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SUMMARY
Although previous studies suggest that amino acids (AAs) and microbiota-related metabolites (MRMs) are
associated with type 2 diabetes mellitus (T2DM), the results remain unclear among normoglycemic popula-
tions. We test 28 serum AAs and 22 MRMs in 3,414 subjects with incident diabetes and matched normogly-
cemic controls from the China Cardiometabolic Disease and Cancer Cohort (4C) Study. In fully adjusted
logistic regressionmodels, per SD increment of branched-chain AAs, aromatic AAs, asparagine, alanine, glu-
tamic acid, homoserine, 2-aminoadipic acid, histidine, methionine, and proline are positively associated with
incident T2DM. In the MRM panel, serum carnitines, N-acetyltryptophan, and uric acid are positively asso-
ciated with incident T2DM. Causal mediation analyses indicate 34 significant causal mediation linkages, with
88.2% through obesity and lipids. Variances explained in the serum metabolites are modestly limited in the
comprehensive catalog of risk factor–metabolite–diabetes associations. These findings reveal that system-
atic AAs andMRMs change profile before T2DM onset and support a potential role of metabolic alterations in
the pathogenesis of diabetes.
INTRODUCTION

Diabetes has become a major influence on global health and

economic burden, and also a main cause of death and disability
Cell Reports
This is an open access article under the CC BY-N
worldwide.1 Globally, the number of people with diabetes melli-

tus has quadrupled in the past 3 decades. Approximately 1 in

11 adults (463 million adults) worldwide had diabetes in 2019.

The International Diabetes Federation estimates that there will
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be 578 million adults with diabetes by 2030, and 700 million by

2045.2 China currently has the largest number of patients with

diabetes in the world, with 129.8 million (12.8%) adults with dia-

betes and 356.9 million (35.2%) with prediabetes in 2017.3

Health care cost for diabetes is a significant burden on the econ-

omy, as the total diabetes-related health cost reached 109 billion

international dollars in 2019.2

Screening and early prediction of hyperglycemia are particu-

larly important in the prevention and treatment of diabetes and

its complications.4,5 Advances in metabolomics allowing studies

of small molecules, metabolites, have opened a new research

venture for biomarker studies and precision medicine.6 The hu-

man blood metabolome provides a comprehensive readout of

human physiology obtained through assessment of hundreds

of small circulating molecules, which reflect the influences and

interactions of genetics, lifestyle, environment, medical treat-

ment, and microbial activity.6

A growing number of cross-sectional or prospective studies

have shown that amino acids (AAs) are likely to play an important

role in the development of type 2 diabetes mellitus (T2DM).7 In

2011, using the method of targeted liquid chromatography-tan-

dem mass spectrometry (LC-MS/MS), branched-chain amino

acids (BCAAs) and aromatic AAs (AAAs) were reported as pre-

dictors of the future development of T2DM in the Framingham

Offspring Study,8 and were later verified in other European9–11

and Chinese populations.12–14

Recent studies have highlighted the significance of the micro-

biome in human health and diseases. Changes in the metabolites

produced by microbiota, e.g., trimethlylamine oxide (TMAO), has

been implicated in diabetes but the results are conflicting.15–17

Diabetes has also been positively associated with several carni-

tine-relatedmetabolites,18 long chain acylcarnitines,19 tryptophan,

kynurenine-pathway metabolites (kynurenine, kynurenate, xan-

thurenate, and quinolinate), and indolelactate.20 On the other

hand, indolepropionatewas inversely associatedwithT2DMrisk.20

However, most of these studies were conducted in European

populations and very few studies on microbiota-related metabo-
2 Cell Reports Medicine 3, 100727, September 20, 2022
lites (MRMs) and risk of diabetes have been conducted in pro-

spective cohorts of Chinese populations. In addition, many of

the preceding studies were conducted amongmixed populations

with normal glucose regulation (NGR) and impaired glucose regu-

lation at baseline, which make it difficult to dissect whether the

metabolicchangesare thecauseor theconsequenceofearlydys-

glycemia. Furthermore, few metabolomic studies have detailed

information on modifiable clinical and risk factors to establish

actionable insights for the prevention andmanagement of T2DM.

To overcome the above limitations and to shed light on the

shared etiology and drivers of T2DM, using a nested case-con-

trol design, we tested 28 AA species and 22 MRM species in hu-

man serum using ultra performance liquid chromatography

coupled to tandem mass spectrometry (UPLC-MS/MS), which

confers accurate quantitation. We established a comprehensive

catalog of risk factor–metabolite–diabetes associations among

individuals with NGR from a nationwide prospective Chinese

cohort. We sought to characterize metabolites and metabolic

pathways that are most strongly associated with the onset of

T2DM and associations of the identified metabolic targets with

modifiable clinical and other risk factors.

RESULTS

Study population
We conducted a nested case-control study of 1,707 matched

case-control pairs within the China Cardiometabolic Disease

and Cancer Cohort (4C) Study, a nationwide, population-based,

prospective cohort study with up to 5 years of follow-up.5,21,22

During 2011–2012, 193,846 individuals (age >40 years) were

enrolled from local resident registration systems of 20 commu-

nities from various geographic regions in China. During a median

follow-up of 3.03 (interquartile range 2.87–3.24) years, 170,240

participants (87.8%) were followed up. Among 54,807 subjects

defined as NGR based on 75 g oral glucose tolerance tests

(OGTT) at baseline, 1,864 developed diabetes.5,21,22 After

excluding 157 individuals with missing serum samples, a final
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Figure 1. Flowchart of the nested case-control study

Cases (n = 1,707) were incident diabetes subjects with normal glucose regulation (NGR) at baseline and type 2 diabetes mellitus (T2DM) at follow-up. Propensity

score matching (PSM) matched controls (n = 1,707) were NGR at both baseline and follow-up. Targeted metabolomics based on liquid chromatography-mass

spectrometry (LC-MS) quantified 28 amino acids and 22 microbiota-related metabolites in baseline serum samples.
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number of 1,707 incident diabetes cases were included (Fig-

ure 1). The control group of 1,707 NGR individuals at baseline

was selected using propensity score matching (PSM) with a

logistic model that included age, gender, BMI, and fasting

plasma glucose (FPG).8,21,23 The study protocol was approved

by the Institutional Review Board of Ruijin Hospital affiliated to

the Shanghai Jiao Tong University School of Medicine. Informed

consent was obtained from each study participant.

Baseline characteristics
In this nested case-control study of 1,707 incident diabetes case

subjects and 1,707NGR individuals, 1,386 (40.6%)weremen. The

mean ± SD age of the whole study population was 57.56 ± 8.87

years (Table S1). In addition to age, gender, BMI, and FPG

matched under PSM, other baseline characteristics, including

smoking status, alcohol intake, physical activity, diet habit, and

education status, were also well-matched between case subjects

and control subjects. Case subjects showed higher levels of 2-h

post prandial glucose, triglycerides (TG), total cholesterol (TC),

aspartate aminotransferase (AST), alanine aminotransferase

(ALT), and Homeostatic Model Assessment for Insulin Resistance

(HOMA-IR) than control subjects. Family history of diabetes was

reported in 11.19%of cases and 6.74%of controls. No difference

was observed for low-density lipoprotein (LDL) cholesterol be-

tween the two groups. The baseline characteristics of the study

participants have previously been described in detail.21

Distribution of AAs and MRMs
Fasting serum samples collected at baseline were analyzed for

AAs and MRMs using the UPLC-MS/MS as described previ-

ously.24,25 A total of 28 AA species were investigated. The

greatest contributors were lysine, alanine, and glutamine,

whereas 2-aminoadipic acid, homoserine, and g-aminobutyric

acid were present in relatively low concentrations (Figure 2A).

Case subjects had higher levels of lysine, alanine, proline, valine,

tryptophan, glutamic acid, leucine, ornithine, tyrosine, phenylal-
anine, histidine, a-aminobutyric acid, isoleucine, aspartic acid,

methionine, 2-aminoadipic acid, and g-aminobutyric acid than

control subjects (all p < 0.05) (Figure 2A, Table S2).

In MRMs, uric acid comprised the greatest concentration, with

the median concentration of 398.01mmol/L for the entire study

population. The median concentration of plasma uric acid was

higher in the diabetes cases (414.62 mmol/L) than in the control

subjects (379.36 mmol/L, p < 0.001). The levels of carnitine C0,

choline, and TMAO were quite high, while the concentrations of

carnitine C5, carnitine C6, and N-acetyltryptophan were relatively

low among theMRMs.Cases showedsignificantly higher concen-

trations of carnitine C0, choline, carnitine C2, phenyl sulfate, ky-

nurenine, carnitine C3, carnitine C4, carnitine C8, carnitine C5,

carnitine C6, andN-acetyltryptophan, and lower levels of p-Cresol

sulfate, hippuric acid, indole-3-propionic acid, and cinnamoylgly-

cine compared with controls (all p < 0.05) (Figure 2B, Table S2).

Associations of metabolites with major clinical
parameters
Spearman correlation analysis revealed that baseline serum AAs

and MRMs were correlated with a range of biochemical mea-

surements and metabolic parameters (Figure 2C). For example,

BCAAs (leucine, isoleucine, and valine), AAAs (tryptophan,

phenylalanine, and tyrosine), acyl-carnitines (C0, C3, C4, and

C5), alanine, glutamic acid, lysine, 2-aminoadipic acid, cystine,

proline, and kynurenine were mostly positively associated with

insulin resistance (HOMA-IR), body composition (waist circum-

ference [WC], BMI, and waist-to-hip ratio [WHR]), liver function

(ALT, AST), blood pressure (diastolic blood pressure [DBP], sys-

tolic blood pressure [SBP]), and lipid metabolism (TC, TG, and

LDL), but inversely associated with high-density lipoprotein

(HDL). Arginine, aspartic acid, carnitine C6, carnitine C8, and

choline were positively associated with body composition, liver

function, blood pressure, and lipid metabolism (TC, TG,

LDL, and HDL). MRMs including indole-3-propionic acid,

p-cresol sulfate, hippuric acid, serotonin, cinnamoylglycine,
Cell Reports Medicine 3, 100727, September 20, 2022 3
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Figure 2. Serum amino acids and microbiota-related metabolites distribution among case subjects (n = 1,707) and control subjects (n =

1,707) and their correlation with clinical parameters

(A and B) Serum amino acid and microbiota-related metabolite levels in case and control groups. Results are shown as boxes denoting the interquartile range

between the first and third quartiles. The line within the boxes denotes the median. Paired Wilcoxon rank sum test, *p < 0.01, +p < 0.05.

(C) Spearman’s correlation analysis of the association of metabolites with the main clinical parameters at baseline. *p < 0.01, +p < 0.05. The color key represents

the regression coefficients of the independent variables.
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and phenylacetylglutamine were mainly negatively associated

with insulin resistance, body composition, liver function, and

TG, and positively associated with HDL, but carnitine C2, carni-

tine C8:1, TMAO, uric acid, and N-acetyltryptophan presented

opposite associations with these clinical characteristics.
4 Cell Reports Medicine 3, 100727, September 20, 2022
Association between metabolites and incident diabetes
The odds ratios (Ors) (95% confidence intervals [CIs]) per SD

increment of T2DM risk for each of the AAs and MRMs are pre-

sented in Tables 1 and 2. In multivariable-adjusted logistic

regression model including age, gender, BMI, smoking status,



Table 1. Association between amino acids per SD increment and risk of incident diabetes

Multivariable-adjusteda + Diet score adjusted +ALT, AST adjusted +2h-PG adjusted +HOMA-IR adjusted + Fully adjustedb

OR (95% CI) p value OR (95% CI) p value OR (95% CI) p value OR (95% CI) p value OR (95% CI) p value OR (95% CI) p value

Ala-Asp-Glu metabolism

Aspartic acid 1.02 (0.93–1.11) 0.7000 1.04 (0.95–1.14) 0.3663 1.02 (0.93–1.12) 0.6062 1 (0.91–1.09) 0.9465 1 (0.92–1.09) 0.9596 1.02 (0.92–1.14) 0.6607

Glutamine 1.03 (0.96–1.12) 0.3940 1.07 (0.98–1.17) 0.1379 1.05 (0.97–1.14) 0.2241 1.04 (0.96–1.12) 0.3767 1.04 (0.96–1.13) 0.3546 1.11 (1.01–1.23) 0.0376

g-Aminobutyric
acid

1.07 (0.99–1.15) 0.0808 1.09 (1.00–1.19) 0.0421 1.07 (0.99–1.16) 0.0834 1.07 (0.99–1.15) 0.0914 1.07 (0.99–1.15) 0.0927 1.10 (1.00–1.21) 0.0520

a-Aminobutyric
acid

1.08 (1.00–1.17) 0.0462 1.09 (1.00–1.2) 0.0481 1.08 (1.00–1.17) 0.0537 1.08 (1–1.17) 0.0454 1.07 (0.99–1.16) 0.1014 1.09 (0.99–1.21) 0.0857

Asparagine 1.08 (1.00–1.17) 0.0569 1.13 (1.03–1.24) 0.0071* 1.09 (1.00–1.18) 0.0387 1.08 (1–1.17) 0.0428 1.11 (1.02–1.2) 0.0172* 1.21 (1.09–1.34) 0.0002**

Alanine 1.25 (1.15–1.35) <0.0001** 1.24 (1.13–1.36) <0.0001** 1.22 (1.12–1.33) <0.0001** 1.24 (1.14–1.34) <0.0001** 1.22 (1.13–1.33) <0.0001** 1.2 (1.08–1.34) 0.0005**

Glutamic acid 1.3 (1.19–1.43) <0.0001** 1.34 (1.2–1.49) <0.0001** 1.3 (1.18–1.43) <0.0001** 1.28 (1.17–1.4) <0.0001** 1.3 (1.18–1.43) <0.0001** 1.33 (1.17–1.5) <0.0001**

Aromatic amino acid

Tryptophan 1.09 (1–1.19) 0.0536 1.1 (0.99–1.21) 0.0722 1.07 (0.98–1.17) 0.1560 1.09 (1–1.19) 0.0536 1.05 (0.97–1.15) 0.2458 1.07 (0.96–1.2) 0.1928

Phenylalanine 1.21 (1.11–1.31) <0.0001** 1.25 (1.14–1.37) <0.0001** 1.19 (1.09–1.3) 0.0001** 1.2 (1.11–1.31) <0.0001** 1.18 (1.08–1.29) 0.0002** 1.23 (1.1–1.36) 0.0002**

Tyrosine 1.23 (1.14–1.33) <0.0001** 1.22 (1.12–1.34) <0.0001** 1.22 (1.12–1.33) <0.0001** 1.22 (1.13–1.32) <0.0001** 1.22 (1.12–1.33) <0.0001** 1.24 (1.12–1.37) <0.0001**

Branch chain amino acid

Valine 1.22 (1.12–1.32) <0.0001** 1.2 (1.09–1.31) 0.0002** 1.20 (1.1–1.31) <0.0001** 1.22 (1.12–1.33) <0.0001** 1.19 (1.09–1.29) 0.0001** 1.18 (1.06–1.31) 0.0028**

Isoleucine 1.22 (1.12–1.33) <0.0001** 1.2 (1.08–1.32) 0.0004** 1.20 (1.09–1.32) 0.0001** 1.22 (1.12–1.33) <0.0001** 1.19 (1.09–1.31) 0.0001** 1.19 (1.07–1.33) 0.0020**

Leucine 1.26 (1.16–1.37) <0.0001** 1.27 (1.15–1.4) <0.0001** 1.24 (1.13–1.36) <0.0001** 1.26 (1.16–1.37) <0.0001** 1.22 (1.12–1.34) <0.0001** 1.24 (1.11–1.39) 0.0001**

Gly-Ser-Thr
metabolism

Glycine 0.97 (0.9–1.05) 0.4611 1.03 (0.94–1.12) 0.5862 0.97 (0.9–1.06) 0.5222 0.98 (0.91–1.06) 0.6432 0.99 (0.91–1.07) 0.7925 1.07 (0.97–1.19) 0.1859

Serine 0.99 (0.91–1.07) 0.7654 1.03 (0.94–1.13) 0.5271 1.00 (0.91–1.09) 0.9324 1 (0.92–1.08) 0.9339 1.01 (0.93–1.1) 0.8184 1.11 (0.99–1.23) 0.0647

Threonine 1.04 (0.96–1.12) 0.3547 1.05 (0.96–1.15) 0.3129 1.04 (0.95–1.13) 0.3884 1.05 (0.97–1.14) 0.2220 1.03 (0.95–1.12) 0.4090 1.08 (0.98–1.2) 0.1305

Homoserine 1.07 (0.99–1.15) 0.1050 1.1 (1.01–1.2) 0.0302 1.08 (0.99–1.17) 0.0824 1.07 (0.99–1.16) 0.0859 1.08 (0.99–1.17) 0.0722 1.16 (1.05–1.28) 0.0032**

His and lys
metabolism

Lysine 1.09 (1.01–1.19) 0.0309 1.11 (1.01–1.21) 0.0321 1.08 (0.99–1.18) 0.0657 1.09 (1.01–1.19) 0.0346 1.08 (0.99–1.18) 0.0687 1.09 (0.98–1.21) 0.1095

Histidine 1.14 (1.06–1.23) 0.0010** 1.18 (1.08–1.29) 0.0003** 1.15 (1.05–1.25) 0.0013** 1.14 (1.06–1.24) 0.0009** 1.15 (1.06–1.25) 0.0007** 1.23 (1.11–1.36) 0.0001**

2-Aminoadipic
acid

1.24 (1.14–1.35) <0.0001** 1.26 (1.15–1.39) <0.0001** 1.23 (1.13–1.35) <0.0001** 1.23 (1.13–1.34) <0.0001** 1.21 (1.11–1.32) <0.0001** 1.24 (1.1–1.38) 0.0002**

Cys and met metabolism

Cysteine 1.04 (0.96–1.13) 0.3237 1.05 (0.96–1.15) 0.2624 1.04 (0.96–1.13) 0.3305 1.05 (0.97–1.14) 0.2127 1.04 (0.96–1.13) 0.3772 1.09 (0.98–1.21) 0.1034

Cystine 1.06 (0.98–1.15) 0.1232 1.05 (0.97–1.15) 0.2454 1.04 (0.95–1.13) 0.4012 1.06 (0.98–1.15) 0.1364 1.07 (0.99–1.17) 0.0830 1.02 (0.93–1.13) 0.6489

Methionine 1.13 (1.04–1.22) 0.0035** 1.15 (1.05–1.26) 0.0030** 1.1 (1.01–1.2) 0.0218 1.13 (1.04–1.22) 0.0038** 1.11 (1.02–1.21) 0.0126* 1.14 (1.03–1.27) 0.0106*

Arg and pro metabolism

Arginine 0.96 (0.88–1.04) 0.2709 1.00 (0.91–1.09) 0.9374 0.95 (0.88–1.04) 0.2591 0.96 (0.89–1.04) 0.3213 0.93 (0.86–1.01) 0.0945 0.99 (0.89–1.10) 0.8373

4-Hydroxyproline 0.98 (0.91–1.06) 0.6621 1.00 (0.92–1.09) 0.9902 0.96 (0.88–1.04) 0.3209 0.99 (0.92–1.08) 0.8929 0.96 (0.89–1.04) 0.3537 0.99 (0.90–1.10) 0.8644

Citrulline 1.02 (0.94–1.1) 0.6090 1.05 (0.96–1.15) 0.2656 1.03 (0.95–1.12) 0.5053 1.04 (0.96–1.13) 0.2903 1.02 (0.94–1.11) 0.5769 1.11 (1.00–1.23) 0.0505

Ornithine 1.03 (0.95–1.11) 0.4551 1.03 (0.94–1.14) 0.5220 1.02 (0.94–1.11) 0.5794 1.03 (0.95–1.12) 0.4171 1.04 (0.96–1.13) 0.3212 1.04 (0.94–1.16) 0.4590

Proline 1.13 (1.05–1.22) 0.0015** 1.13 (1.04–1.23) 0.0054* 1.12 (1.04–1.22) 0.0050* 1.14 (1.05–1.23) 0.0012** 1.12 (1.03–1.21) 0.0061* 1.16 (1.05–1.28) 0.0037**

aAdjusted for age, gender, BMI, smoking status, alcohol intake, physical activity, education status, diabetes family history, systolic blood pressure, fasting blood glucose, triglycerides, low den-

sity lipoprotein cholesterol, and high density lipoprotein cholesterol.
bAdjustment of multivariable-adjusted model plus diet, alanine aminotransferase (ALT), aspartate aminotransferase (AST), 2-h postload plasma glucose (2h-PG), and Homeostatic Model Assess-

ment for Insulin Resistance (HOMA-IR). *False discovery rate (FDR) <0.05, **FDR <0.01.
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Table 2. Association between gut microbiota metabolites per SD increment and risk of incident diabetes

Multivariable-adjusteda + Diet Score adjusted +ALT, AST adjusted +2h-PG adjusted +HOMA-IR adjusted + Fully adjustedb

OR (95% CI) p value OR (95% CI) p value OR (95% CI) p value OR (95% CI) p value OR (95% CI) p value OR (95% CI) p value

Carnitine metabolism

Carnitine C0 1.1 (1.02–1.19) 0.0121* 1.16 (1.06–1.26) 0.0016** 1.09 (1.01–1.18) 0.0308 1.11 (1.02–1.19) 0.0100* 1.04 (0.96–1.12) 0.3836 1.08 (0.98–1.2) 0.1352

Carnitine C2 1.13 (1.04–1.23) 0.0028* 1.16 (1.05–1.27) 0.0022** 1.13 (1.04–1.24) 0.0056* 1.14 (1.05–1.24) 0.0024** 1.12 (1.03–1.22) 0.0076* 1.16 (1.04–1.29) 0.0061*

Carnitine C3 1.17 (1.07–1.27) 0.0002** 1.16 (1.05–1.27) 0.0022** 1.15 (1.06–1.26) 0.0012** 1.17 (1.08–1.27) 0.0002** 1.13 (1.04–1.23) 0.0049* 1.13 (1.01–1.25) 0.0286

Carnitine C4 1.07 (0.99–1.15) 0.0787 1.1 (1.01–1.2) 0.0281 1.06 (0.98–1.14) 0.1576 1.07 (0.99–1.15) 0.0802 1.03 (0.96–1.11) 0.4053 1.07 (0.97–1.17) 0.1988

Carnitine C5 1.14 (1.05–1.23) 0.0013** 1.17 (1.07–1.29) 0.0008** 1.12 (1.03–1.22) 0.0063* 1.13 (1.05–1.23) 0.0023** 1.12 (1.03–1.21) 0.0078* 1.14 (1.02–1.26) 0.0191

Carnitine C6 1.14 (1.06–1.23) 0.0003** 1.21 (1.11–1.32) <0.0001** 1.14 (1.06–1.24) 0.0009** 1.13 (1.04–1.21) 0.0020** 1.12 (1.04–1.21) 0.0026* 1.17 (1.05–1.29) 0.0031*

Carnitine C8 1.11 (1.03–1.2) 0.0054* 1.18 (1.08–1.29) 0.0002** 1.12 (1.03–1.21) 0.0064* 1.09 (1.01–1.18) 0.0200* 1.1 (1.02–1.19) 0.0165* 1.16 (1.05–1.28) 0.0040*

Carnitine C8:1 0.99 (0.9–1.08) 0.7604 1.06 (0.96–1.19) 0.2515 0.99 (0.9–1.09) 0.8103 0.98 (0.9–1.07) 0.6662 1.01 (0.92–1.12) 0.7959 1.1 (0.97–1.25) 0.1409

Choline 1.12 (1.02–1.23) 0.0151* 1.12 (1.01–1.24) 0.0361 1.12 (1.01–1.23) 0.0248 1.12 (1.02–1.23) 0.0144* 1.13 (1.02–1.24) 0.0152* 1.13 (1.01–1.27) 0.0409

TMAO 1.05 (0.97–1.14) 0.1987 1.07 (0.98–1.17) 0.1172 1.04 (0.96–1.13) 0.3118 1.06 (0.98–1.15) 0.1368 1.03 (0.95–1.12) 0.4135 1.08 (0.98–1.19) 0.1346

Gut amino acids metabolites

Indole-3-propionic
acid

0.9 (0.84–0.97) 0.0065* 0.93 (0.85–1.01) 0.0849 0.89 (0.83–0.97) 0.0044* 0.91 (0.84–0.98) 0.0105* 0.93 (0.86–1) 0.0439 0.92 (0.84–1.02) 0.1100

p-Cresol sulfate 0.92 (0.86–1) 0.0386 0.93 (0.85–1.01) 0.0950 0.95 (0.87–1.02) 0.1649 0.93 (0.86–1.00) 0.0601 0.91 (0.84–0.99) 0.0198* 0.97 (0.88–1.07) 0.5291

Hippuric acid 0.93 (0.86–1) 0.0515 0.94 (0.86–1.02) 0.1603 0.93 (0.86–1) 0.0574 0.93 (0.86–1.00) 0.0433 0.93 (0.86–1.01) 0.0868 0.95 (0.87–1.05) 0.3423

Serotonin 0.94 (0.87–1.01) 0.0803 0.94 (0.86–1.02) 0.1289 0.93 (0.86–1.01) 0.0929 0.94 (0.87–1.01) 0.0797 0.94 (0.87–1.02) 0.1528 0.92 (0.83–1.03) 0.1383

Cinnamoylglycine 0.94 (0.87–1.02) 0.1332 0.97 (0.89–1.05) 0.4500 0.95 (0.87–1.03) 0.1914 0.94 (0.87–1.01) 0.1097 0.96 (0.88–1.04) 0.2852 0.98 (0.89–1.09) 0.7333

Phenylacetylglutamine 0.97 (0.9–1.05) 0.4382 0.98 (0.9–1.07) 0.6482 0.98 (0.9–1.06) 0.5596 0.98 (0.91–1.06) 0.5739 0.96 (0.89–1.04) 0.2936 1.02 (0.92–1.13) 0.7287

Indoxyl-3-sulfate 0.98 (0.91–1.05) 0.5022 1.01 (0.93–1.1) 0.8278 0.98 (0.91–1.06) 0.5963 0.98 (0.91–1.06) 0.6644 0.95 (0.88–1.02) 0.1703 1.03 (0.93–1.14) 0.5776

Indole-3-acetic acid 1.02 (0.95–1.09) 0.6396 1.01 (0.93–1.1) 0.8220 1.01 (0.93–1.09) 0.8421 1.02 (0.95–1.10) 0.5500 1.01 (0.94–1.09) 0.7216 1.01 (0.92–1.11) 0.8880

Phenyl sulfate 1.05 (0.98–1.13) 0.1906 1.08 (0.99–1.17) 0.0918 1.05 (0.97–1.14) 0.2086 1.06 (0.98–1.14) 0.1361 1.04 (0.96–1.13) 0.2920 1.11 (1.01–1.23) 0.0298

Kynurenine 1.09 (1.01–1.18) 0.0274 1.10 (1.01–1.2) 0.0366 1.08 (0.99–1.17) 0.0798 1.10 (1.01–1.19) 0.0223* 1.08 (1–1.18) 0.0486 1.11 (1.00–1.23) 0.0476

N-acetyltryptophan 1.19 (1.1–1.28) <0.0001** 1.21 (1.1–1.33) <0.0001** 1.17 (1.08–1.28) 0.0002** 1.19 (1.09–1.28) <0.0001** 1.16 (1.07–1.26) 0.0003** 1.20 (1.08–1.33) 0.0005**

Uric acid 1.23 (1.13–1.34) <0.0001** 1.3 (1.17–1.44) <0.0001** 1.22 (1.11–1.33) <0.0001** 1.23 (1.13–1.34) <0.0001** 1.17 (1.07–1.28) 0.0007** 1.24 (1.1–1.39) 0.0004**

aAdjusted for age, gender, BMI, smoking status, alcohol intake, physical activity, education status, diabetes family history, systolic blood pressure, fasting blood glucose, triglycerides, low den-

sity lipoprotein cholesterol, high density lipoprotein cholesterol.
bAdjustment of multivariable-adjusted model plus diet, alanine aminotransferase (ALT), aspartate aminotransferase (AST), 2-h postload plasma glucose (2h-PG), and Homeostatic Model Assess-

ment for Insulin Resistance (HOMA-IR). *False discovery rate (FDR) <0.05, **FDR <0.01.
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drinking status, physical activity, education, family history of dia-

betes, SBP, FPG, HDL cholesterol, LDL cholesterol, TG, 11 AAs

were significantly associated with incident T2DM (p < 0.05, and

false discovery rate [FDR] <0.05). Briefly, BCAAs (leucine, isoleu-

cine and valine), AAAs (phenylalanine and tyrosine), alanine, glu-

tamic acid, histidine, 2-aminoadipic acid, methionine, and pro-

line were positively associated with T2DM, with ORs ranging

between 1.30 (glutamic acid; 95% CI 1.19–1.43) and 1.13 (pro-

line, 95% CI 1.05–1.22, methionine 95% CI 1.04–1.22). Sensi-

tivity analyses with adjustment for additional baseline risk fac-

tors, including diet score, liver enzyme levels, 2-h postload

plasma glucose (2h-PG), and HOMA-IR, showed similar results.

Interestingly, additional adjustment of diet score, per SD incre-

ment of asparagine was associated with 13% increased risk of

incident diabetes (OR: 1.13, 95% CI: 1.03–1.24, p = 0.0071,

FDR <0.05). In the fully adjusted model including all the con-

founding factors, including diet score, liver enzymes, 2h-PG,

and HOMA-IR, per SD increment of homoserine was associated

with increased risk of diabetes (OR: 1.16, 95%CI: 1.05–1.28, p =

0.0032, FDR <0.01). The ORs of other AAs did not show signifi-

cant change, and a total of 13 AAs were positively associated

with increased risk of diabetes (p < 0.05, FDR <0.05) (Table 1).

In the panel of MRMs, a total of 10 MRMswere positively asso-

ciated with diabetes risk, including six carnitines, choline, indole-

3-propionic acid, N-acetyltryptophan in tryptophan metabolism,

and uric acid in multivariable-adjusted model (p < 0.05, and

FDR <0.05) (Table 2). ORs ranged between 1.23 (uric acid, 95%

CI 1.13–1.34) and 1.10 (carnitine C0, 95% CI 1.02–1.19). We did

not observe significant association between TMAO and incident

T2DM (OR: 1.05, 95% CI: 0.97–1.14). In the fully adjusted model

including all the confounding factors, including diet score, liver en-

zymes, 2h-PG, and HOMA-IR, the association between carnitine

C0, carnitine C3, carnitine C5, choline, and indole-3-propionic

acid with risk of incident diabetes changed significantly. Five

MRMs remained positively associated with incident T2DM,

including serum carnitines C2, C6, C8, N-acetyltryptophan, and

uric acid. ORs ranged between 1.24 (uric acid, 95% CI 1.10–

1.39) and 1.16 (carnitine C2, 95% CI 1.04–1.29, carnitine C8,

95% CI 1.05–1.28).

In sensitivity analysis of random sampling, the OR trends of all

18 metabolites associated with incident T2DM were 100% veri-

fied in the 200 times of tests of randomly selecting 80% of all

samples as a subset for each time. Among them, the ORs of

15 metabolites were further verified to be significant (with

p < 0.05) in more than 90% of tests (Table S3). Results of

2-fold internal validation of the associations between the identi-

fied metabolites in the fully adjusted model and risk of T2DM are

shown in Tables S4–S5.

Based on the Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway database (www.genome.jp/kegg), we gener-

ated a plot of metabolic pathways in which the identified

metabolites are involved. The ORs (95% CI) per SD increment

of metabolites and T2DM risk for each of the 13 AAs and

5 MRMs that were significantly associated with T2DM from the

fully adjusted models are presented (Figure S1).

The risk for developing T2DM across AA and MRM quartiles

are calculated in fully adjusted logistic regression models, and

the risk estimates are similar. In Table S6, 17 of 28 AAs were
positively associated with risk of T2DM (p for trend <0.05,

and FDR <0.05). Higher levels of serum BCAAs and AAAs

were consistently associated with a higher risk of T2DM. The

ORQ4 vs Q1 (the highest quartile Q4 versus the reference Q1)

(95% CI) ranged between 2.35 (1.70–3.23) for phenylalanine,

and 1.50 (1.12–2.20) for tryptophan. Table S7 shows the associ-

ations between MRM quartiles and the risk of T2DM. Only five of

22MRMs remained positively associated with risk of T2DM, with

the ORQ4 vs Q1 (95% CI) ranging from 1.77 (1.29–2.40) for uric

acid and 1.39 (1.06–1.82) for phenyl sulfate (p < 0.05, and FDR

<0.05).

Causal mediation analysis between metabolites and
clinical risk factors contributed T2DM
We performed causal mediation analysis on the linkages be-

tween clinical risk factors (including obesity, lipid metabolism,

blood pressure, and liver enzyme), the 18metabolites that signif-

icantly associated with incident T2DM in the fully adjusted

model, and T2DM (Tables S8 and S9). In total, 34 significant

causal mediation linkages (pmediation <0.05 andMediated propor-

tion >10%) were observed, and mainly focused on mediation ef-

fect through obesity and lipids, with 88.2% (30 of 34) significant

causal relationships. In particular, TG mediated 12% and WHR

mediated 14% of the effects of 2-aminoadipic acid on T2DM

(both pmediation <0.001) (Figure 3A). For associations between

BCAAs and incident T2DM, TG mediated 12% to 18% (pmediation

<0.001) and WHR mediated 12% to 14% (pmediation = 0.002) of

the effect (Figure 3B). For the MRM-T2DM associations, dyslipi-

demia, especially TG (Mediated proportion = 13%, pmediation

<0.001) mediated the most effect of carnitine C2 on incident

T2DM, while WHR (Mediated proportion = 12%–13%, pmediation

<0.002) mediated the association of carnitine C6 and carnitine

C8 with T2DM (Figure 3C). In addition, N-acetyltryptophan-

T2DM association was mediated by TG and WHR with propor-

tion of 12% (pmediation = 0.005) (Figure 3D).

Variance in metabolite levels explained by each clinical
risk factor
Next, we further assessed the variance in metabolite levels ex-

plained by each clinical risk factor and measurement at baseline

(Figure S2, Supporting Information). Among them, prominent

clinical risk – related metabolites with more than 2% of its

variance explained by single clinical risk factor are highlighted

in Figure 4. We observed associations of HOMA-IR with

2-aminoadipic acid; body composition with glutamine, phenylal-

anine, isoleucine, 2-aminoadipic acid, methionine, citrulline, pro-

line, carnitine C5, cinnamoylglycine, and uric acid; liver function

with methionine, tryptophan, and BCAAs (valine, leucine, and

isoleucine); and smoking behavior with 2-aminoadipic acid.

The strongest associations were detected between carnitine

C5 with WHR. No metabolite was found associated with blood

pressure. It is remarkable that 17.1% of 2-aminoadipic acid vari-

ance was explained by combined clinical factors including

HOMA-IR (2.16%), body composition (5.1%), liver function

(3.3%), smoking behavior (2.3%), and so on, and the strongest

associations were detected between 2-aminoadipic acid with

insulin resistance. More than 10% of BCAA variance (valine,

leucine, and isoleucine) was explained by combined clinical
Cell Reports Medicine 3, 100727, September 20, 2022 7
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Figure 3. Causal mediation analysis among metabolites, clinical risk factors, and T2DM

(A) Mediation linkages between TG\WHR and 2-aminoadipic acid contributed T2DM.

(B) Mediation linkages between TG\WHR and BCAAs contributed T2DM.

(C) Mediation linkages between TG\WHR and carnitines contributed T2DM.

(D) Mediation linkages between TG\WHR and N-acetyltryptophan contributed T2DM. Data used for causal mediation analysis were measured from all 3,414

subjects.
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factors including body composition, lipid metabolism, and liver

function. On the other hand, some of identified antecedents of

T2DM, such as serum levels of carnitine C2, carnitine C6, and

carnitine C8, were rarely explained by traditional clinical mea-

sures (<2%).

DISCUSSION AND CONCLUSION

The current study is the largest and most comprehensive inves-

tigation on the associations between serum AAs andMRMs with

risk of developing diabetes in a prospective cohort of normogly-

cemic Chinese individuals.We identified several metabolites and

their mediating pathways that are significantly associated with

risk of T2DM.

Numerous discovery-based metabolomics studies have sug-

gested that certain AAs may be both markers and effectors

of incident diabetes (Table S10). Consistent with previous find-

ings,8,11 the current study confirmed a predictive value of

BCAAs (valine, leucine, and isoleucine) and AAAs (tyrosine and

phenylalanine) for risk of diabetes in a Chinese population.

We also confirmed that alanine, glutamic acid, homoserine,

2-aminoadipic acid, histidine, and proline could be good candi-

dates as early biomarkers for incident T2DM.26–30 Moreover, we

observed that serum asparagine might be a potential biomarker

for the development of T2DM among individuals with normogly-

cemia. In the FraminghamHeart Study, per SD change of plasma

asparagine was reported to be inversely associated with insulin

and HOMA, whereas the correlation between glucose and

asparagine was not significant (b = 0.2, p > 0.05).31 Asparagine

was reported as a protective biomarker of diabetes risk in a sub-

set of 2,939 Atherosclerosis Risk in Communities (ARIC) study
8 Cell Reports Medicine 3, 100727, September 20, 2022
participants with metabolomics data and without prevalent

diabetes,32 whereas null relationship was reported in other

studies.33,34 Among 2,519 individuals with coronary artery dis-

ease but without diabetes, with amedian follow-up of 10.3 years,

asparagine was identified in an optimal model for predicting

new-onset type 2 diabetes; however, the association was

rendered statistically nonsignificant after adjustment for glucose

andmultiple comparisons.33 In our study, serum asparagine was

shown to be associated with increased risk of diabetes in the

multivariable-adjusted model plus the adjustment of diet score,

and in the fully adjusted model. The discrepancies between

our study and the previous findings might be partially explained

by the PSM matched prospective nested case-control study

design, inclusion of NGR individuals only, and sensitivity ana-

lyses with adjustment for additional baseline confounding fac-

tors. Interestingly, mice hepatic knock-down of the asparagine

synthetase gene resulted in a significant decrease in plasma

glucose concentration, suggesting that asparagine synthetase

plays a direct role in glucose metabolism. This enzyme converts

aspartate and glutamine to asparagine and glutamate in an ATP-

dependent reaction and can affect glucose degradation.35

Circulating tryptophan-relatedmetabolites have been reported

to be associated with obesity, insulin resistance, and diabetes,

whereas the results were inconsistent (Table S10).36–39 A popula-

tion-based cohort study included 5,181 Finnish men from

the cross-sectional Metabolic Syndrome in Men (METSIM) study

indicated kynurenine and N-acetyltryptophan were related to

increased risk of incident T2DM.15 Recently, data from the

Hispanic Community Health Study/Study of Latinos (HCHS/

SOL), suggested that tryptophan, four kynurenine-pathway me-

tabolites (kynurenine, kynurenate, xanthurenate, andquinolinate),



Figure 4. Variance explained in selected metabolites associated with T2DM

Different colors are used to distinguish different categories of risk factors. Red: glucose metabolism; blue: obesity; yellow: lipid metabolism; green: blood

pressure; orange: liver enzymes; and purple: lifestyle factors. Solid colors indicate positive associations withmetabolite levels, whereas shading indicates inverse

associations. The column on the far right indicates the maximum amount of variance for any metabolite by each risk factor: (1) 2-aminoadipic acid; (2) a-amino-

butyric acid; (3) aspartic acid; (4) carnitine C3; (5) carnitine C4; (6) carnitine C5; (7) carnitine C6; (8) choline; (9) citrulline; (10) glutamic acid; (11) glycine; (12) isoleu-

cine; (13) kynurenine; (14) leucine; (15) methionine; (16) serine; (17) serotonin; (18) valine. Data used for variance analysis were measured from all 3,414 subjects.
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and indolelactate were positively associated with T2DM risk,

while indolepropionate was inversely associated with

T2DM risk,20 but null association has been reported in other

studies.37,39 The difference between the above results might be

partially explainedby the study design and the adjustment of con-

founding factors.

Likewise, previous findings on the association of TMAO and its

nutrient precursors (choline and carnitine) with T2DM is also

inconsistent.40–44 The POUNDS Lost trial found TMAO and its

precursors were related to lesser improvements in glycemia

and insulin sensitivity.41 TMAO has been related to increased

risk of T2DM in a cross-sectional study of the Chinese popula-

tion42 and in a meta-analysis of 12 clinical studies40; however,

null associations have been reported in one of two cohorts in

another Chinese study43 and a Norwegian study.44 The current

study has also shown a null association of TMAO and T2DM.

Nevertheless, we detected significant associations of other

choline and carnitine metabolites, including carnitine C0, C2,

C3, C5, C6, and C8, with the risk of T2DM in multivariable-

adjusted model. In fully adjusted model with additional adjust-

ment of diet score, liver enzyme, 2h-PG, and HOMA-IR, higher

carnitine C2, C3, C5, C6, and C8 was associated with incident

diabetes. These discrepancies might be partially explained by

the differences in the sample size, study populations, and study

design (including only NGR at baseline in the current study

versus both NGR and diabetes in the meta-analysis study) and

the adjustment of covariates. For other MRMs, we confirmed

the previous observations that serum uric acid was positively

associated with risk of diabetes.15

Results from causal mediation analysis supplemented knowl-

edge on the potential biological mechanism of metabolites influ-

encing the onset of T2DM. Previous studies revealed that

2-aminoadipic acid, an oxidation intermediate of lysine degrada-

tion, was correlated with adipogenic differentiation. Circulating

2-aminoadipic acid was positively associated with fat mass, fat

percent, WC, and TG, suggesting a contribution status to the

early prevention of obesity-related metabolic disorders.45 Our

results provided evidence supporting the hypothesis that metab-

olites causally impact the onset of diabetes, and further empha-

sized that clinical phenotypes including dyslipidemia (especially

TG metabolism disorder) and WHR might be important in regu-
lating AA and MRM contributions to T2DM. Further in vivo and

in vitro experiments are needed to provide concrete, clear, and

definite associations.

Moreover, we provided a comprehensive catalog of risk

factor–metabolite-diabetes associations in a population with

NGR, which helped us contextualize our findings and provide

future directions in metabolomics studies. Through integration

of the metabolome and phenome in the current study, we iden-

tified early metabolic changes related to the development of

T2DM. Our systematic comparison allowed us to untangle asso-

ciations between closely related molecules. In most cases, vari-

ance explained in the serum metabolites associated with dia-

betes by risk factors were modestly limited, which emphasized

the irreplaceable role of metabolites in predicting the risk of dia-

betes even in individuals with NGR. On the other hand, several

clinical risk-related metabolite discoveries have been made in

our study, such as carnitine C5 and WHR, methionine, and liver

enzymes. It was reported that 2-aminoadipic acid was associ-

ated with insulin resistance.45,46 Our results further revealed

that in addition to HOMA-IR and body composition, liver en-

zymes and smoking behavior also influenced 2-aminoadipic

acid levels, indicating the important role of body weight manage-

ment and lifestyle in 2-aminoadipic homeostasis. In the current

study, serum short-chain carnitine levels are rarely explained

by behavioral andmetabolic risk factors, including the diet score.

Previous studies reported that elevated acylcarnitine levels

observed in patients with diabetes or insulin resistance are

closely related to habitual diet, especially dietary protein in-

takes.47 Using a targeted metabolomics approach, Floegel

et al. demonstrated that 3.5% of acylcarnitine variation was ex-

plained by habitual diet in the EPIC-Potsdam cohort.3,48 Healthy

dietary score49 collected in the current study is composed of

vegetable, fish, soy product, and sugary drink intake, but not

meat intake. That might be a reason why variance of carnitines

could rarely be explained.

The mechanisms underlying the relationship between metab-

olites with glucose metabolism and insulin resistance have not

been fully established. It was proposed that BCAAs could acti-

vate the mammalian target of rapamycin complex 1 (mTORC1)

signaling, impair BCAA metabolism, and lead to the accumula-

tion of toxic metabolites, which bring about mitochondrial
Cell Reports Medicine 3, 100727, September 20, 2022 9
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dysfunction in pancreatic islet b cells and the occurrence of insu-

lin resistance and T2DM.50,51 Tryptophan metabolism follows

three major pathways, including the kynurenine pathway via in-

doleamine 2,3-dioxygenase 1 (IDO1), the serotonin production

pathway via Trp hydroxylase 1 (TpH1), and the direct transforma-

tion of Trp into several molecules, including ligands of the aryl hy-

drocarbon receptor (AhR) by the gut microbiota.36 The kynure-

nine pathway is the primary path of tryptophan catabolism in

most mammalian cells, and kynurenines inhibit proinsulin syn-

thesis from pancreatic islets or generate complexes with insulin

decreasing its biological activity and promote the development

of insulin resistance.52 In our current study, in the fully adjusted

model with all confounding factors, serum N-acetyltryptophan,

but not tryptophan or kynurenine, was associated with increased

risk of diabetes. N-acetyltryptophan was observed in human

urine as an MRM in 2017.53 Previous study identified it as a

possible biomarker for colonization resistance54; however, little

is known about its role in regulating the pathologic process of

T2DM. Further studies are warranted to strengthen possible mo-

lecular mechanisms. Although our findings among a normogly-

cemic populationmay have strong biological plausibility, the cur-

rent study is unable to determine whether the associations

reflect causal relationships or are rather driven by early pro-

cesses of disease development due to its observational nature.

Mendelian randomization study on AAs andMRMswill be helpful

to make causal inference.

In conclusion, our study included a large sample size and pro-

spective study design, and hence, the ability to study the asso-

ciation with T2DM, the inclusion of populations from 20 commu-

nities from various geographic regions in China, the population

being normoglycemic at baseline, and adjustment for many po-

tential confounders. It is worth mentioning that the measurement

of the glucose regulation status was based on the OGTT at both

baseline and the follow-up visit, which make it possible for accu-

rate evaluation of glucose dysregulation. In terms of the metab-

olomics analytical approaches, our work extensively covers 28

key AA classes that are essential in the overall homeostatic bal-

ance of AA metabolism and 22 MRMs.

Our foregoing data underscore the potential importance of

AAs and MRMs early in the pathogenesis of diabetes and

demonstrate the mediating pathways through the characteriza-

tion of triangles of clinical risk factor–metabolite-diabetes link.

Further studies are warranted to test whether serum AA and

MRMmeasurements can be potential biomarkers used in patient

screening or treatment monitoring and elucidate the biological

mechanisms of metabolites in the onset and progression of

T2DM. Our study may also provide insights for the diagnosis

as well as therapeutic targets for T2DM.

LIMITATIONS OF THE STUDY

Our study, however, also has several limitations. First, the

relatively short follow-up duration might limit the predictive po-

tential of our identified metabolites panel to a narrow time

window. Further studies with longer follow-up duration might

be additionally informative. Second, information regarding the

diet and medication affecting microbiota was not available and

gut flora was not assessed in the current study. Third, metabo-
10 Cell Reports Medicine 3, 100727, September 20, 2022
lites were measured only at baseline fasting samples, and it

would also be interesting to see whether metabolite composition

continued to change with incident disease. Fourth, MRMs

including short-chain fatty acids (SCFAs) and secondary bile

acids were not involved in the present study because of data

acquisition method limitation. Associations between bile acids

and incident T2DM were characterized previously.21 Further

studies on circulating concentrations of SCFAs and T2DMwould

be worthy additions. Finally, the PSM-matched case-control

design hampers the use of matching factors (age, gender,

BMI, FPG) for risk prediction in the case-control samples.

Although the current study was conducted in normoglycemic in-

dividuals at baseline, substantial metabolic differences were

observed between case subjects and control subjects.
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30. Liu, X., Zheng, Y., Guasch-Ferré, M., Ruiz-Canela,M., Toledo, E., Clish, C.,

Liang, L., Razquin, C., Corella, D., Estruch, R., et al. (2019). High plasma

glutamate and low glutamine-to-glutamate ratio are associated with

type 2 diabetes: case-cohort study within the PREDIMED trial. Nutr.

Metab. Cardiovasc. Dis. 29, 1040–1049. https://doi.org/10.1016/j.nu-

mecd.2019.06.005.

31. Cheng, S., Rhee, E.P., Larson, M.G., Lewis, G.D., McCabe, E.L., Shen, D.,

Palma, M.J., Roberts, L.D., Dejam, A., Souza, A.L., et al. (2012). Metabolite

profiling identifies pathways associated with metabolic risk in humans.

Circulation 125, 2222–2231. https://doi.org/10.1161/CIRCULATIONAHA.

111.067827.

32. Rebholz, C.M., Yu, B., Zheng, Z., Chang, P., Tin, A., Köttgen, A., Wagen-
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Samples used in this study were from the China Cardiometabolic Disease and Cancer Cohort (4C) Study, a nationwide, population-

based, prospective cohort study with up to 5 years follow-up.5,21,22

Details of blood sample and data collection
Blood specimens were processed within 2 h after blood sample collection under a stringent quality control mechanism at the field

center. Sera were aliquoted into 0.5-mL Eppendorf tubes within 2 h of blood collection and shipped by air in dry ice to the central

laboratory of the study located at Shanghai Institute of Endocrine and Metabolic Diseases. Samples were stored at �80�C until

use. Information on sociodemographic characteristics, lifestyle factors (including smoking or drinking status, healthy dietary score

and physical activity), as well as medical history was collected using a standard questionnaire. Healthy dietary score was calculated

according to the recommendation of the American Heart Association with replacement of whole grains with bean consumption.49 All

participants underwent measurements for obesity [bodymass index (BMI), waist circumference (WC), hip circumference, waist to hip

ratio (WHP)], systolic blood pressure (SBP) and diastolic blood pressure (DBP), glycemic measures [fasting plasma glucose (FPG),

2-h postload plasma glucose (2h-PG), and HbA1c), HOMA of insulin resistance, liver enzymes [alanine aminotransferase (ALT) and

aspartate aminotransferase AST)], and lipids [triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL) and

low-density lipoprotein cholesterol (LDL)].

The study protocol was approved by the Institutional Review Board of Ruijin Hospital affiliated to the Shanghai Jiao-Tong Univer-

sity School of Medicine. Informed consent was obtained from study participants.

METHOD DETAILS

Definition of diabetes
At both baseline and follow-up visits, all participants underwent an oral glucose tolerance test (OGTT), and plasma glucose was ob-

tained at 0 and 2 h during the test. Plasma glucose concentrations were analyzed locally within 2 h of the blood collection under a
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stringent quality control program using the glucose oxidase or the hexokinase method. Using the 1999 WHO cutoffs, incident dia-

betes was defined as the following: FPG R126 mg/dL, 2h-PG R 200 mg/dL, or self-reported previous diagnosis of diabetes by

physicians and the current use of antidiabetic medications.

Amino acids and microbiota-related metabolites measurement
Fasting serum samples collected at baseline were analyzed for amino acids andmicrobiota-related metabolites using the UPLC-MS/

MSwith multiple reactions monitoring methods in a Nexera32 system (Shimadzu, Japan) coupled to a triple quadrupole mass spec-

trometer 8050 (Shimadzu, Japan), as described previously.24,25

Amino acids
For sample preparation, 4 times volume of methanol containing internal standards with proper concentration (alanine-d3 3 mg/mL,

phenylalanine-d5 4 mg/mL, valine-d8 1 mg/mL, leucine-d3 1 mg/mL) was added to 70 mL serum for protein precipitation and amino

acid extraction. A 60 mL aliquot of supernatant was centrifuged to dry at vacuum condition. The AccQ-Tag derivation kit was

used to derivatize amino acids. Briefly, 70 mL borate buffer (pH = 8.8) was added to the dried extract and vortexed for 30 s. Then,

20 mL AccQ-Tag reagent was added to the mixture. The resulting solution was kept at ambient temperature and then incubated

at 55�C for 10 min. After centrifuged and the supernatant was ready for LC-MS analysis.

For liquid chromatography separation, an UPLCC18 column (1003 2.1mm i.d.; 1.7 mm;Waters, USA) was used at 55 �Cand a flow

rate of 0.35 mL/min. Themobile phases were 98.5%water, 1% acetonitrile, 0.5% formic acid and 20mM ammonium formate (A) and

1.6% formic acid and 98.4% acetonitrile (B). The gradient elution was set at 1% (v/v) B for 1.08 min, linearly increased to 9.1% B

during the next 10.4 min, increased to 21.2% B during the next 16.3 min, rapidly increased to 59.6% B during the next 0.6 min main-

tained at this composition for 1.2 min, decreased to 1% B during the next 0.18 min, and finally maintained at this composition for an

additional 0.18 min. The injection volume was 0.1 mL. The mass spectrometer was used in electrospray ionization (ESI) negative

mode.

Microbiota-related metabolites
For sample preparation, 100 mL of methanol containing internal standards with proper concentration (Carnitine C0-d3 0.25 mg/mL,

Phenylalanine-d5 2 mg/mL, Hippuric acid-d5 1 mg/mL, Tryptophan-d5 1 mg/mL, Choline-d4 30 mg/mL, Carnitine C8-d3 0.1 mg/mL)

was added to an aliquot of 20 mL serum for protein precipitation andmetabolite extraction. After themixture was vortexed and centri-

fuged, the supernatant was centrifuged to dry at vacuum condition. The dried residue was reconstituted with 50 mL 25% acetonitrile

before LC-MS analysis.

For liquid chromatography separation, an UPLC HSS T3 column (503 2.1 mm i.d.; 1.8 mm;Waters, USA) was used at 40 �C and a

flow rate of 0.25mL/min. Themobile phases were 1% formic acid water (A) and 0. 1% formic acid acetonitrile (B). The gradient elution

was set at 0% (v/v) B for 2 min, rapidly increased to 25% B during the next 1 min, linearly increased to 35% B during the next 4 min,

increased to 100% B during the next 0.5 min, flushed the system for 2.5 min, decreased to 0% B during the next 0.5 min, and finally

maintained at this composition for an additional 2.5 min. The injection volume was 1 mL. The mass spectrometer was used in ESI

negative mode.

For quality control, we performed 1) injection of a mixed quality control (QC) sample every 10 samples, 2) insertion of a blank sam-

ple every 10 samples, 3) procedure randomized order of samples and inclusion of positive and negative controls in each running

batch, and 4) blind of the case-control status to the person running the sequence.

QUANTIFICATION AND STATISTICAL ANALYSIS

The demographic and clinical characteristics of the study population were described as frequencies and percentages as well as

mean ± SD Differences between cases and controls were evaluated using the Student’s t test for continuous variables with normal

distribution, paired Wilcoxon rank-sum test for those with skewed distribution, and the c2 test for categorical variables. The levels of

serum metabolites were log-transformed before analysis. The associations of metabolites and risk of T2DM were estimated using

multivariable conditional logistic regression models with adjustment of age, gender, BMI, smoking status, alcohol intake, physical

activity, education attainment, family history of diabetes, SBP, and FPG. ORs (95%CI) were presented as per SD increment of the

metabolites. Quartile analysis used the values of control group as cutoff and the lowest quartile as the reference. p values for false

discovery rate (FDR) were estimated using the Benjamini-Hochberg method.

To validate the reliability of the identified metabolites associated with incident diabetes, random sampling was performed as a

sensitivity analysis, and 200 times of tests were conducted by randomly selecting 80%of all samples as a subset for each time.More-

over, Internal validation test were performed in two randomly split subsets (50% participants in each subset).

Spearman correlation analysis was used to assess the association of individual amino acids and microbiota-related metabolites

with the baseline clinical parameters, including obesity measurements (BMI, WC, hip circumference, andWHR), blood pressure, gly-

cemic measures (FPG, 2h-PG, and HbA1c), HOMA of insulin resistance, liver enzymes (ALT and AST), and lipids (TG, TC, HDL and

LDL). We further assessed the variance in metabolite levels explained by each clinical risk factors and measurements at baseline

using variance partitioning as implemented in the R package variancePartition (v1.14.1).
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Causal mediation analysis was performed by using the R package mediation (version 4.5.0). The models were formulated as fol-

lows (Y as outcome-incident T2DM, X as exposure -metabolites, M as mediation -risk factors): Y = cX + e1, M = aX + e2 and Y = c’X+

bM + e3, where c = c’ + ab, c as total effect of metabolites, c’ as direct effect of metabolites, and ab as indirect effect of

metabolites mediated by risk factor. Relationship groups whichmeet the following criteria were defined as significant causal relation-

ships: (1) total effect of metabolites is significant (Ptotal effect < 0.05), (2) Mediated proportion >10%, and (3) indirect effect is significant

(Pmediation <0.05).

A two-tailed p value < 0.05 was considered statistically significant. Statistical analyses were performed using SAS 9.4 software

(SAS Institute, Cary, NC) and R 3.3.1 software.
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