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Abstract: Farfarae Flos (FF) is the dried flower bud of Tussilago farfara L, which has antitussive,
expectorant, and anti-inflammatory effects. However, little research on the main active composition
of FF has been reported. The purpose of this study is to find the main active compounds responsible
for the three pharmacological effects (i.e., antitussive, expectorant, and anti-inflammatory effects) of
Farfarae Flos, based on the spectrum–effect relationship combined with chemometrics. First, this study
uses the UPLC-QDA method to establish the chromatography fingerprint of Farfarae Flos, which
is combined with chemometrics to analyze 18 batches of samples. Then, we study the antitussive,
expectorant, and anti-inflammatory effects of Farfarae Flos. Finally, the spectrum–effect relationship
between the fingerprint and the three pharmacological effects are studied by grey correlation
analysis and partial least squares regression. The results show that four, four, and three main active
constituents were found for the antitussive, expectorant, and anti-inflammatory pharmacological
effects, respectively. In conclusion, we found the main active compounds corresponding to the main
pharmacodynamic effects of Farfarae Flos. To our knowledge, this is the first time that spectrum–effect
relationships in FF have been established using both raw and processed samples, which provides
an experimental basis for further studies on the pharmacodynamic material basis of Farfarae Flos,
as well as providing reference for the comprehensive evaluation of Farfarae Flos quality and the
development of substitute resources.

Keywords: spectrum–effect relationship; main active compositions; raw and processed Farfarae Flos;
chemometrics; grey relational analysis; partial least squares regression

1. Introduction

The history of traditional Chinese medicine (TCM) can be traced back thousands of years, when
people discovered that the roots or bark of some plants were able to treat certain diseases [1]. Compared
with Western medicine, TCM has the advantages of low cost, low side effects, and flexible medication.
However, the compounds in TCMs are complex and the active compositions are not exactly known [2–4].
It is difficult to evaluate the quality of a traditional Chinese medicine comprehensively, as only one or
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two main active compositions are typically specified in the literature. Fortunately, the emergence of
chromatographic fingerprint technology has solved this problem, to some extent.

A chromatographic fingerprint can reveal the chemical characteristics of drugs and is an effective
method for evaluating the similarity and quality of TCMs [5–8]. However, this technique has difficulties
in finding the main active constituents of TCMs in response to certain pharmacological effects. Therefore,
in order to solve this problem, scholars have found that mathematical statistical methods can be used
to establish spectrum–effect relationships and find the effective constituents corresponding to certain
pharmacodynamic effects in TCMs [9–13]. For example, by using the spectrum–effect relationship, Liu
et al. found that the 11 components of Fangji Huangqi Tang are the main constituents in anti-adriamycin
nephropathy [14] and Wang et al. found that the three constituents of Collagen Peptides were the
main antioxidants [15]. In this paper, we will explore the main active antitussive, expectorant, and
anti-inflammatory constituents in Farfarae Flos, based on the spectrum–effect relationship.

Farfarae Flos (FF) is the dried flower bud of Tussilago Farfara L., which grows wildly in China;
locals call it “Kuandonghua”. In China, it is distributed in the Hubei, Hunan, Jiangxi, Guizhou,
Yunnan, and Gansu provinces. Studies on its phytochemistry and pharmacology have shown that the
main active constituents contributing to the antitussive, expectorant, and anti-inflammatory effects
of FF are phenolic acids and flavonoids [16–19]. Many scholars have found multiple compounds in
FF [20], but a method is still needed to screen out the main active compounds from a large number of
compounds. In addition, we found that, when treating diseases, people usually use honey-processed
FF. Processing can change the chemical composition of TCMs, but it is still difficult to identify which
are the main active constituents in the chemical composition which change after processing. Therefore,
it is necessary to use both raw and processed samples to establish the spectrum–effect relationships
and find the main active constituents of FF.

In this paper, the UPLC-QDA method was used to establish the chromatography fingerprint of
raw and processed FF and to carry out a similarity analysis (SA) among these samples [21]. Then,
principal component analysis (PCA) and hierarchical cluster analysis (HCA) were performed to classify
18 batches of FF, following which 10 representative batches of FF (six batches of raw FF and four
batches of processed FF) were screened to study their antitussive, expectorant, and anti-inflammatory
effects [22]. Finally, the spectrum–effect relationships of raw and processed FF were established based
on grey relational analysis (GRA) and partial least squares regression analysis (PLSR). In this paper,
the spectrum–effect relationship was established by using both raw and processed FF for the first time,
in order to form a more effective research model of the spectrum–effect relationships of a traditional
Chinese medicine.

2. Results and Discussion

2.1. Results of UPLC Fingerprints

2.1.1. Optimization of UPLC Chromatographic Conditions

In this study, we optimized the Thermo Hypersil GOLD column (100 mm × 2.1 mm, 1.9 µm)
(Thermo Scientific TM, Waltham, MA, USA) and the Waters Acquity UHPLC HSS T3 column (50 mm
× 2.1 mm, 1.8 µm) (Waters, Milford, MA, USA). The results showed that the Waters Acquity UHPLC
HSS T3 column (50 mm × 2.1 mm, 1.8 µm) had a better separation effect and more chromatography
peaks. Furthermore, we tested different mobile phase conditions, such as methanol/water and
acetonitrile/water. The combination of acetonitrile and 3% aqueous formic acid (v/v) was selected as
the best mobile phase for separation in this experiment. Gradient optimization was carried out for the
liquid phase method, in order to obtain more peaks and good separation in the fingerprint.
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2.1.2. UPLC Fingerprints of FF Samples

UPLC fingerprints of 18 batches of FF samples were obtained under the optimized condition.
According to the length of the retention time, 14 compounds were labeled (as P1–P14). Their compound,
retention times, Precursor (m/z), and chemical structures are shown in Table 1. After comparison with
the standard, they were determined as 3-CQA, P2, Rutin, P4, 3,5-CQA, 3,4-CQA, 4,5-CQA, Kaempferol,
P9, P10, P11, P12, P13, and P14. The results of the fingerprint are shown in Figure 1.

The results of the method validation showed that the RSD of RRT and RPA were less than
5% and 6%, respectively, indicating that the precision, repeatability, and stability were good. The
chromatography fingerprint method is accurate, effective, and suitable for sample analysis. The results
of the RSD are shown in Table 2.

The result of the fingerprint indicates that all samples were genuine from a chemical level. The FF
had several common peaks, which could effectively identify the authenticity of the sample. Through
the area and proportion of the main characteristic peaks of the fingerprint, the quality of samples can
be effectively controlled and relatively stable.
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Table 1. Compounds, retention times, Precursor (m/z), and chemical structures of the constituents studied.

Peak Compound Retention Time (Min) Precursor (m/z) Adduct Structure

P1 3-CQA (Chlorogenic acid) 3.47 376.98 [M + Na]+
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Table 1. Cont.

Peak Compound Retention Time (Min) Precursor (m/z) Adduct Structure

P6 3,4-CQA
(3,4-Dicaffeoylquinic acid) 12.98 538.92 [M + Na]+
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Table 2. Results of relative retention times and relative peak areas of precision, repeatability, and stability.

Peak No. RRT R.S.D. (%) RPA R.S.D. (%)

Precision Repeatability Stability Precision Repeatability Stability

1 1.000 0.19 1.14 0.92 1.000 3.55 2.85 3.95
2 1.094 0.34 0.28 0.99 0.268 3.85 3.61 2.90
3 1.193 0.33 0.64 0.61 0.918 3.53 3.64 4.23
4 1.216 0.53 0.71 0.55 1.088 4.32 3.01 2.91
5 1.306 0.28 1.62 0.86 0.776 3.74 3.55 4.46
6 1.668 1.13 0.52 0.92 0.825 4.33 3.05 5.02
7 1.752 0.74 0.46 0.91 0.086 4.76 3.92 4.46
8 1.816 0.68 0.89 0.51 0.152 4.28 3.60 4.08
9 2.511 0.44 0.67 0.87 0.535 2.53 2.60 3.73

10 2.593 0.57 1.33 1.03 2.100 2.44 3.36 3.77
11 2.671 0.60 0.73 0.88 2.132 2.04 3.11 3.92
12 3.353 1.05 1.11 0.82 1.744 4.41 4.62 3.92
13 3.654 0.94 0.83 0.69 6.995 3.81 2.76 2.55
14 4.358 0.45 0.37 1.02 0.922 2.48 2.60 4.48

2.1.3. SA of Fingerprints

The SA results are shown in Table 3. The SA of FF samples from different batches were evaluated,
and the results show that the SA of samples from S11 (hubei) and S16 (hebei) were less than 0.80. Other
batches of samples had good similarities. However, even in the same TCM, the content of different
compounds was not the same; the region may be the reason for these differences. Therefore, it is
necessary to carry out quality control and investigate the pharmacodynamics of FF.

Table 3. Similarity analysis of 18 Batches of Farfarae Flos (FF) Samples.

NO. SA NO. SA

M1 0.98 S10 0.91
M2 0.90 S11 0.79
M3 0.92 S12 0.98
M4 0.94 S13 0.92
M5 0.90 S14 0.87
M6 0.93 S15 0.94
M7 0.92 S16 0.74
S8 0.93 S17 0.85
S9 0.92 S18 0.90

2.1.4. Results of Hierarchical Cluster Analysis (HCA)

The HCA results are shown in Figure 2. The green lines are raw samples and the red lines are
processed samples. HCA analysis of the 18 batches of samples shows that the raw samples S10, S11,
S12, S13, S14, S15, S16, and S17 are clearly divided into a cluster, while the processed samples M1, M2,
M3, M4, M5, M6, and M7 are clearly classified into another cluster. However, the raw samples S8,
S9, and S18, which were purchased from the Anhui province, belonged to the cluster of processed
samples. Therefore, we infer that the samples from the Anhui province may have been processed
samples which were mistakenly sold as raw samples. This indicates that HCA is a fast and accurate
method for identifying raw and processed samples. In the following pharmacological experiments, we
selected samples from the cluster of raw samples (S10, S11, S12, S13, S14, S15, S16, and S17), the cluster
of processed samples (M1, M2, M3, M4, M5, M6, and M7), and the Anhui samples (S8, S9, and S18).
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2.1.5. Results of PCA

The PCA results are shown in Figure 3, where the green dots are raw samples and the red dots
are processed samples. PCA results show that the Anhui raw samples (S8, S9, and S18) were more
similar to the processed samples, which is consistent with our previous inference. The scores of M3
and M5 in the processed samples differed greatly from those of the other processed samples (M1,
M2, M4, M6 and M7). We infer that this was because the processing technology of each batch of
processed samples is different, which leads to differences in the content of compounds in the samples.
Therefore, it is necessary for us to conduct processing technology experiments in the future and study
the best processing program for FF. Therefore, it is necessary to study M3 and M5 in the following
pharmacological experiments.
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2.1.6. Results of Screening Differences Samples

According to the results of the fingerprint, SA, HCA, and PCA, 10 batches of representative samples
were screened for the following pharmacological experiments; the 10 batches were re-numbered, which
is shown in Table 4. We selected the peak area of 14 common peaks from 10 batches of samples to
prepare for the establishment of the spectrum–effect relationship.

Table 4. Renumbering of the 10 screened FF sample batches.

Previous Number Renumber Previous Number Renumber

S8 X1 S15 X6
S9 X2 M1 Y1
S10 X3 M3 Y2
S12 X4 M5 Y3
S14 X5 M6 Y4

2.2. Results of Pharmacological Experiments

2.2.1. Results of Antitussive Experiments

The number of coughs in two minutes after mice were stimulated by ammonia is an important
index to evaluate the efficacy of antitussive drugs. Compared with the control group, the number
of coughs in the administration group was significantly reduced, indicating that the drug had an
antitussive effect. However, the cough inhibition rate in each group was significantly different, which
was speculated to have been caused by the difference in the content of various compounds in the drug.
The results are shown in Figure 4A.
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Figure 4. (A) Results of antitussive activity test, (B) results of expectorant activity test, and (C) results of
anti-inflammatory activity test (t-test; * p≤ 0.05, ** p≤ 0.01). The positive drug groups are pentoxyverine,
ammonium chloride, and dexamethasone, respectively. X1–X6: raw sample group, Y1–Y4: processed
sample group.

2.2.2. Evaluation of Expectorant Experiments

Phenol red is expelled from the body along with the respiration of mice. Therefore, the
determination of phenol red content in the trachea of mice can be used to determine the expectorant
effect of a drug, where the amount of phenol red content in the trachea is positively correlated with the
expectorant effect. The results are shown in Figure 4B.

The results show that the processed samples had a good expectorant effect. However, compared
with the processed product, there was a huge difference in the expectorant function of the raw drug,
which further confirmed the positive effect of processing on FF. We speculate that this may be caused
by an increase in the main active constituents in the processed samples.
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2.2.3. Evaluation of Anti-Inflammatory Experiments

In this experiment, ear swelling rate was used as the index to evaluate the anti-inflammatory
effect, where ear swelling rate = (weight of right ear - weight of left ear)/weight of left ear. The
drugs demonstrated a good anti-inflammatory effect, but there were differences in the degree of
anti-inflammatory activity. The results are shown in Figure 4C.

2.3. Analysis of Spectrum–Effect Relationships

2.3.1. Results of Grey Relational Analysis

Using the 14 compounds as factors, the correlation coefficients between factors and
pharmacological effects were calculated. The experimental results of GRA are shown in Table 5.
The sequence obtained by GRA was P5 > P8 > P12 > P7 > P14 > P10 > P9 > P3 > P4, which indicates
that P5 had the strongest antitussive effect, while the impacts of P2 and P1 were minimal. In addition,
the effects of P11, P13, and P6 should not be ignored.

Table 5. Grey relational analysis (GRA) results of antitussive, expectorant, anti-inflammatory experiments.

Antitussive Effect Expectorant Effect Anti-Inflammatory Effect

Order Peak Correlation
Coefficient Peak Correlation

Coefficient Peak Correlation
Coefficient

1 P5 0.6945 P14 0.7648 P14 0.7307
2 P8 0.6850 P9 0.7481 P9 0.6844
3 P12 0.6821 P12 0.7361 P2 0.6506
4 P7 0.6818 P10 0.7315 P13 0.6495
5 P14 0.6807 P11 0.7267 P10 0.6482
6 P10 0.6645 P4 0.7261 P11 0.6426
7 P9 0.6644 P3 0.7130 P12 0.6393
8 P3 0.6611 P2 0.7044 P3 0.6386
9 P4 0.6557 P7 0.7014 P4 0.6364

10 P11 0.6473 P13 0.6919 P1 0.6337
11 P13 0.6408 P6 0.6868 P8 0.6337
12 P6 0.6380 P1 0.6791 P6 0.6254
13 P2 0.6273 P5 0.6748 P5 0.6228
14 P1 0.6234 P8 0.6550 P7 0.6184

In expectorant effect, the result of GRA was P14 > P9 > P12 > P10 > P11 > P4 > P3 > P2 > P7
and, thus, P14 had the strongest expectorant effect. The GRA results of P13, P6, P1, P5, and P8 were
not obvious.

The inhibitory effects on inflammation of the 14 common peaks were in the following order: P14
> P9 > P2 > P13 > P10 > P11 > P12 > P3 > P4 > P1. The results indicate that P14 had the strongest
anti-inflammatory effect, while the impact of P7 was minimal; furthermore, the common peaks of P8,
P6, and P5 showed a more general effect.

Therefore, we believe that, in antitussive effect, the main active components of FF are P5, P8, P12,
P7, and P14. In expectorant effect, the main active components of FF are P14, P9, P12, and P10. In
anti-inflammatory effect, the main active components of FF are P14, P9, P2, P13, and P10. However, the
correlation coefficients were generally low, which we inferred to potentially be linked to the relative
concentrations. However, we had already administered a large dose of the drug, so we believe it
may be due to the poor absorption of the active components of FF in mice, so it is necessary to study
whether there are drugs or other ways to promote the absorption of FF in the future.
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2.3.2. Results of Partial Least Squares Regression Analysis

PLSR analysis is a multiple regression model, combining multiple data fusion and principal
component analysis. The regression equation is obtained using the Simca-P (Simca-P14.1, Umetrics,
Umeå, Sweden) software, and the principal components are extracted to make the regression model
linear. The degree of correlation between X (concentrations of the 14 compounds) and Y (drug efficacy)
was determined by using the regression coefficient and the VIP value together as an index. When four
main components were extracted, the models corresponding to antitussive and expectorant effects
showed a linear relationship. When five main components were extracted, the model corresponding to
the anti-inflammatory effect was linear. The results obtained are shown in Figure 5.

The PLSR results showed that the main active constituents with antitussive effect were P8, P7, P5,
P4, and P9. The main active constituents with expectorant effect were P2, P14, P4, and P11. The main
active constituents with anti-inflammatory effect were P2, P13, P9, P5, and P12. These results were
not completely consistent with the results of GRA, so it is necessary to use a variety of mathematical
statistical methods to comprehensively evaluate and study the spectrum–effect of FF, in order to
improve the accuracy of the results.

2.4. Discussion

This paper has proved that both raw and processed FF have antitussive and anti-inflammatory
effects. And FF has expectorant effect after processing. Then the spectrum–effect relationship of the
three pharmacological effects were established by GRA and PLSR. In this study, a variety of ingredients
with the highest contribution to the three pharmacological effects were identified. To our knowledge,
this is the first time to establish the spectrum–effect relationship using both raw and processed FF.

As a complex system with multiple components and multiple targets, synergistic or antagonistic
interactions among the different components of TCM should be considered. Therefore, it is
more scientific and reasonable for the study of the spectrum–effect relationship. However, the
screening of active ingredients by the spectrum–effect relationship still needs to be verified by
subsequent experiments.

Previous studies have shown that the four caffeoylquinic acids in FF have antitussive, expectorant
and anti-inflammatory effects [17]. In this study, we found not only four phenolic acids with these
pharmacological effects, but also some other compounds with higher contribution. In the following
study, it will be necessary to study the mechanism of these compounds at the molecular level.

In this study, the spectral–effect relationship can screen the active compounds of FF
comprehensively and maintain consistency between medical and biological effects. Laid the foundation
for the development of new drugs and discovery of lead compounds.

In the future, we will carry out qualitative and quantitative research on unknown compounds
with high contributions. We will then conduct validation experiments in vivo and in vitro. Finally, the
mechanism of these compounds at the molecular level was studied. We expect this experiment
will provide a precedent for other TCM and found more compounds that respond to certain
pharmacological effects.
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3. Materials and Methods

3.1. Instruments

Acetonitrile (UPLC grade) was obtained from Fisher Scientific International (USA). A microplate
reader was obtained from BioTek (Winooski, VT, USA).

3.2. Materials and Reagents

In the medicinal materials market, 18 batches of FF samples (7 batches of honey samples and 11
batches of raw samples) from various regions of China were purchased and appraised by Professor Su
Lianjie of the Heilongjiang University of Traditional Chinese Medicine. They were all the Chinese
herbal medicine Farfarae Flos. Table 6 shows the originating regions of the 18 batches of samples.

Table 6. Origin of the 18 batches of Farfarae Flos samples.

NO. Origin NO. Origin

M1 Yunnan S10 Gansu
M2 Gansu S11 Hubei
M3 Sichuan S12 Hubei
M4 Jiangxi S13 Hubei
M5 Heilongjiang S14 Gansu
M6 Hebei S15 Gansu
M7 Hebei S16 Hebei
S8 Anhui S17 Heilongjiang
S9 Anhui S18 Anhui

Six standards (3,5-CQA, 3,4-CQA, 4,5-CQA, 3-CQA, rutin, and kaempferol) were purchased
from the Shanghai Nature Standard Technology Co., Ltd. (Shanghai, China) and the purity was
chromatographic grade. Water was purchased from Hangzhou Wahaha Company. Other reagents
were all above 98% purity.

3.3. Animals

ICR mice (20–22 g) were purchased from the GLP of the Heilongjiang University of Chinese
Medicine (Harbin, China). All mice were given free access to food and water under a standard
light–dark cycle. The indoor temperature was 25 ± 2 ◦C and relative humidity was 50% ± 10%. The
animal study was performed according to the international rules considering animal experiments and
the internationally accepted ethical principles for laboratory animal use and care. Animal welfare and
experimental procedures were carried out in accordance with the ethical regulations of Heilongjiang
University of Chinese Medicine (License number: SCXK (Hei) 2013-004.).

3.4. UPLC-QDA Fingerprints

3.4.1. Establishment of UPLC Conditions

The Waters ACQUITY UPLC system (Waters, Milford, MA, USA) was used for fingerprint
analysis, which was equipped with a vacuum degasser, quaternary pump, sample manager, and
single quadrupole mass spectrometry (QDA) detector (Waters, Milford, MA, USA). The chromatogram
was analyzed using a Waters ACQUITY T3 column (50 mm × 2.1 mm, 1.8 µm) at 40 ◦C. The mobile
phase consisted of acetonitrile (A) and water containing 0.3% formic acid (B). The optimized gradient
condition was: 0–14 min: 5%–22% A, 14–15 min: 22%–30% A, 15–17 min: 30–40% A, 17–20 min: 40–50%
A, 20–22 min: 50–55% A, 22–31 min: 55%–60% A, 31–43 min: 60%–64% A, 43–49 min: 64%–80% A,
49–51 min: 80% A. The flow rate was set to 0.3 mL/min and volume injected was set as 2 µL.
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3.4.2. Preparation of Sample Solutions

A 5 g FF sample was added into a 50 mL centrifuge tube, to which 50 mL of 85% methanol water
was added. According to the method in the literature, ultrasonic extraction was performed for 60 min
(60 kHz, 500 W). After centrifugation, the supernatant was filtered by a 2.2 µm filter membrane and
stored in a refrigerator at 4 ◦C for further analysis. All samples were treated using the above method.

3.4.3. Preparation of Standard Solutions

The six standards (3,5-CQA, 3,4-CQA, 4,5-CQA, 3-CQA, rutin, and kaempferol) were accurately
weighed to prepare the original solution with a concentration of 1.0 g/mL. These were stored in a
refrigerator at 4 ◦C for further analysis.

3.4.4. Method Validation of Fingerprint Analysis

ChemPatternTM software (version 2017, Chemmind Technologies. Co., Ltd., Beijing, CHN) was
used to obtain the fingerprint, which was then verified for accuracy, repeatability, and stability. Both
relative retention time (RRT) and relative peak area (RPA) are available in the software. Precision: six
consecutive analyses were performed using the same method. Repeatability: the sample was tested 6
times. Stability: the samples were measured at 0, 2, 4, 6, 8, 12, and 24 h.

3.4.5. Similarity Analysis of UPLC Fingerprints

To establish the representative chromatographic fingerprint, a total of 18 Tussilago farfara L. samples
(7 batches of honey-processed Tussilago farfara L. (M1–M7) and 11 batches of raw Tussilago farfara L.
(S8–S18)) were analyzed by the above method. The chromatography fingerprints of FF were established
using the ChemPatternTM software (version 2017, Chemmind Technologies. Co., Ltd., Beijing, CHN).

3.4.6. PCA

Principal component analysis (PCA) is a statistical analysis method which reduces multiple
indicators into a few comprehensive indicators [23]. In the study of multiple indicators (variables), it is
often used because the number of variables is too large, and there are certain correlations between
them, such that the observed data overlaps, to some extent. When there are many variables, it is
more troublesome to study the distribution of samples in high-dimensional space. PCA adopts a
dimension reduction method to find several comprehensive factors to represent the original variables,
such that these comprehensive factors reflect the information quantity of the original variables as
much as possible and are not related to each other, thus simplifying the analysis. In this paper, PCA
of different batches of FF samples was carried out using the ChemPatternTM software (version 2017,
Chemmind Technologies. Co., Ltd., Beijing, CHN).

3.4.7. HCA

The function of HCA is to establish a classification method that classifies a batch of samples or
variables according to their degree of intimacy in nature. The ChemPatternTM software (Chemmind
Technologies. Co., Ltd.) was used to establish the HCA model.

3.5. Experiments of Pharmacodynamic Effects

In this paper, 10 batches of representative drugs (4 batches of honey-processed FF (Y1–Y4) and 6
batches of raw FF (X1–X6)) were screened by SA, PCA, and HCA, where antitussive, expectorant, and
anti-inflammatory pharmacodynamic effects were investigated.
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3.5.1. Preparation of Gavage

The FF was placed in eight volumes of ethanol and heated for 1.5 h. The liquid was taken out and
the process was repeated three times. All liquids were combined and concentrated to an appropriate
volume using a rotary evaporator, and the result was stored in a refrigerator at 4 ◦C for further analysis.

3.5.2. Evaluation of Antitussive Activity

We studied the effect of FF on cough in mice caused by ammonia liquor. A medical cotton ball
was moistened with 1.5 mL of ammonia liquor, placed in a 1000 mL beaker with the mice, covered
with a glass plate, and the cough latency of the mice was recorded. One minute later, the mice were
transferred to a clean 1000 mL volume beaker and the number of coughs in the mice over 2 min was
recorded. Mice with an incubation period of less than 1 min and a cough frequency of more than 3
times in 1 min were selected as experimental animals. After 24 h of recovery, 48 mice were randomly
divided into 12 groups and given the test drugs (91 g/kg) for 5 days, using pentoxyverine (1.75 mg/kg)
as the positive control. One hour after the last administration, the experiment was carried out by the
above method. The same skilled operator was used for the experiment and recording.

3.5.3. Evaluation of Expectorant Activity

Using the characteristics of partial excretion from the airway after intraperitoneal injection of
phenol red by mice, the amount of phenol red excretion in the airway of mice was used to determine
the effect of the test drug on airway permeability and secretion volume. To understand the effect of FF
on mice, a total of 48 mice were randomly divided into 12 groups and administered continuously for 5
days. The positive drug used ammonium chloride (1 g/kg). The mice were starved for 16 h before the
experiment and were only given water. The test drug was intragastrically administered 30 min before
the injection of phenol red. Then, the mice were intraperitoneally injected with 0.2%/10 g of 1% phenol
red physiological saline solution. The neck was sacrificed 30 min after injection. The blood in the mice
was left to coagulate, then the trachea was removed and 1.5 mL of 2% sodium bicarbonate solution was
immediately added. The sample was sonicated for 15 min and centrifuged at 2500 r for 5 min. Finally,
the supernatant was taken and the absorbance at 545 nm was measured using a microplate reader.

3.5.4. Evaluation of Anti-Inflammatory Activity

The anti-inflammatory activity of FF was determined by the degree of swelling of the mouse ear
after application of xylene. Forty-eight mice were randomly divided into 12 groups and administered
continuously for 5 days. The positive drug was dexamethasone (10.5 mg/kg). Thirty minutes after the
last administration of the test drugs, 0.02 mL of xylene was uniformly applied to the front and rear
surfaces of the right ear, and an equal volume of water was applied to the left ear. After 30 min, the
neck was sacrificed, and a disc was weighed with a 6 mm puncher at the same position of both ears.
The weight of each right ear disc minus the weight of the left ear disc was used to calculate the degree
of swelling.

3.6. The Spectrum-Effect Relationship

The chemical fingerprint addresses the problem of complex composition in TCM, to a certain
extent, but the fingerprint cannot determine all the active ingredients in TCM and cannot confirm the
effective ingredients with a certain efficacy. Therefore, the use of fingerprints to evaluate the quality of
traditional Chinese medicines is obviously not enough. However, with the development of fingerprints,
the fingerprints can be linked to the therapeutic effects by chemometric methods; this concept is called
the “spectrum–effect relationship” method. This paper establishes the spectrum–effect relationships
between the fingerprint and the three pharmacodynamic effects. In this paper, grey relational analysis
(GRA) and partial least squares regression analysis (PLSR) are used to establish the spectrum–effect
relationship between fingerprint and three pharmacodynamics.
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3.6.1. Grey Relational Analysis (GRA)

Grey relational analysis (GRA) is a quantitative description and comparison of the evolution of a
system. It can solve for the relationships in complex multivariate and multi-factor situations. In this
paper, the data processing system (version 7.05., Hangzhou Ruifeng information technology co. LTD,
Hangzhou, China) software was used to study the correlation between the three effects and 14 common
peaks in the FF samples, and to find the main active constituents corresponding to the pharmacological
effects [24].

3.6.2. Partial Least Squares Regression (PLSR) Model

Regression, in the modern sense, is a statistical analysis method which studies the dependence
of dependent variables on independent variables. The purpose is to estimate or predict the mean of
dependent variables by the given values of the independent variables. It can be used for forecasting,
time-series modeling, and finding causal relationships between variables. Simply put, regression is
used to analyze the relationship between the dependent variable and the independent variable, in order
to provide a scientific and reasonable method for analyzing and predicting data. When the amount
of data is small (i.e., even smaller than the variable dimension) and the correlation is relatively large,
partial least squares regression (PLSR) has very high validity and practicability. In this study, PLSR was
used to establish models for 14 common peaks and 3 pharmacodynamics. The Simca-P was applied to
establish the PLSR model, thus finding the main active constituents for the three pharmacodynamic
effects by looking at the VIP and regression coefficients.

4. Conclusions

In this work, UPLC-QDA fingerprints and a series of in vivo antitussive, expectorant, and
anti-inflammatory effects were combined to investigate the spectrum–effect relationship of FF. The
GRA and PLSR results show that Kaempferol (P8), 4,5-CQA (P7), 3,5-CQA (P5), and P4 were the main
active antitussive constituents; P2, P14, P4, and P11 were the main active expectorant constituents; and
P2, P13, and P9 were the main active anti-inflammatory constituents. The structures and effects of the
substances P2, P14, P4, P11, P13, and P9 require further confirmation: however, we determined their
precursors in this paper. These compounds may have potential as drugs for the treatment or prevention
of antitussive, expectorant, and anti-inflammatory. The study also demonstrates the value of the
spectrum–effect method in FF while also found a more scientific and efficient method to search for
active compounds in other TCM. Finally, the exact mechanisms explaining the three pharmacological
effects of compounds in FF will be studied in the future.
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