamoto et al., 2012). The initial studies in yeast laid the
groundwork for our understanding of mammalian mitophagy.

In mammals, there are two major pathways of mitophagy:
the ubiquitin (Ub) Pink/Parkin pathway and the receptor-
dependent pathway, as illustrated in Figure 1.

Ubiquitin-mediated mitophagy
pathway

Ub-mediated mitophagy, mainly triggered by PTEN-
induced putative kinase protein 1 (PINK1) and the E3 Ub
ligase Parkin, has been intensively and extensively studied
in vitro, and is well reviewed elsewhere (Eiyama and Okamoto,
2015). Under normal conditions, PINK1 is translocated to the
inner mitochondrial membrane (IMM), where it is cleaved by
presenilin-associated rhomboid-like (PARL) protein (Meissner
et al., 2015), thereby maintaining a low basal level on healthy,
polarized mitochondria. Once mitochondria are depolarized,
PINK1 cannot be translocated into the IMM and thus
accumulates on the OMM, where it forms homodimers and
undergoes autophosphorylation. PINK1 then recruits Parkin
from the cytosol to the OMM surface and activates this E3 Ub
ligase by phosphorylation. Activated Parkin then ubiquitinates
its substrates and leads to the formation of Ub chains (Sha et al.,
2010). PINK1 also phosphorylates preexisting Ub molecules on
the mitochondrial surface (Ordureau et al., 2014). The actions
of PINK1 and Parkin both contribute to the polyUb process of
damaged mitochondria in a positive feedback fashion.

Ubiquitinated mitochondria can be recognized by adaptor
proteins, including p62/SQSTM1, OPTN, NDP52, NBR1, and
TAX1BP1 (Geisler et al., 2010; Heo et al., 2015), which
can bind to ubiquitinated cargoes through the Ub-associated
(UBA) domain and LC3-tagged autophagosomes via the
LC3-interacting region (LIR). Thus, adaptor proteins are
essential for the process of Ub-mediated mitophagy through
assisting in mitochondrial sequestration and engulfment by
autophagosomes. Whether these adaptor proteins have unique
or redundant effects on mitophagy under specific conditions
remains unclear. An elegant study from Richard J Youle’s lab
revealed the central yet redundant roles of NDP52 and OPTN in
PINK1- and Parkin-mediated mitophagy in HeLa cells (Lazarou
et al., 2015). Researchers have also identified an important role
of TANK binding kinase 1 (TBK1) in the regulation of these
adaptor proteins and the mitophagy process (Heo et al., 2015;
Richter et al., 2016).

PINK1/Parkin-mediated mitophagy is typically studied
in vitro and represents a major pathway in defense against
mitotoxicity. Its role in vivo remains to be clarified. A recent
study provided the first in vivo evidence that loss of Pink1
did not alter basal mitophagy in tissues or cells of high
metabolic demand including microglia, using the mito-QC
reported mouse model (McWilliams et al., 2018). Pink1 KO mice
exhibited indistinguishable basal mitophagy in metabolically
active tissues compared with WT mice. The findings highlight
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FIGURE 1

A schematic illustration of two major pathways of mitophagy in mammalian cells. (1) Ubiquitin (Ub)-mediated mitophagy pathways. PINK1
accumulates on the OMM of depolarized mitochondria and undergoes auto-phosphorylation. (a) PINK1 then recruits cytosolic Parkin
translocation to the OMM and activates this E3 Ub ligase by phosphorylation, which ubiquitinates several OMM proteins such as mitofusin,
VDAC and Miro. PINK1 also directly phosphorylates the preexisting Ub on the OMM. Ub is also able to recruit and activate Parkin. The actions of
PINK1 and Parkin cooperatively lead to the polyUb process of damaged mitochondria, which can be recognized by mitophagy adaptors (p62,
OPTN, NDP52, NBR1, TAX1BP1) to mediate mitochondria sequestrated by autophagosomes. (b) Apart from Parkin, other E3 ubiquitin ligases
[ARIH1, seven in absentia homolog (SIAH)-1 and RNF34, etc.] have been reported to mediate mitophagy in a PINK1-dependent manner.
(2) Receptor-mediated mitophagy. OMM proteins including FUNDC1, AMBRA1, BNIP3L/Nix, BNIP3 serve as mitophagy receptors under specific
conditions (hypoxia, erythrocyte maturation, and toxin exposure). These receptors directly bind to LC3 via the LIR motif. Additionally, a few IMM
proteins such as cardiolipin and prohibitin 2 can translocate to the OMM under certain conditions, where they also serve as mitophagy
receptors and promote mitophagy through their LIR to interact with LC3 on the autophagosomes. OMM, outer mitochondrial membrane; IMM,
inter mitochondrial membrane; LIR, LC3-interacting region.

the possibility that other unidentified pathways may participate
in the basal mitophagy process in these tissues. In support
of this, neither PINK1 or Parkin KO mice recapitulated overt
neurodegenerative phenotypes under normal conditions (Perez
and Palmiter, 2005; Kitada et al., 2007).

The formation of a polyUb chain on the OMM is essential
for PINK1/Parkin-mediated mitophagy. Overexpression of
the deubiquitinating enzymes (DUBs) USP30 and USP35
inhibited Parkin-mediated mitophagy. In contrast, interfering
with these two DUBs promoted Parkin-mediated mitophagy
(Wang et al., 2015). Different DUBs may regulate mitophagy
in different manners. USP15 antagonizes Parkin-mediated
mitochondrial ubiquitination and thus mitophagy (Cornelissen
et al., 2014). Alternatively, USP8 preferentially removed non-
canonical K6-linked Ub chains from Parkin and thereby blocked
its recruitment to depolarized mitochondria and mitophagy
activity (Durcan et al., 2014). It is noteworthy that Parkin-
independent mitophagy may also exist (Villa et al., 2017;
Oshima et al., 2021). Other E3 Ub ligases, such as ARIH1,
seven in absentia homolog (SIAH)-1, and RNF34, have been
reported to mediate mitophagy in a PINK1-dependent manner

(Szargel et al., 2016; Villa et al., 2017; He et al., 2019). Therefore,
future work is expected to fully understand the roles of E3 ligases
or DUBs in Ub-mediated mitophagy in mammals.

Receptor-mediated mitophagy
pathway

Receptor-mediated mitophagy is another important
mechanism for the clearance of damaged or redundant
mitochondria. Several receptors, including FUN14 domain-
containing 1 (FUNDC1), Autophagy and Beclin 1 Regulator
1 (AMBRA1), BCL2/adenovirus E1B 19-kDa-interacting
protein 3-like (BNIP3L/NIX) and BCL2/adenovirus E1B
19-kDa-interacting protein 3 (BNIP3), and Prohibitin
2 (PHB2), have been identified for this process. The
receptor-mediated mitophagy pathway does not require
Ub signaling. Rather, the receptors directly bind autophagy-
related proteins. These mitophagy receptors share a common
feature that they contain a conserved LIR domain, which
allows them to interact with LC3. This interaction is
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modulated by the phosphorylation and protein abundance
of receptor molecules.

Most of these mitophagy receptors are OMM proteins.
Intriguingly, the mitophagy receptor often functions uniquely
in specific conditions. For example, FUNDC1 acts as a receptor
in hypoxia-triggered mitophagy (Liu et al., 2012). Under normal
conditions, FUNDC1 is phosphorylated by Src, which weakens
its interaction with LC3. Upon hypoxia, the phosphatase
PGAM5 dephosphorylates FUNDC1 at Ser13 and enhances
its interaction with LC3 and thereby mitophagy (Chen et al.,
2014). The structural basis for the phosphorylation regulation
of FUNDC1 LIR as a molecular switch for mitophagy has
been identified (Kuang et al., 2016). The E3 ligase membrane
associated RING-CH5 (MARCH5) also regulates FUNDC1
and plays a fine-tuning role in hypoxia-induced mitophagy
(Chen et al., 2017). Nix (also called Bnip3L) functions as a
selective mitophagy receptor during erythrocyte maturation
(Sandoval et al., 2008; Novak et al., 2010). Nix-deficient mice
developed anemia and decreased erythrocyte maturation with
mitochondrial retention. A homologous protein of Nix, BNIP3,
also serves as a receptor in hypoxia-induced mitophagy. The
phosphorylation of BNIP3 at the Ser17 and Ser24 sites enhanced
its LIR interaction with LC3 and mitophagy (Zhu et al.,
2013). The kinase(s) responsible for BNIP3 phosphorylation
remain unclear. Additionally, researchers identified AMBRA1
as a powerful receptor that is crucial for both Parkin-
dependent and -independent mitophagy in response to
trifluoromethoxy carbonylcyanide phenylhydrazone (FCCP)-
induced mitochondrial uncoupling (Strappazzon et al., 2015).

In addition, two IMM proteins, cardiolipin and prohibitin
2 (PHB2), were reported to mediate the turnover of unwanted
or damaged mitochondria via mitophagy (Chu et al., 2013;
Wei et al., 2017). Chu et al. reported that rotenone, 6-
hydroxydopamine and other pro-mitophagic stimuli caused
cardiolipin translocation from the IMM to the OMM, where
it served as an “eat-me” signal for the recognition and
engulfment of damaged mitochondria by autophagosomes.
Phospholipid scramblase-3 (PLS3) is responsible for cardiolipin
externalization during this process. Another study reported
that the hexameric intermembrane space protein nucleoside
diphosphate kinase-D (NDPK-D) can bind cardiolipin and
facilitate its redistribution to the OMM and thus mitophagy
initiation (Kagan et al., 2016). Cardiolipin-directed mitophagy
acted as an endogenous neuroprotective process against
traumatic brain injury (TBI) and behavioral deficits in rats.
Knockdown of cardiolipin synthase or PLS3 markedly reduced
TBI-induced mitophagy (Chao et al., 2019). Similarly, a
recent study identified another IMM protein, PHB2, as a
mitophagy receptor that can bind to LC3 upon mitochondrial
depolarization and protease-dependent OMM rupture (Wei
et al., 2017). This process is required for Parkin-induced
mitophagy in mammalian cells and for paternal mitochondria
clearance after embryonic fertilization in C. elegans.

Other mitophagy pathways

Other mitophagy pathways have been reported but remain
less well understood. For example, Sentelle et al. reported a
new receptor function of ceramide in mitophagy. Ceramide
stress triggered lethal mitophagy by anchoring LC3B-II
autophagosomes to mitochondrial membranes upon Drp1-
mediated mitochondrial fission (Sentelle et al., 2012).

Taken together, distinct signaling pathways have been
revealed to mediate or regulate the mitophagy processes
in mammals. Although the mitophagy pathways have been
intensively studied in vitro for the clearance of depolarized
mitochondria, further studies are still needed to validate the
in vivo roles of these mitophagy-relevant pathways using
recently established mitophagy reporter mouse models (Sun
et al., 2015; Williams et al., 2017). Further, little is known about
the machinery for basal mitophagy, especially in vivo. This also
needs to be investigated.

Neuronal mitophagy in the brain

The brain is the organ with the highest energy demand in
the body and accounts for 20% of the total oxygen consumption
to supply ATP for intensive neuronal activities. As postmitotic
cells, neurons are highly dependent on mitochondrial quality
control and network homeostasis. Maintaining a pool of
healthy mitochondria through mitophagy-mediated removal of
damaged mitochondria is particularly important for neuronal
function and survival. Using the in vivo mitophagy reporter mt-
Keima transgenic mice, researchers found significant variations
in basal mitophagy activity in neurons of different brain regions.
The dentate gyrus, lateral ventricle and Purkinje fiber cells
showed a relatively higher level of neuronal basal mitophagy,
whereas a lower level was reported in the striatum, cortex and
substantia nigra (Sun et al., 2015). Mitophagy defects in neurons
are associated with aging and neurodegeneration, which has
been extensively studied and reviewed elsewhere (Martinez-
Vicente, 2017; Doxaki and Palikaras, 2020). However, the roles
and regulation of mitophagy in glial cells, such as microglia in
particular, are less studied but are increasingly gaining attention.
In this article, we will focus on the role of microglial mitophagy
in the brain during health and diseases, and the potential
strategies for microglial mitophagy modulation will also be
summarized and discussed.

Mitophagy and innate immunity

Mitochondria are not only essential for energy supply
in cells but also regulate the innate immune response to
infectious and sterile insults. The initiation of innate immunity
may be mitochondria-independent; however, mitochondria can
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serve as a signaling platform to facilitate immune responses,
as summarized in Figure 2. Several molecules, such as
ATP, N-formyl peptides or mitochondrial DNA (mtDNA),
mitochondrial ROS (mtROS) and cardiolipin, can be released
from compromised mitochondria under stressful conditions.
They act as damage-associated molecular patterns (DAMPs) and
can be sensed by pattern recognition receptors (PRRs), which
are highly expressed by innate immune cells. These events often
activate immune cells and result in the release of cytokines
or chemokines, yielding inflammatory responses. For example,
mtROS and cardiolipin were reported to activate the NLRP3
inflammasome and IL-1β secretion (Tschopp and Schroder,
2010; Shimada et al., 2012). mtDNA and mtROS also trigger
mitochondrial antiviral signaling (MAVS) and the cGAS-STING
pathway, which drives the production of type I interferons and
other cytokines, resulting in a strong inflammation (Seth et al.,
2005; Liu et al., 2015).

Mitophagy enhancement via genetic approaches or small
molecules was shown to relieve mtROS accumulation and
mtDNA release and, more importantly, inhibit the secretion of
inflammatory factors in vitro and in vivo (Suen et al., 2010; Sliter
et al., 2018; Fang et al., 2019b; Qiu et al., 2022). Conversely,
autophagy-deficient macrophages showed an accumulation of
defective mitochondria, accompanied by NLRP3 activation and
IL-1β secretion (Saitoh et al., 2008; Nakahira et al., 2011).
Remarkably, mitophagy is also modulated by inflammation.
NLRP3 and AIM2 inflammasome activation was reported
to cause caspase-1-dependent mitochondrial impairment and
mitophagy blockade in bone marrow-derived macrophages
(BMDMs) (Yu et al., 2014). Interestingly, activation of the
classic proinflammatory transcription factor NF-κB resulted
in increased expressions of p62/SQSTM1, which is recruited
to damaged mitochondria and responsible for the mitophagy
process. This NF-κB-p62-mitophagy pathway prevented the
accumulation of damaged mitochondria and excessive IL-
1β-mediated inflammation in LPS-stimulated macrophages,
orchestrating a self-limiting response and favoring tissue repair
(Zhong et al., 2016). Mitophagy also affects the phagocytosis
of macrophages. These findings strongly suggest a complicated
interaction between mitochondria and innate immunity in
macrophages. Damaged mitochondria may function as signaling
platforms in initiating innate immune responses. Conversely,
inflammation has a differential effect on mitophagy-triggered
clearance of dysfunctional mitochondria, which may be
context dependent.

Mitochondrial homeostasis and
microglia

Microglia are tissue-resident macrophages constituting 5–
10% of cells in the central nervous system (CNS). They serve as
the first line of immune defense. Microglia originate from early

erythromyeloid precursor cells in the yolk sac and migrate into
the brain at embryonic day 9.5. However, they exhibit unique
features that are distinct from BMDMs. Microglia have a longer
half-life that reaches approximately 15 months in mice (Fuger
et al., 2017). They persist and self-renew in the CNS throughout
the life. Recent studies have revealed a robust capacity for
microglial repopulation in microglia-depleted brain regions
(Huang et al., 2018). Hence, microglia share the same origin as
peripheral macrophages but have unique features different from
their sibling cells.

As resident innate immune cells, microglia survey and
maintain the homeostasis of the CNS with rapid process
extension and retraction. They act as sensors and rapidly
respond to various pathological stimuli. Once activated,
ramified microglia transform into amoeboid morphology with
enlarged soma, shorter and less branched processes, and also
release a large number of cytokines/chemokines (Ghosh et al.,
2018). The highly dynamic nature of microglia determines
this population of cells in high energy demand in both
physiological and pathological situations. Mitochondria are
energy sources and metabolic centers in cells. Homeostasis
of the mitochondrial network structure, which is determined
by a balance of fission and fusion, greatly affects cellular
function and survival. Metabolic reprogramming and regulation
of gene expression by histone lactylation, a posttranslational
modification by the metabolic byproduct lactate, are associated
with microglia/macrophage polarization and intimately linked
to several inflammation-related diseases (Baik et al., 2019;
Zhang et al., 2019). Excessive mtROS generation was found in
hyperactivated primary microglia and BV-2 cells (Ye et al., 2017)
and was demonstrated to induce microglial polarization toward
the M1 proinflammatory status (Zhou et al., 2018). Dysregulated
mitochondrial fission was observed in inflamed microglia (Park
et al., 2016; Katoh et al., 2017), whereas mitochondrial division
inhibitor 1 (mdivi-1) and dynamin-related protein 1 (Drp1)
knockdown inhibited mitochondrial fission, mtROS generation
and proinflammatory mediators in LPS-stimulated microglia
(Park et al., 2013). The natural compound atractylenolide
III was reported to suppress neuroinflammation and protect
against brain ischemia by inhibiting JAK2/STAT3-dependent
mitochondrial fission in microglia (Zhou et al., 2019). In
summary, disruption of mitochondrial homeostasis contributes
to microglia-mediated inflammation and vice versa.

Microglial mitophagy and
neurological disorders

Microglia-mediated inflammation is one of the pathogenic
factors in neurodegeneration and other neurological disorders.
Environmental and genetic factor-associated damage or
homeostatic disruption of mitochondria is also linked to
these diseases. As an effective avenue to remove damaged
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FIGURE 2

Mitochondria involvement in innate immune responses in macrophage/microglia. Damage-associated molecular patterns (DAMPs) and
pathogen-associated molecular patterns (PAMPs) can be recognized by pattern recognition receptors (PRRs) to cause mitochondrial damage,
which leads to increased mitochondrial reactive oxygen species (mtROS) formation, mitochondrial DNA (mtDNA) release, and decreased ATP
generation. Cyclic guanosine monophosphate-adenylate synthetase (cGAS) is a cellular DNA sensor that primarily recognizes double-stranded
DNA, i.e., mtDNA, using ATP and GTP as substrates to produce the second messenger cGAMP, which then binds to and trigger stimulator of
interferon genes (STING) oligomerization. Activated STING recruits TBK1 and activate downstream IRF3, IRF7, or nuclear factor-κB (NF-κB),
ultimately inducing the expressions of type-I interferons (IFNs) and proinflammatory cytokines. Also, mtDNA and mtROS are canonical
activators of the NLRP3 inflammasome and IL-1β secretion. Additionally, mitochondrial antiviral signaling (MAVS) protein is a RIG-like receptor
(RLR) localized on the OMM. mtROS accumulation potentiates the MAVS downstream cascade, which also contributes to activations of NF-κB,
IRF3, and IRF7, leading to a pronounced generation of cytokines and IFNs. Collectively, damaged mitochondria serve as hubs of multiple
signaling cascades in facilitating innate immune responses in macrophages and microglia.

mitochondria, mitophagy plays a critical role in regulating
inflammation, phagocytosis and other processes in microglia.
However, the role of microglial mitophagy in health and disease
is less reviewed.

Alzheimer’s disease

AD is the most common neurodegenerative disease and is
characterized by progressive cognitive impairment and unique
pathological changes, including extracellular amyloid β (Aβ)
plaques and neurofibrillary tangles of hyperphosphorylated tau
protein. To date, the pathogenesis of AD remains elusive.

The accumulation of impaired mitochondria is a hallmark
of AD brains in patients and mouse models (Kerr et al., 2017).
There are sophisticated connections between mitochondrial
impairment and typical AD pathological changes. The
expression of several mitochondrial dynamics-related
proteins, including Drp1, Fis1, Mfn1, Mfn2, and OPA1,
was abnormally changed in the brains of AD patients
(Manczak et al., 2011). Aβ can disrupt the homeostasis
of the mitochondrial structure and network, resulting in
abnormal mitochondrial fission and damage (Wang et al.,
2009). Tau hyperphosphorylation and tangle formation
impairs the axonal transport of mitochondria and lead to
axonal degeneration (Shahpasand et al., 2012). Furthermore,
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mitochondrial dysfunction contributes to AD pathology,
which is well summarized and reviewed (Chakravorty et al.,
2019). Therefore, it is proposed that promoting the clearance
of defective mitochondria may become a potential approach
for AD therapy. This hypothesis is supported by Khandelwal
et al. (2011) study reporting that lentivirus-mediated Parkin
overexpression enhanced mitophagy and reduced Aβ in 3XTg-
AD mice. Consistently, mitophagy deficits were observed in
AD-induced pluripotent stem cell (iPSC)-derived neurons,
several transgenic animal models and patient brains of AD
(Fang et al., 2019b). The researchers found a 60% decrease in
mitophagy, coinciding with more damaged mitochondria, in
microglia from the hippocampus of AD mice compared to
WT mice. These changes were alleviated by the treatments
with two screened mitophagy inducers, urolithin A (UA) and
actinonin (AC). Increased microglial engulfment of Aβ plaques
was observed following AC and UA treatment, indicating
that mitophagy induction enhanced the efficiency of Aβ

plaque phagocytosis by microglia, although the mechanisms
remain unclear. Moreover, UA and AC consistently reduced
the proinflammatory cytokines IL-6 and TNF-α, as well
as NLRP3 inflammasome activation, and UA produced an
additional increase in the anti-inflammatory cytokine IL-
10 level in the hippocampal tissues of transgenic APP/PS1
mice. These effects were verified in isolated microglia,
confirming that UA-modulated inflammatory response was
mitophagy-dependent because Pink1 depletion eliminated the
UA-induced inhibition of TNF-α. In the study, Fang et al.
demonstrated that restoration of mitophagy by UA, AC, or
NAD+ supplementation mitigated Aβ and tau pathologies and
reserved memory impairment in both transgenic tau nematodes
and AD mouse model.

Recently, an unbiased proteomic study reported that
orally administered melatonin for 1 month obviously affected
the protein expression patterns in 5 × FAD mice, with less
effect in WT mice. Bioinformatic and biochemical studies
revealed that melatonin treatment ameliorated mitophagy
deficits, microglial activation and other AD pathological
and cognitive changes in 5 × FAD mice, all of which
were reversed by chloroquine cotreatment. The findings
implicate that mitophagy enhancement, at least in part,
contributes to the neuroprotection of melatonin treatment
in these AD mice (Chen et al., 2021). Nevertheless, the
cellular roles of melatonin’s protective functions, either
neuron- or glia-derived or even both, warrant further
study, because melatonin receptors are also enriched in
microglia and responsible for its anti-inflammatory properties
(Gu et al., 2021).

In summary, microglial mitophagy defects are implicated
in AD pathogenesis, in addition to neuronal mitophagy
impairment. Enhancement of microglial mitophagy not
only helps to resolve neuroinflammation but also improves
phagocytosis and clearance of Aβ plaques. Further studies are

required to identify the pathogenic factors responsible for the
mitophagy deficits in microglia and clarify whether it is merely
a consequence of other pathologic events in AD.

Parkinson’s disease

Parkinson’s disease (PD) is the most common
neurodegenerative movement disorder, pathologically
characterized by dopaminergic neuron (DA) losses in the
midbrain and α-synuclein-enriched Lewy body formation. Its
etiology is still unknown and is assumed to be associated with
genetic and environmental factors, as well as aging (Schapira
et al., 2017). Mitochondrial dysfunction is implicated as a
pivotal pathogenic factor in both familial and sporadic PD
(Kalia and Lang, 2015).

Early studies found a dramatic decrease in complex I
activity in the substantia nigra homogenate of PD patients
compared with healthy controls (Schapira et al., 1990).
MPTP, a byproduct of synthetic heroin that elicits PD-
like symptoms in heroin abusers and a commonly used
neurotoxin in remodeling PD, also inhibits the activity of
complex I in the mitochondrial respiratory chain (Desai et al.,
1996). Several changes related to mitochondrial dysfunction,
such as decreased ATP levels, abnormal mtDNA release,
mtROS accumulation, as well as altered mitochondrial
structure and dynamics, have been reported in PD animal
and cellular models (Chu et al., 2013; Rani and Mondal,
2020). More importantly, several PD-related proteins, such
as Parkin, SNCA, DJ-1, LRRK2, UCHL-1, PINK1, vacuolar
protein sorting 35 (VPS35), and HtrA2, participate in the
regulation of mitochondrial homeostasis, and their mutants
lead to mitochondrial impairment. As mentioned above,
PINK1 and parkin function within the same mitophagy
pathway, and play critical roles in the removal of damaged
mitochondria. Strikingly, PINK1- and parkin-knockout
mice did not show robust signs of PD (Perez and Palmiter,
2005; Kitada et al., 2007). Using mito-QC as an in vivo
mitophagy reporter, a recent study demonstrated that basal
mitophagy in mouse tissues with high metabolic demand such
as microglia and PD-relevant mesencephalic DA neurons,
occurred independently of PINK1, as loss of Pink1 did
not have any obvious effect on basal mitophagy in these
cells/tissues (McWilliams et al., 2018). This indicates that other
yet-to-be identified pathways may orchestrate mammalian
mitochondrial integrity in a context-dependent fashion.
Consistently, an article published in Nature 2018 reported a
strong inflammatory phenotype in both PINK1- and parkin-
deficient mice following exhaustive exercise and in Parkin−/−;
mutator mice with accumulated mutations in mtDNA (Sliter
et al., 2018). This finding supports a role for PINK1/Parkin-
mediated mitophagy in restraining innate immunity, especially
when challenged.
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Several natural compounds were reported to
enhance microglial mitophagy and suppress PD-related
neuroinflammation. For instance, andrographolide inhibited
NLRP3 inflammasome activation through triggering parkin-
mediated mitophagy in microglia and in in vivo models
of PD (Ahmed et al., 2021). Quercetin (Qu), a health
supplement exerting anti-inflammatory and antioxidant
effects, was shown to prevent mtROS accumulation and
attenuate NLRP3 inflammasome activation and IL-1β release
by promoting mitophagy in microglia, which ultimately
alleviated the loss of DA neurons in PD mice (Han et al.,
2021b). Qiu et al. (2022) found that UA mitigated NLRP3
inflammasome activation in LPS-stimulated BV2 cells
and an MPTP-induced PD mouse model at least partly
through the enhancement of microglial mitophagy, as
disruption of microglial mitophagy with pharmacologic
or genetic approaches impaired the neuroprotective
effects of UA in PD.

Ischemic stroke

Ischemic stroke is one of the most common health- and
life-threatening diseases worldwide and is mainly caused by
stenosis or obstruction of cerebral blood vessels. Mitophagy
deficits are closely linked to the pathogenesis of ischemic
stroke. Yuan et al. (2017) found that BNIP3L/NIX-mediated
mitophagy, independent of PARK2 (Parkin-encoding gene),
protected against cerebral ischemia. BNIP3L knockout impaired
mitophagy and aggravated cerebral ischemia−reperfusion
injury in mice, which was rescued by BNIP3L overexpression.
Moreover, proteasome-mediated degradation of BNIP3L/NIX
led to mitophagy deficiency in ischemic brains of mice
(Wu et al., 2021). Another group clarified the role of
microglial mitophagy during cerebral ischemic stroke
(Han et al., 2021a). They found that microglial PGC-
1α (a master coregulator of mitochondrial biogenesis)
expression was rapidly increased in patients with ischemic
stroke and middle cerebral artery occlusion (MCAO)
mice, coinciding with an immediate response of microglial
activation and inflammation after stroke. Microglia-
specific overexpression of PGC-1α promoted mitophagy
activity in microglia and ameliorated the inflammatory
response and neurological deficits caused by ischemic
injury in mice. Pharmacological or genetic knockdown
of Ulk1 blunted macroautophagy and mitophagy and
abolished the neuroprotection elicited by microglial PGC-
1α overexpression. Therefore, microglial mitophagy may be
a promising therapeutic target for acute ischemic stroke.
Nevertheless, microglia may produce diverse effects in the
acute and chronic stages of ischemic stroke. The relevance
of microglial mitophagy in tissue repair after stroke still
needs to be explored.

Other neurological disorders

Protein aggregate formation is a common characteristic of
many neurodegenerative diseases. Mounting evidence suggests
that impairment of the autophagy−lysosome pathway and
selective mitophagy also serve as the common mechanism
for these disorders, including amyotrophic lateral sclerosis
(ALS) and Huntington’s disease (HD) (Martinez-Vicente et al.,
2010; Sun et al., 2015; Moore and Holzbaur, 2016). However,
current studies concentrate on the regulation of mitophagy
in neuronal function and survival. For instance, the ALS-
associated protein TDP-43 was reported to interact with the
mitophagy receptor PHB2 and mitofusin 2 (MFN2) (Davis et al.,
2018). ALS-linked mutations in TBK1 or OPTN can interfere
with mitophagy and ultimately lead to neurodegeneration
(Moore and Holzbaur, 2016). Similarly, mutations in Huntingtin
(HTT) gene produced an inhibitory effect on mitophagy,
resulting in an accumulation of damaged mitochondria and
oxidative stress (Franco-Iborra et al., 2021). This was supported
by the findings that morphologically abnormal mitochondria
were found in neurons with mitophagy defects in HD flies
and striatal cells of HdhQ111 knock-in mice, which could be
counteracted by PINK1 overexpression (Khalil et al., 2015). To
date, there is little evidence reporting the role of microglial
mitophagy in ALS or HD.

In addition to neurodegeneration, microglial mitophagy is
also linked to other neurological disorders. HIV-1-associated
neurocognitive disorders (HANDs) constitute great challenges
for human immunodeficiency virus-1 (HIV-1)-infected
individuals, although the advent of combination antiretroviral
therapy (cART) has dramatically increased their life expectancy.
The cytotoxic HIV-1 protein, transactivator of transcription
(TAT), is found to persist in the CNS and activate glial cells
despite cART. Thangaraj et al. (2018) reported that HIV-1 TAT
activated microglia and triggered neuroinflammatory responses
by inducing the accumulation of damaged mitochondria due
to mitophagy impairment. Similarly, this group demonstrated
that a physiologically relevant dose of cocaine (10 µM) resulted
in mitochondrial dysfunction and mitophagy deficiency in
microglia, which contributed to microglial activation and
proinflammatory cytokine generation (Thangaraj et al., 2020).
Thus, manipulations that alleviate mitochondrial dysfunction
or mitophagy defects may represent a therapeutic approach for
these neurological disorders.

Pharmacological regulation of
mitophagy

At present, several natural compounds or drugs have been
found to induce mitophagy in different tissues or cells. Table 1
summarizes the mechanisms and outcomes of these mitophagy-
inducing compounds.
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TABLE 1 Mechanisms and outcomes of mitophagy-inducing compounds.

Compounds Mechanisms Outcomes References

NAD+ precursor (NR, NMN, NAM)

SIRT1-dependent deacetylation of Atg5,
Atg7 and Atg8

Nutrient stress (−)
Damaged mitochondria (−)

Lee et al. (2008)

DCT-1(NIX), PINK1, PDR1(Parkin)
and p-ULK1 (+)

Cognitive decline (−)
Prolong the Lifespan

Fang et al. (2019a,b)

Nucleocytoplasmic transport of LC3 (+) Autophagosome formation (+) Huang et al. (2015)

Urolithin A

PINK-1, parkin, OPTN, p-Ulk1 (555),
Beclin-1 and AMBRA1 (+)

Inflammation (−)
Cognitive decline (−)
Aβ/Tau pathology (−)

Fang et al. (2019b)

Akt/mTOR signaling (−) Inflammation (−) Boakye et al. (2018)

Transcription factor EB activity (+) Mitochondrial stress (−) Tan et al. (2019)

SIRT1-mediated deacetylation (+) Inflammation (−)
Aβ pathology (−)

Velagapudi et al.
(2019)

Spermidine

p-AMPK, Beclin-1 and LC3 (+) Delay aging
Inflammation (−)
Cognitive decline (−)

Xu et al. (2020)

PINK1/Parkin-dependent mitophagy Cognitive decline (−)
Health and lifespan (+)
Locomotor capacity (+)

Yang et al. (2020)

Deferiprone

PINK1/Parkin-independent mitophagy Damaged mitochondria (−) Allen et al. (2013)

Mitochondrial ferritin (+) Hepatocellular carcinoma (−) Hara et al. (2020)

Metformin
PINK1/Parkin-mediated mitophagy Osteoarthritis-like inflammation (−)

Liver injury (−)
Song et al. (2016),
Wang et al. (2019)

(−), inhibition or decrease; (+), promotion or increase.

NAD+

NAD+, also known as coenzyme I, is a metabolic
intermediate in the respiratory electron transport chain
and plays an essential role in maintaining mitochondrial
homeostasis and genome stability. A growing number of studies
have reported a decrease in intracellular NAD+ levels during
aging and age-related diseases (Verdin, 2015). NAD+ can
promote healthy aging by regulating mitochondrial biogenesis
and mitophagy (Fang et al., 2014; Vannini et al., 2019). NAD+

precursors [(NR, nicotinamide nucleotide (NMN, nicotinamide
mononucleotide) and (NAM, nicotinamide)] were shown to
prolong the lifespan in worms, Drosophila, and rodent models
(Canto et al., 2015; Yaku et al., 2018; Yoshino et al., 2018;
Lautrup et al., 2019), indicating a conserved antiaging function
of NAD+ across different species.

NAD+ levels were decreased in early onset familial AD
patients and Aβ-stimulated rat cortical neurons. Enhancement
of NAD+ was neuroprotective against AD pathology and
cognitive deficits. In AD amyloidosis models, supplementation
with the NAD+ precursors NMN and NR improved cognitive

impairment and reduced Aβ plaque formation in both
nematode and mouse AD models (Gong et al., 2013; Sorrentino
et al., 2017; Fang et al., 2019b). NAD+ also inhibited
inflammasome activation and tau aggregation and rescued
cognitive decline in 3 × Tg-AD mice (Hou et al., 2018). All
these effects are dependent on the regulation of mitophagy and
mitochondrial function by NAD+.

Microglial activation and neuroinflammation participate
in neurodegeneration. However, it remains unclear whether
NAD+ exerts antiaging or neuroprotective effects via a direct
effect on neurons or an indirect impact on microglia. Most
studies have reported that NAD+ promotes mitophagy in
neurons and prevents neuronal death (Fang et al., 2016;
Aman et al., 2020). Mitophagy disruption occurs not only in
neurons but also in microglia (Hou et al., 2021). Treatment
with the NAD+ precursor NMN/NR was shown to inhibit
microglia-induced neuroinflammation and improve cognitive
function in disease models other than AD (Zhao et al., 2021).
However, it remains to be answered whether neuronal and
microglial mitophagy contribute equally to the neuroprotective
actions of NAD+.
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How does NAD+ induce mitophagy? As a cofactor,
NAD+ serves as the substrate of various enzymes, including
sirtuins/SIRTs, PARPs/poly (ADP-ribose polymerases) and
cyclic ADP-ribose synthases (CD38, BST1/CD157). Therefore,
NAD+ supplementation can trigger autophagy or mitophagy
by affecting different signaling pathways. For example, SIRT1
utilizes NAD+ to deacetylate autophagy-related proteins, and
loss of SIRT1 inhibits autophagy (Lee et al., 2008; Huang et al.,
2015). NAD+/SIRT1 pathway activation restored mitophagy by
upregulating DCT-1 (the nematode BNIP3 and BNIP3L/NIX
homolog) and activating Ulk1 (Fang et al., 2019a,b). The
membrane-bound NADase CD38, which hydrolyzes NAD+ to
nicotinamide and cyclic ADP-ribose, plays a crucial role in
autophagosome fusion with lysosomes (Xiong et al., 2013).
Additionally, the PARP family can bind to the circulating
ADP-ribose synthase CD38 and result in NAD+ depletion,
thereby limiting SIRT1 activity and inhibiting mitophagy (Aman
et al., 2020). Overall, NAD+ can regulate mitophagy through
multiple pathways. The presence of natural NAD+ precursors
and their safety and efficacy in clinical trials make them potential
candidates for mitophagy targeting. However, it is unmet to gain
an in-depth understanding of NAD+ precursor treatment on
cognitive functions for antiaging and neuroprotection.

Urolithin A

UA is a natural metabolite produced by gut flora from
ellagitannins in pomegranate fruits, nuts and berries. It
induced mitophagy in C. elegans, mammalian cells and rodents
(Ryu et al., 2016). UA and AC were shown to relieve Aβ

and tau pathologies by enhancing neuronal mitophagy and
reversing memory loss in transgenic tau nematodes and
3 × TgAD mice (Fang et al., 2019b). Increased engulfment
of Aβ plaques by microglia was observed in UA- and AC-
treated APP/PS1 mice (Fang et al., 2019b). This finding
coincided with the decrease in proinflammatory cytokines in
the isolated microglia from the hippocampus of UA-treated AD
mice. Consistently, another study reported that UA protected
against DA neuron degeneration and NLRP3 inflammasome-
related neuroinflammation via the enhancement of microglial
mitophagy in an MPTP-induced PD mouse model (Qiu et al.,
2022). More importantly, a first-in-human clinical trial showed
that UA treatment, either as a single dose or as multiple doses at
500 and 1,000 mg for 4 weeks, modulated plasma acylcarnitine
and skeletal muscle mitochondrial gene expression, implicating
a favorable safety profile of the UA regimen for the improvement
of muscle strength and physical performance in elderly
individuals. This represents a translational potential of UA in
helping control mitochondrial dysfunction-related diseases and
aging (Andreux et al., 2019).

Fang et al. (2019b) reported that UA induced mitophagy by
upregulating a series of mitophagy-related proteins, including

PINK-1, parkin, OPTN, p-Ulk1 (555), Beclin-1, Bcl2L13, and
AMBRA1. In addition, Boakye et al. (2018) reported that UA
enhanced the autophagic flux by inhibiting Akt/mTOR signaling
and played an anti-inflammatory role in LPS-stimulated
macrophages. The pomegranate extract, a UA precursor, was
shown to facilitate mitophagy by modulating transcription
factor EB (TFEB) activity in stressed SH-SY5Y cells (Tan
et al., 2019). A SIRT-1-dependent autophagy induction was
also involved in UA-elicited neuroprotection in brain cells
(Velagapudi et al., 2019). However, the exact signaling cascade
for UA-induced mitophagy in microglia is poorly understood,
and whether mitophagy enhancement is responsible for its anti-
neuroinflammatory functions also warrants further study.

Spermidine

Spermidine is a natural polyamine present in all
living organisms and a variety of foods, including mature
cheeses, beans, and cereals. Spermidine has antiaging, anti-
inflammatory, and neuroprotective properties. Remarkably,
intracellular spermidine levels decline with age (Eisenberg et al.,
2009). Supplementation with spermidine markedly extended the
lifespan of yeast, flies and worms via the alteration of chromatin
acetylation status and upregulation of autophagy-related genes.
A recent study demonstrated that spermidine had an antiaging
effect in d-galactose (d-Gal)-treated mouse neuroblastoma
(N2a) cells by improving autophagy and mitochondrial genome
stability (Jing et al., 2018). In addition, spermidine inhibited
memory impairment in AD worms and improved motor
performance in a PD worm model via PINK1-PDR1 (the
nematode PRKN)-dependent mitophagy (Yang et al., 2020), and
also showed benefits on cognitive function in animal models.
However, the negative results of a clinical trial for spermidine
against cognitive decline in older population were recently
published (Schwarz et al., 2022). Regulation of AMPK/mTOR
signaling was shown to be responsible for spermidine and
spermine -induced mitophagy (Xu et al., 2020). To date, few
studies have explored the impact of spermidine on microglial
mitophagy. In fact, an anti-inflammatory effect of spermidine
was reported in LPS-stimulated BV2 microglial cells (Choi
and Park, 2012). However, whether this was attributable to
mitophagy regulation remains unknown.

Others

In recent years, other compounds have been reported to
modulate mitophagy. For instance, the iron chelator deferiprone
induced mitophagy through a PINK1/PARKIN-independent
pathway (Allen et al., 2013; Hara et al., 2020). Metformin,
an antidiabetic drug, also induced mitophagy independent of
glucose-lowering effect (Zheng et al., 2012; Song et al., 2016;
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Wang et al., 2019). Rapamycin and resveratrol prolonged the
lifespan of various organisms by triggering mitophagy (Ren
and Zhang, 2018; Li et al., 2020). Curcumin, a well-known
polyphenolic compound, was shown to protect against cerebral
ischemia−reperfusion injury by enhancing mitophagy and
preserving mitochondrial dynamics (de Oliveira et al., 2016;
Wang and Xu, 2020).

Remarkably, some proton carriers, such as CCCP, FCCP,
and DNP, which are widely used in cell biology research,
were shown to induce mitophagy in vitro. However, traditional
proton carriers are not specific for mitochondria and have
proton-promoting activity on other biological membranes
(Georgakopoulos et al., 2017), which often results in high
toxicity and a narrow therapeutic dose range. Thus, the
translational potential in clinical use is limited. Moreover,
excess mitochondria uncoupling in neurons may cause ATP
decline and even neuronal cell death (Childress et al., 2018).
Hence, novel microglia-specific mitochondrial uncouplers can
be developed to induce mitophagy and alleviate mitochondrial
dysfunction- or neuroinflammation-related disorders.

Interestingly, dietary or caloric restriction appears to be
an effective approach to improve mitochondrial turnover via
mitophagy in aging organisms (Choi et al., 2013; Weir et al.,
2017; Mooli et al., 2020). Physical exercise also represents a
natural means of triggering mitophagy (Drake et al., 2021). Yet,
it remains unknown whether microglial mitophagy is affected by
these lifestyle changes.

Summary and perspectives

The brain is an organ with a high energy demand, and
homeostasis maintenance of the mitochondrial network
is crucial for energy supply and brain function. Aberrant
accumulation of damaged mitochondria, along with mitophagy
defects, is a critical contributor to various neurological
disorders. Microglia, the brain resident innate immune cells,
participate in brain development and homeostasis maintenance
throughout life. Microglia-mediated neuroinflammation is
intimately linked to neurodegeneration and other neurological
disorders. A number of studies have demonstrated a beneficial
role of mitophagy in suppressing microglia-mediated
neuroinflammation by reducing mtROS generation and
inhibiting the NLRP3 inflammasome and cGAS/STING
pathway. A few studies have also revealed an impact of
mitophagy on the phagocytic ability of microglia, although
the underlying mechanism is unclear. Mitophagy-mediated
removal of dysfunctional mitochondria and improvement of
mitochondrial biogenesis and dynamics may be involved. All
in all, microglial mitophagy may become a promising target for
the treatment of aging and inflammation-related neurological
disorders. To date, limited approaches, based on pharmacologic
and non-pharmacologic interventions, have been reported to
enhance microglial mitophagy and thus exert neuroprotection

in vitro and in vivo. How to specifically enhance microglial
mitophagy but not induce overwhelming mitophagy or
autophagic death in neurons remains an open question. More
importantly, current studies reveal a role for mitophagy and
its regulatory factors in removing depolarized or damaged
mitochondria under stressful conditions. Relatively less is
known regarding the machinery of basal mitophagy in vivo.
Distinct basal and stress-evoked mitophagy pathways may
orchestrate mitochondrial clearance in a context-dependent
fashion. Whether basal mitophagy affects the physiological
function of microglia during brain development and the adult
stage also needs to be investigated. There is still a long way to go
for a comprehensive understanding in the role and regulation
of microglial mitophagy in the brains of both healthy and
diseased individuals.
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