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Abstract

Background: Mosquito-borne infectious diseases pose a severe threat to public health in many areas of the world. Current
methods for pathogen detection and surveillance are usually dependent on prior knowledge of the etiologic agents
involved. Hence, efficient approaches are required for screening wild mosquito populations to detect known and unknown
pathogens.

Methodology/principal findings: In this study, we explored the use of Next Generation Sequencing to identify viral agents
in wild-caught mosquitoes. We extracted total RNA from different mosquito species from South China. Small 18–30 bp
length RNA molecules were purified, reverse-transcribed into cDNA and sequenced using Illumina GAIIx instrumentation.
Bioinformatic analyses to identify putative viral agents were conducted and the results confirmed by PCR. We identified a
non-enveloped single-stranded DNA densovirus in the wild-caught Culex pipiens molestus mosquitoes. The majority of the
viral transcripts (..80% of the region) were covered by the small viral RNAs, with a few peaks of very high coverage
obtained. The +/2 strand sequence ratio of the small RNAs was approximately 7:1, indicating that the molecules were
mainly derived from the viral RNA transcripts. The small viral RNAs overlapped, enabling contig assembly of the viral
genome sequence. We identified some small RNAs in the reverse repeat regions of the viral 59- and 39 -untranslated regions
where no transcripts were expected.

Conclusions/significance: Our results demonstrate for the first time that high throughput sequencing of small RNA is
feasible for identifying viral agents in wild-caught mosquitoes. Our results show that it is possible to detect DNA viruses by
sequencing the small RNAs obtained from insects, although the underlying mechanism of small viral RNA biogenesis is
unclear. Our data and those of other researchers show that high throughput small RNA sequencing can be used for
pathogen surveillance in wild mosquito vectors.
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Introduction

Emerging infectious diseases (EIDs) have exerted a significant

burden on public health and global economies [1,2]. During the

past decade, novel viruses, particularly those causing severe acute

respiratory syndrome (SARS) and avian influenza A H5N1, have

attracted international concern. These diseases represent only part

of a rich tapestry of pathogens that have emerged to pose public

health threats in recent years. Clearly, there is a pressing need for

rapid and accurate identification of viral etiological agents. The

development of Next Generation Sequencing (high throughput

sequencing) technology provides a possible solution to this

problem; indeed several recent studies have used these techniques

to identify novel viral agents [3,4,5,6,7]. Palacios et al. identified a

novel and deadly arenavirus by employing 454-pyrosequencing

technology, the results of which were later confirmed by PCR [4].

Recent studies, have identified a novel strain of Ebola virus which

caused a hemorrhagic fever epidemic in Uganda [6], and dengue

virus type 1 (DENV-1) sequences in laboratory reared mosquitoes

experimentally infected with DENV-1 [7]. Using de novo next

generation sequencing, Makoto Kuroda et al. showed that the

etiologic agent identified in a deceased pneumonia patient was, in

fact, the pandemic influenza A H1N1 virus, rather than that

originally assumed to be pneumococcus [8].

These studies highlight the power and feasibility of high

throughput sequencing techniques for detection of unsuspected

or novel etiologic agents. The sequencing technologies offer

distinct advantages over traditional viral detection and surveillance

methods that generally require prior knowledge of the etiologic

agents, as well as depending on virus-specific primers, probes or

antibodies. These traditional techniques are, therefore, unsuitable

in situations where the causative agent of an outbreak is entirely

novel, or is a pathogen variant with several mutations to key

priming regions. Hence, high throughput sequencing techniques
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provide a powerful new opportunity for surveillance and discovery

of novel pathogens. The techniques provide a cost-effective

mechanism for massive parallel sequencing generating extreme

sequencing depth, whilst providing multiplex analyses for etiologic

agent identification.

Mosquito-borne infectious diseases have been emerging and re-

emerging in many areas of the world, especially in tropical and

subtropical areas where agents such as West Nile virus (WNV),

dengue virus (DENV), chikungunya virus (CHIKV) and yellow

fever virus (YFV) are present. Surveillance of infectious agents

carried by mosquitoes is important for predicting the risk of vector-

borne infectious disease outbreaks. Recently, a new strategy based

on small interfering RNA (siRNA) immunity to virus infection was

proposed for detecting novel RNA viruses in laboratory reared

drosophilae and mosquitoes, as well as RNA/DNA viruses in

plants using high throughput sequencing techniques [9,10].

Prompted by these results (in laboratory reared insects and plants

by deep sequencing and assembly of small RNAs isolated from the

host organisms), we explored the feasibility of using this approach

to identify viruses from wild-caught mosquitoes. Our findings show

for the first time that high throughput sequencing of small RNAs

can detect both RNA- and DNA viruses in wild-caught insects,

thus supporting the feasibility of employing this approach for

surveillance purposes.

Results

Standard small RNA analysis
For each mosquito species, Solexa high throughput sequencing

generated about 40 million individual sequencing reads with base

quality scores. After removing the sequencing adaptor and

artificial junk sequences containing simple repeats of nucleotides

(i.e., AAAAA…, GCGCGC…), or multiple unresolved nucleo-

tides, which were resulted from sequencing procedures, mappable

sequences were generated. By mapping to the miRNA database,

we identified about 200 known miRNAs for each mosquito

species. Using miRNA prediction software, one to two thousand

miRNA candidates were predicted (Table 1).

Virus sequence detection
We performed BLAST analysis (using the blastn program) to

identify potential viral sequences in the cleaned unique sequences.

Preliminary results revealed that a large number of unique

sequences in the Culex pipiens molestus sample shared identity with

three other viruses, namely Aedes albopictus Parvovirus (GenBank

Accession: X74945), Anopheles gambiae densonucleosis virus (GenBank

Accession: EU233812), and Aedes aegypti densovirus strain 0814616

(GenBank Accession: FJ360744). Further analysis demonstrated

that the matched A. albopictus Parvovirus sequences were also

present in the A. gambiae densonucleosis virus genome and the A.

aegypti densovirus strain 0814616 genome. The A. gambiae densonu-

cleosis virus and A. aegypti densovirus strain 0814616 shared most of

their matched sequences. Sequence alignment showed that these

three viruses exhibited more than 80 percent sequence identity,

indicating that a virus with homologous sequences to these three

viruses was present within the C. pipiens molestus sample. For the

other two samples (C. tritaeniorhynchus and A. sinensis), no significant

amount of sequence was found that corresponded to any specific

virus. To discover potential novel viruses which may be remotely

related to known viruses, a BLAST strategy proposed in the

literature [9] was adopted. This strategy employs the tblastx search

to ensure identification of viruses based on amino acid sequences.

However, this analysis did not reveal any additional viral

sequences in any of the three mosquito samples tested.

Small RNA sequence analysis of the newly identified virus
To characterize small RNA sequences with homology to the

viral genomic sequences, mappable sequence reads were assem-

bled using three viral genomes as references (i.e., C. pipiens molestus,

C. tritaeniorhynchus and A. sinensis) with CLC Bio (Katrinebjerg,

Denmark) using the default parameters. The results showed that

the small RNA reads overlapped which allowed contig assembly.

Of the three viruses, A. gambiae densonucleosis had the most mapped

reads (4481) and the longest assembled consensus sequence

(3248 bp) which covered 78.5% of the whole genome (4139 bp)

(Figure 1 and file S1). The overall similarity between the newly

identified virus and the A. gambiae densonucleosis virus was about

98% (3182/3248). The distribution of the lengths of the matched

small viral RNAs showed that the majority (.60%) of them were

20–24 nt in length, with a peak distribution of 21 nt, while the

total library small RNA (majority of them were endogenous

siRNA) displayed a peak distribution of 22 nt (Figure 2). This is

consistent with the discovery in sindbis infected mosquitoes [11]

and virus infected Drosophila OSS cells [9], where the matched

viral siRNAs had a peak distribution at 21 nt, while the

endogenous siRNA in Drosophila [12,13] and the total library

small RNA in mosquitoes [11] had a peak length of 21,22 nt.

Most of the small RNAs distributed along three viral transcripts

(e.g. NS1, NS2 and Capsid), with more than 80% of the transcript

length covered. The viral small RNA +/2 strand ratio

approximated 7:1 (3933/548), indicating that these molecules

were largely derived from the viral RNA transcripts. The

mechanism for biogenesis of the – strand small RNAs in

mosquitoes is currently unknown.

Characterization of high frequency small viral RNA
sequences

Although most of the viral coding transcripts (NS1, NS2, and

Capsid) were covered by the small viral RNA sequences, the small

RNAs were not evenly distributed along the transcripts. There

were 10–20 sites with relatively high coverage and 4 of these had

very high coverage indeed (greater than 3206coverage compared

with the average coverage of 246) (Figure 1). The core sequences

of the high frequency reads were 20–22 nt in length, with 3 or 4

adenosine bases located at the 59 terminus (Table 2). The two most

frequently occurring sequences (with greater than 6006coverage)

Table 1. Statistics of standard small RNA analysis.

Samples Raw reads Mappable reads Known miRNA Predicted miRNA

C. tritaeniorhynchus 38,193,479 11,781,779 192 2298

C. pipiens molestus 50,616,662 17,723,487 201 845

A.. sinensis 45,936,670 8,918,988 205 2462

doi:10.1371/journal.pone.0024758.t001

Discovery of DNA Viruses in Wild-Caught Mosquitoes
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Figure 1. Mapping of sequencing reads onto the densovirus genome. Cleaned sequence reads were mapped onto the densovirus genome
(GenBank accession number NC_011317). The 4139 bp genome contains three open reading frames (NS1, NS2 and Capsid gene, represented by long
bold yellow arrows) which are flanked by inverted repeats (IR, represented by short red bold arrows) and direct repeats (DR, represented by short
bold red arrows) at both termini of the genome. The gapped lines represent the regions where sequenced reads were mapped. The blue peaks in the
lower part indicate the coverage (occurrence frequency) of the sense strand reads and the red peaks indicate the coverage of the antisense strand
reads.
doi:10.1371/journal.pone.0024758.g001

Figure 2. Length distributions of small viral RNAs. A plot of the percentage of the different lengths of the small viral RNA’s obtained. The most
frequent length of the small viral RNAs was 21 nt.
doi:10.1371/journal.pone.0024758.g002
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were in the coding region of the viral capsid protein gene, while

the other two medium high copy number sequences were located

in the NS1 and NS2 genes, respectively. The biological relevance

as well as the biogenesis of these high frequency reads requires

further investigation.

Identification of small RNA sequences in the direct repeat
region within 59 and 39 UTRs

The densovirus genome contains two-pairs of inverted repeats,

which constitute two stem-loop structures at the 59 and 39

untranslated regions of the genome termini (Figure 1). It also

contains two pairs of direct repeats in close proximity to those

inverted repeats. All of these repeats are located in the

untranscribed regions at the genome termini. It is interesting to

note that no small RNAs were mapped to the untranscribed

regions, although large numbers of reads mapped to the four

inverted sequences (with a coverage greater than 506), but not the

direct repeats (Figure 1, Table 3). Sequencing was performed on

small RNA fragments, therefore, the fact that no reads mapped to

the untranscribed region was not unexpected. The fact that reads

mapped to the untranscribed 59 and 39 inverted repeat regions

indicates that those inverted repeat regions may be transcribed by

an unknown mechanism. Since the terminal stem-loop structures

are usually involved in viral genome replication, it is possible that

transcripts from the stem-loop regions are involved in virus

replication (e.g. as primers for genomic DNA synthesis).

It is notable that the high coverage small RNAs in the coding

regions and the small RNAs mapping to the non-coding stem-loop

regions are both highly conserved (0/385 nucleotide difference),

compared to the genome as a whole which is roughly 2% different

to the reference densovirus (EU233812). Such high evolutionary

conservation suggests that these sequences are of functional

importance.

Validation of viral infection by polymerase chain reaction
To validate the presence of a viral infection, a standard PCR

was conducted using total DNA extracted from samples of the

three mosquito species. Gel electrophoresis demonstrated that a

DNA band of the appropriate size had been amplified in the C.

pipiens molestus mosquito sample, but not from C. tritaeniorhynchus or

A. sinensis (Figure 3). Sequence analysis of the PCR product

revealed same sequence as that assembled by the small RNAs.

These results, therefore, confirm the existence of a densovirus in C.

pipiens molestus, but not in C. tritaeniorhynchus and A. sinensis. We have

called this densovirus Culex tritaeniorhynchus densovirus YN2009.

Phylogenetic analysis of the newly identified densovirus
To understand the evolutionary status of the densovirus

identified here, a phylogenetic tree was generated with Mega 4.0

using maximum parsimony and bootstrap 500 methods (Figure 4).

The reference densovirus strains [14,15,16,17,18,19,20,21,22]

were downloaded from GenBank after blasting the NT database

with a 398 bp segment assembled from the small RNAs. The

phylogenetic tree obtained infers that newly identified Culex

tritaeniorhynchus densovirus YN2009 is a close relative of the mosquito

densoviruses prevalent in South and Southwest China.

Discussion

High throughput sequencing as a next generation sequencing

technology has been developing rapidly during the last few years

and has found various applications in different biological and

medical research fields. Recent advances in this technology have

made its application easier, cheaper, more convenient and more

efficient allowing it to evolve into a powerful tool for identification

of novel human pathogens [3,4,5,6,7]. High throughput sequenc-

ing of small RNA’s (esp. miRNA) has become routine practice,

with reliable protocols and readily available reagents. Due to the

short length of the small RNA molecules, sequencing is even faster

and cheaper than standard high throughput sequencing using

longer DNA or RNA fragments. This makes high throughput

sequencing of small RNA an attractive method for pathogen

detection in plants and insects based on siRNA, an innate defense

mechanism of plants and insects [9,10]. Detection of viruses in

laboratory reared insects [9] or experimentally infected mosqui-

toes have been reported [7]. Our work shows that high throughput

sequencing is suitable for detecting viral agents in wild-caught

insects.

Table 2. Characteristics of high coverage sequences mapped on the genome.

Core sequence Core coverage Core region Extended region Genome location

AAAGAGGACTGGAGATACAT 389 1260–1279 (20 bp) 1251–1286 (36 bp) NS1

AAAAGATGCGGACAACGTAAAC 344 1662–1683 (22 bp) 1653–1689 (37 bp) NS2

AAAATACTTGGACTTCAATT 652 2851–2870 (20 bp) 2844–2882 (39 bp) Capsid

AAACGGCAGGATTCTGGGCA 594 2907–2926 (20 bp) 2900–2938 (39 bp) Capsid

doi:10.1371/journal.pone.0024758.t002

Table 3. Characteristics of sequences mapped to non-coding regions.

Core sequence Core coverage Core region Extended region Genome location

TGATACGGATACTGTAAGATA 132 13–33 (21 bp) 11–38 (28 bp) IR1

TGTATCTTACAGTATCCGTAT 117 64–84 (21 bp) 60–88 (29 bp) IR1’

GATCCCCGTGTGAGCCGATAGGCGAGGATCGAA
AGCCCAAATTTTGCTGACGTCACCTCACACACATA

65 3964–4031 (68 bp) 3950–4053 (104 bp) IR2

AAAGCTTTTGGTATGTGTGTGAGGTG ACGTCAGCAAAATTTGGGCTTTCGATC 68 4075–4125 (51 bp) 4075–4125 (73 bp) IR2’

doi:10.1371/journal.pone.0024758.t003

Discovery of DNA Viruses in Wild-Caught Mosquitoes
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Since siRNA defense mechanisms are triggered by the double-

stranded RNA (dsRNA) sequence (and the siRNA mature forms

generated from dsRNA), it is reasonable to expect that only RNA

viruses which contain dsRNA as genomic RNA or replicate via a

dsRNA intermediate can be identified using this strategy. This

perception is consistent with previous reports where only RNA

viruses were identified using small RNA sequencing techniques

[7,9]. However, our work clearly demonstrates that small RNA

sequencing can also detect DNA viruses in insects, although the

underlying mechanism of the biogenesis of these small RNAs is

unclear. Similar findings have been reported in plants [10], but

again the mechanism has not been defined. It is possible that

plants and insects generate small RNAs from infected DNA viruses

differently. Possible mechanisms for small RNA biogenesis from

DNA viruses include, for example, the local dsRNA formed in the

stem-loop structure of the viral transcripts or overlapping

convergent viral transcripts [23,24]. In the case of densoviruses,

there seem to be no overlapping convergent transcripts [25,26]

and no obvious stem-loop structure has been identified in

densovirus transcripts.

An alternative explanation for the small RNAs derived from the

DNA virus may be degradation of virus transcripts. However, this

hypothesis cannot explain at least two things: one is the very high

incidence of some small RNAs that have 3–4 adenines at the 59

terminus, the other is the biogenesis of the small RNAs that map to

the inverted regions of the genomic termini. These are predicted to

form a T- or Y-shaped structure that may participate in genome

packaging signaling or replication initiation [26]. It is interesting to

note that a longer length direct repeat was located very close to

each inverted repeat (Figure 1), but no small RNA mapped onto

the direct repeats themselves. The function of the inverted and

direct repeats, and how the small RNAs are generated from the

inverted repeats but not from the direct repeats, remain interesting

questions to be answered. To this end, we provide all the original

data containing the read sequences of the virus small RNAs as a

supplementary file to this paper (file S1).

Mosquitoes are the most important vector of WNV, DENV,

CHIKV and YFV, and controlling mosquito populations is an

important way of preventing epidemics of these life-threatening

diseases. Among the many approaches to mosquito control [27],

environmentally friendly densoviruses have been considered as a

biological control agents [20,26,27,28]. Field trials using a

densovirus that infects A. aegypti mosquitoes showed that the virus

had significant efficiency, although most densoviruses take 2–20

days to kill their insect hosts [29], making this agent unsuitable for

commercial use. However, with the advent of genetic engineering,

it might be possible to generate genetically modified densoviruses

that could be effective mosquito control agents. Better under-

standing of the biology of densoviruses and their relationship with

Figure 4. Phylogenetic analysis of the isolated densovirus. The phylogenetic tree was generated using Mega 4.0 with maximum parsimony
and bootstrap 500. Reference densovirus strains were selected after blasting the NCBI NT database with a 398 bp fragment assembled with the small
RNAs. Numbers in parentheses indicates the reference number of the particular virus stain [14,15,16,17,18,19,20,21,22]. The virus strain identified in
this work has been assigned the name Culex tritaeniorhynchus densovirus YN2009 (indicated by a solid arrow). Scale bar represents the number of
nucleotide substitutions.
doi:10.1371/journal.pone.0024758.g004

Figure 3. PCR amplification of densovirus sequence from the
mosquito DNA. Detection of densovirus in wild-caught mosquitoes
with PCR using primers designed from the virus sequences assembled
with the small RNAs. M, DNA molecular weight markers. 1, Culex pipiens
molestus. 2, Culex tritaeniorhynchus. 3, Anopheles sinensis. 4, distilled
water negative control.
doi:10.1371/journal.pone.0024758.g003
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mosquito host immunity could therefore be of practical impor-

tance for addressing disease control.

Traditional generic methods for identifying and characterizing

novel viral diseases have included electron microscopy, virus

isolation in cell culture, immunological approaches and PCR.

Recently technologies such as diagnostic microarrays and mass

spectrometry have been proposed as generic tools for identifying

viruses [30], but all these methods require some prior knowledge

of the agents to be identified. With the advent of next generation

high throughput parallel sequencing platforms, the possibility of

random metagenomic sequencing of diseased samples with the

object of identifying new putative pathogens has emerged [6,31].

However, elimination of host nucleic acid is critical to boost any

pathogen signal toward the detection threshold. In addition, the

danger of missing extremely low titer viruses is still a possibility

with these systems. By comparison, small RNA sequencing

requires neither viral particle purification nor viral nucleic acid

sequence amplification. With the advantages of high throughput,

high speed, low cost and greatly simplified methodologies, small

RNA sequencing can now be used more widely to identify known

viruses as well for novel virus discovery.

Although the densovirus identified here was not a significant

etiologic agent, this discovery proves that the approach is

applicable not only for discovery of RNA viruses, but also DNA

viruses in mosquitoes. Currently all known human pathogenic

viruses found in mosquitoes are RNA viruses, but this does not

preclude DNA viruses from using mosquitoes as vectors for

human, animal or plant diseases. Indeed the African swine fever

virus is an arthropod-borne double-stranded DNA virus [32]

which causes a lethal hemorrhagic disease in domestic pigs.

In conclusion, our study is the first to explore the application of

convenient small RNA high throughput sequencing for virus

discovery in wild-caught vectors. Our results suggest that small

RNA sequencing is able to identify not only RNA viruses, but also

DNA viruses in wild-caught mosquitoes, obviating the need for

culture-based virus isolation or for prior knowledge of the etiologic

agent. These results suggest that small RNA high throughput

sequencing could be an ideal tool for surveillance of novel

emerging viral disease or even non-viral infectious diseases.

Materials and Methods

Mosquito collection
The mosquitoes, including Culex tritaeniorhynchus, Culex pipiens

molestus, and Anopheles sinensis were collected from Yunnan

province, China, in 2009. The samples were stored in liquid

nitrogen until RNA extraction. No specific permits were required

for the described field studies; the samples collected were not

privately owned or protected and did not involve endangered or

protected species.

Small RNA library preparation and sequencing
Prior to RNA extraction, mosquitoes were cleaned in sterilized

water and dried with hygroscopic filter paper. Mosquitoes of the

same species were pooled together. Total RNA was extracted

separately from the different mosquito species using the Total

RNA Purification Kit (LC Sciences, Houston, USA), according to

the manufacturer’s instructions. The quality of total RNA was

analyzed on an Agilent 2100 Bioanalyzer system and by

denaturing polyacrylamide gel electrophoresis. A small RNA

library was generated according to the Illumina sample prepara-

tion instructions [33]. Briefly, total RNA samples were size-

fractionated on a 15% tris-borate-EDTA-urea polyacrylamide gel.

RNA fragments 15–50 nt long were isolated, quantified, and

ethanol precipitated. The SRA 59 adapter (Illumina) was ligated to

the RNA fragments with T4 RNA ligase (Promega). The ligated

RNAs were size-fractionated on a 15% tris-borate-EDTA-urea

polyacrylamide gel and 41–76 nt long RNA fragments were

isolated. Next the SRA 39 adapter (Illumina) ligation was

performed, followed by a second size-fractionation using the same

gel conditions as described above. The 64–99 nt long RNA

fragments were isolated by gel elution and ethanol precipitation.

The ligated RNA fragments were reverse transcribed to single-

stranded cDNAs using M-MuLV (Invitrogen) with RT-primers (as

recommended by Illumina). The cDNAs were amplified with pfx

DNA polymerase (Invitrogen) using 20 PCR cycles and the

Illumina small RNA primer set. PCR products were purified on a

12% tris-borate-EDTA polyacrylamide gel and a slice of gel

containing cDNAs of 80–115 bp was excised. This fraction was

eluted and the recovered cDNAs were precipitated and quantified

on the Nanodrop (Thermo Scientific) and on the TBS-380 mini-

fluorometer (Turner Biosystems) using PicoGreenH dsDNA

quantization reagent (Invitrogen). The concentration of the sample

was adjusted to 10 nM and 10 mL used for the sequencing

reaction. The purified cDNA library was used for cluster

generation (on the Illumina Cluster Station), and then sequenced

on the Illumina GAIIx machine, following the manufacturer’s

instructions. Raw sequencing reads were obtained using the

Illumina Pipeline v1.5 software following sequencing image

analysis by the Pipeline Firecrest Module and base-calling by the

Pipeline Bustard Module.

Standard small RNA analysis
Clean-up of the raw data and subsequent small RNA mapping

and prediction were performed with a proprietary software

package, ACGT101-miR v3.5 (LC Sciences, Houston, Texas).

First, low-quality reads were removed from the raw reads. After

removal of the adaptor sequences, and filtering of the low quality

reads and simple artificial sequences, the mappable reads were

extracted and the unique sequences generated by collapsing the

identical sequences, with the occurrence count of each unique

sequence as the unique sequence tag. These unique sequences

were compared with the sequences of non-coding RNAs (rRNA,

tRNA, snRNA, snoRNA) available in Rfam (http://www.sanger.

ac.uk/software/Rfam) and in the GenBank non-coding RNA

database (http://www.ncbi.nlm.nih.gov/) to clarify degradation

fragments of non-coding RNA. In addition, all sequences were

mapped to miRNA sequences from the miRNA database,

miRBase 16.0 (http://www.mirbase.org/).

Viral sequence detection using the BLAST program
BLAST searches were conducted to identify the virus sequences

in the cleaned unique reads using the blast-2.2.22 package [34].

Due to the large amount of high throughput sequencing data, we

formatted the sequencing reads, (using the command formatdb

that is included in the BLAST package), as a BLAST database and

used the viral sequences downloaded from the EMBL website

(http://www.ebi.ac.uk/embl/) as a query, in order to expedite the

BLAST process. BLAST results were then analyzed manually to

screen for potential virus sequences.

PCR confirmation of viral infection
Total mosquito DNAs were extracted with TRIzol reagent

(Introgen, Carlsbad, CA) according to the manufacturer’s

instructions. A pair of primers (forward primer: 59-ATA AAT

TGA TCA GTC GTC CTC CAA C-39; reverse primer: 59-CTT

GGG ATC ATT TCG GTC ATA T-39) were selected from the

viral sequence assembled with the mappable reads. The PCR was

Discovery of DNA Viruses in Wild-Caught Mosquitoes
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conducted in a 50 ml reaction mixture containing 16Easy Taq

PCR SuperMix (TransGen Biotech, Beijing, China), 1 mM each of

the forward and reverse primers and 10 ng of template DNA.

After pre-denaturation at 94uC for 3 minutes, 35 cycles of

amplification (30 sec denaturation at 94uC, 30 sec annealing at

55uC, and 60 sec polymerization at 72uC) were performed,

followed by a final incubation at 72uC for 5 min. PCR products

were visualized on a 1% agarose gel stained with ethidium

bromide.

Supporting Information

File S1 Reference assembly of the small RNA with
the densovirus genome (GenBank accession number

NC_011317) as the reference sequence. The read alignment

is saved in the ace file format and can be viewed with common

read alignment program like tablet (freely available on http://

bioinf.scri.ac.uk/tablet/). All the read sequences can be retrieved

from the ace file with any text editing program.

(ACE)
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