
RESEARCH ARTICLE

Easyreporting simplifies the implementation

of Reproducible Research layers in R software

Dario RighelliID
1,2*, Claudia Angelini2*

1 Department of Statistical Sciences, University of Padova, Padua, Italy, 2 Istituto per le Applicazioni del

Calcolo “Mauro Picone”, National Research Council, Naples, Italy

* d.righelli@na.iac.cnr.it (DR); c.angelini@iac.cnr.it (CA)

Abstract

During last years “irreproducibility” became a general problem in omics data analysis due to

the use of sophisticated and poorly described computational procedures. For avoiding mis-

leading results, it is necessary to inspect and reproduce the entire data analysis as a unified

product. Reproducible Research (RR) provides general guidelines for public access to the

analytic data and related analysis code combined with natural language documentation,

allowing third-parties to reproduce the findings. We developed easyreporting, a novel R/Bio-

conductor package, to facilitate the implementation of an RR layer inside reports/tools. We

describe the main functionalities and illustrate the organization of an analysis report using a

typical case study concerning the analysis of RNA-seq data. Then, we show how to use

easyreporting in other projects to trace R functions automatically. This latter feature helps

developers to implement procedures that automatically keep track of the analysis steps.

Easyreporting can be useful in supporting the reproducibility of any data analysis project

and shows great advantages for the implementation of R packages and GUIs. It turns out to

be very helpful in bioinformatics, where the complexity of the analyses makes it extremely

difficult to trace all the steps and parameters used in the study.

Introduction

Due to accidental mistakes or misusage of sophisticated computational methods, many

research findings in omics science are considered false (or partially incorrect) [1]. Moreover,

in several cases, published results are not entirely reproducible due to the lack of information.

For example, the analysis of the massive amount of omics data produced by high-throughput

technologies requires combining several different methodologies from the preprocessing, data

cleaning, and normalization to the downstream analysis. Therefore, it becomes challenging to

trace all the steps and the parameters used within a complete analysis. Consequently, the lack

of details, such as user-parameter or subtle data manipulation made with small code lines not

reported in the material and methods sections of a manuscript, can lead to findings that are

not reproducible. To prevent misleading results, several authors suggested adopting some best

practices [2–4] that should help in publishing reproducible results. Nevertheless, the proposed

approaches can be time-consuming and require significant effort by researchers. Therefore, to

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0244122 May 10, 2021 1 / 13

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Righelli D, Angelini C (2021)

Easyreporting simplifies the implementation of

Reproducible Research layers in R software. PLoS

ONE 16(5): e0244122. https://doi.org/10.1371/

journal.pone.0244122

Editor: Eduardo Andrés-León, Institute of

Parasitology and Biomedicine, SPAIN

Received: December 1, 2020

Accepted: April 20, 2021

Published: May 10, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0244122

Copyright: © 2021 Righelli, Angelini. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All Supplementary

Files and their source codes are available at https://

github.com/drighelli/easyreporting_supplementary.

Funding: The work has been partially supported by

the Regione Campania Project ADViSE assigned to

https://orcid.org/0000-0003-1504-3583
https://doi.org/10.1371/journal.pone.0244122
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0244122&domain=pdf&date_stamp=2021-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0244122&domain=pdf&date_stamp=2021-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0244122&domain=pdf&date_stamp=2021-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0244122&domain=pdf&date_stamp=2021-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0244122&domain=pdf&date_stamp=2021-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0244122&domain=pdf&date_stamp=2021-05-10
https://doi.org/10.1371/journal.pone.0244122
https://doi.org/10.1371/journal.pone.0244122
https://doi.org/10.1371/journal.pone.0244122
http://creativecommons.org/licenses/by/4.0/
https://github.com/drighelli/easyreporting_supplementary
https://github.com/drighelli/easyreporting_supplementary

fully exploit the advantages of Reproducible Research (RR), it is still necessary to provide tools

that can trace all the details using automatic procedures [5, 6].

Recently, the scientific community proposed several approaches to support RR by develop-

ing tools that require a lower cost in terms of time and efforts to be used [5–9]. Among the dif-

ferent approaches, one common idea is to describe the steps with an analysis report built up

as a mixture of natural language sentences along with computational language and graphical

outputs. This document should include: i) the analyzed data, ii) the Code Chunks (CCs), iii)

results and intermediate outputs (as tables and figures), and iv) all information that can

enhance the work comprehensibility and reproducibility. Using human-readable reports

instead of other procedures (for example, virtualization solutions such as docker containers)

have the advantage that the final document can be easily understood by non-expert users,

whereas docker containers require computationally experienced users. Moreover, a human-

readable report can be enriched with comments and favors knowledge transfer. Nevertheless,

the two approaches are complementary and can be combined to achieve full reproducibility in

terms of input/output of each algorithm/function and the possibility to re-create a computa-

tional environment that does not depend on specific user installations.

The R community proposed several solutions based on the literate statistical programming,

like sweave [10], knitr and rmarkdown [11]. Within this framework, the authors can release a

data analysis as a human-readable document that incorporates data, computational methods

(including the short lines of code that are often omitted in a high-level description of the

computational procedure), user-parameters, tables, and figures. Moreover, this report is auto-

matically updated each time the analyst introduces some workflow changes to preserve com-

plete reproducibility. R Studio (https://rstudio.com) already contains several functionalities

that can help an analyst compiling detailed reports. Other R packages, such as Drake [12], go

through the same directions.

Even though rmarkdown is very popular and easy to use inside the R community for writing

step-by-step analysis reports, its usability when developing automated tools as Graphical User

Interfaces (GUI) or packages is limited. Despite several efforts, incorporating a RR layer in

other software and automatically tracing all the steps performed during a point-and-click anal-

ysis is still challenging. In the past, we proposed a solution with the RNASeqGUI [13, 14] proj-

ect. RNASeqGUI is a GUI for analyzing RNA-seq data that automatically traces the analysis

steps and reports them in a unique report. Although very useful, this solution did not allow the

user to add personal comments, a particularly relevant requisite for knowledge transfer. More-

over, its implementation was time-consuming.

In light of these reasons, we developed easyreporting, a R/Bioconductor package allowing us

to construct reports in different formats (i.e. HTML, PDF) that automatically incorporate

comments with data, code, plots, and tables. In this work, we describe the easyreporting class

and its methods. Then, we show i) how easyreporting can be used to generate user analysis

reports and ii) how easyreporting can be used to implement packages and GUIs that automati-

cally trace their functions and produce an analysis report. This latter feature makes easyreport-
ing a particularly relevant and practical tool to improve user-friendly software. Moreover, the

same approach can be used to create novel R packages or to trace user-defined functions.

Materials and methods

Implementation

Easyreporting is an open-source R/Bioconductor package aimed to 1) support analysts to

speed up the compilation of their analysis reports and 2) help developers to integrate a RR

PLOS ONE Easyreporting simplifies the implementation of Reproducible Research layers in R software

PLOS ONE | https://doi.org/10.1371/journal.pone.0244122 May 10, 2021 2 / 13

Dr. Claudia Angelini. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript. There

was no additional external funding received for this

study.

Competing interests: The authors have declared

that no competing interests exist.

https://rstudio.com
https://doi.org/10.1371/journal.pone.0244122

layer inside their R software products (such as GUIs and packages). While the first aim can

also be easily achieved using other similar tools, the latter constitutes one of the main advan-

tages of our solution. In such a way, thanks to minimal efforts on the developers’ side, the end-

user can obtain an rmarkdown file that incorporates the source code generated during the

analysis with the user-friendly tools. Once compiled, this document can then be published as

supplementary material of a scientific article, helping the interested community to reproduce

the computational part of the work entirely, as suggested in [15]. Moreover, the document can

be easily organized into sections, describing different analysis steps, and enriched with natural

language comments, making the report more explainable to increase the knowledge transfer.

General description and initialization

Easyreporting is structured as an S4 class representing a schematic view of a rmarkdown file

(see Fig 1). Thanks to easyreporting, an analysis report can be seen as a particular instance of

the package class, where the attributes represent the report characteristics. Within this class,

the available methods are useful for attribute manipulations and for inserting comments and

organizing section titles inside the report.

When easyreporting is used to create a report for novel analysis, the analyst needs to initial-

ize an instance of the easyreporting class with the easyreporting() constructor function, passing

as mandatory arguments the path and the name of the report file accompanied by its title.

Optionally, it is possible to specify one or more authors’ names (with emails, affiliations, affilia-

tion websites, ORCIDs, and personal websites, like in a publication). Additionally, during the

class creation, it is possible to define a bibliography latex file through the bibliography argu-

ment, that will be compiled as reference list at the end of the report (see Table 1).

In this way, each analysis/project is uniquely associated with a specific easyreporting
instance, and hence to the corresponding rmarkdown file. The initialization step is transparent

to any software user since the developers handle the tool’s back-end.

During the initialization, the class constructor automatically creates the report file inside

the specified folder tree, setting up its header and declaring the general options for the rmark-
down file. As soon as the analyst or the user proceeds with his analysis, the rmarkdown file is

updated with a new CC each time the analysis software performs a new analysis step. When

the analysis is complete, it is possible to compile the report using the compile()method, which

produces the final report (in the user-defined format) and appends a final CC with the sessio-
nInfo to trace all the packages versions used for the analysis. Additionally, this process creates

two others optional sections, one with the cited references when a bibliography file has been

specified during the easyreporting instance creation, and another named Resources Availability
with the resources specified with the addResource()method (see Section 3.9 in S1 File for more

details).

General exploitation

The easyreporting class is equipped with several methods for rmarkdown CC construction (see

Table 1 for the full list). Once an easyreporting instance is available, it is possible to organize

the report by inserting up to six levels of titles by using themkdTitlemethod. It is also possible

to add natural language comments withmkdGeneralMsg. The latter feature is particularly rele-

vant to make the analysis more understandable.

For the implementation of the CCs creation, we suggest two main approaches based on

the methods available in the class (see the examples in Listings 2 and 3 shown in the Results

Section): i) The first approach builds a CC as a typical step-by-step process. It consists of

opening a CC (mkdCodeChunkSt), adding variables assignments and/or function callings

PLOS ONE Easyreporting simplifies the implementation of Reproducible Research layers in R software

PLOS ONE | https://doi.org/10.1371/journal.pone.0244122 May 10, 2021 3 / 13

https://doi.org/10.1371/journal.pone.0244122

Fig 1. The easyreporting class package is a representation of a rmarkdown file. The color codes indicate which attribute/method represents the same-color portion of

the rmarkdown first, and the compiled final report then (in this example an HTML file).

https://doi.org/10.1371/journal.pone.0244122.g001

PLOS ONE Easyreporting simplifies the implementation of Reproducible Research layers in R software

PLOS ONE | https://doi.org/10.1371/journal.pone.0244122 May 10, 2021 4 / 13

https://doi.org/10.1371/journal.pone.0244122.g001
https://doi.org/10.1371/journal.pone.0244122

(mkdVariableAssignement), and finally closing the CC (mkdCodeChunkEnd). In this approach,

it is possible to add comments withmkdGeneralMsg before closing the CC. ii) The second

approach builds the CC in a single step by using themkdCodeChunkCompletemethod. The

method automatically embraces the tracking code into a new CC, while the user has to take

care of the variable assignments and/or the function he/she wants to trace by passing it as an

argument. In this approach, the user can also add personal comments passing them as an addi-

tional argument. Then, easyreporting automatically adds the comment before the new CC.

The first approach appears useful when one needs to carry out several R commands in a sin-

gle CC. It is similar in the spirit to the functionalities offered by R-studio or other development

environments, however since it is entirely command-line, it can be easily used on systems with

limited development capabilities. By contrast, the second approach is more appropriate for

tracing a single function call automatically. The next section will show how this second possi-

bility can help wrap functions performing a specific step and trace their execution within GUIs

or packages.

Implementing automatical tracing functions and their usage within GUIs

The previously described CCs creation approaches can be adapted to trace several steps of an

analysis pipeline and end-up with a nicely formatted and detailed analysis report. However,

Table 1. Attributes and methods of the EasyReporting class.

Attributes Description

filenamePath the report file name with the absolute path

title the title of the report

author the auhor

documentType actually this is set to HTML

optionList a list of R Markdown options

bibfile a latex bibliography filename

resources a data frame to store additional resources

Methods Description

mkdTitle Inserts an R Markdown title inside the report

mkdGeneralMsg appends a general message to the report

mkdGeneralTitledMsg appends a title and a general message to the report

mkdVariableAssignment includes a variable assignment into the report

mkdCodeChunkSt creates a CC start

mkdCodeChunkEnd creates a CC end

mkdCodeChunkComplete creates a complete CC

mkdCodeChunkCommented creates a complete CC with a previous comment

mkdCodeChunkTitledCommented creates a complete CC with a previous comment and a title

mkdSourceFiles includes a list of source files inside the CC

compile prints sessionInfo and compiles the R Markdown file

setOptionsList set an optionList to the class

getOptionsList returns the optionList from the class

getReportFilename returns the report filename with path

getBibliography returns the bibliography filename

addResource adds en entry into the references class data frame

Exported Utility Functions Description

makeOptionsList makes a list of rmarkdown options that can be passed to the class

erGUIVolcano executes a Shiny GUI to perform a volcano plot and trace its executed functions

https://doi.org/10.1371/journal.pone.0244122.t001

PLOS ONE Easyreporting simplifies the implementation of Reproducible Research layers in R software

PLOS ONE | https://doi.org/10.1371/journal.pone.0244122 May 10, 2021 5 / 13

https://doi.org/10.1371/journal.pone.0244122.t001
https://doi.org/10.1371/journal.pone.0244122

they require the analysts to manually trace each step of the analysis (as he/she could also do

with other available tools). Consequently, the above approaches are useful for generating anal-

ysis reports (that was the first aim of the easyreporting package). However, they are not suited

for the automatic tracing of the steps of an analysis performed using packages function calling

or point-and-click approaches through GUIs (the second aim of the easyreporting package).

In the last decade, GUIs are becoming very popular in bioinformatics because they simplify

computational analysis allowing non-expert users to choose among several computational pro-

cedures, algorithms, and parameter settings, see for example [13, 14, 16–18]. In particular, the

shiny (https://shiny.rstudio.com) libraries simplified the development of GUIs that incorpo-

rate the power of the statistical R language and the wide-amount of open-source packages

available in repositories such as Bioconductor (https://www.bioconductor.org).

Nevertheless, computational studies obtained from GUIs might lack reproducibility since

tracking all user choices is still challenging. To face this limit, the developers have to imple-

ment a RR layer when designing the GUI’s back-end so that the final users can benefit from a

better quality product. Moreover, the RR layer has to be transparent but understandable to

not-expert users. Ideally speaking, at the end of the analysis, the user should have a human-

readable report analogous to the one obtained using command-line approaches.

Easyreportingmethods can be easily adapted to support the automatic tracing of any given

function by combining a rendering function that performs the required step with a wrapping

function that traces its execution. The wrapper function (WF) needs an easyreporting instance,

and the arguments of the function to be traced (TF). Then, the developer inserts the WF in the

back-end of the interface (i.e., the server if the context of a GUI is implemented with the shiny

library) in the TF place. The front-end of the interface (i.e., the UI with the shiny library)

remains unchanged. When the user interacts with the interface to invoke the TF, the back-end

will invoke the WF, which will call both the TF function of interest and trace its usage with all

parameters. In brief, employing wrapper functions makes it possible to implement a reproduc-

ible research layer within the GUI without implementing all the tracing rmarkdown code. List-

ings 4-6 illustrate a specific case with a volcano plot, and Fig 2 schematically represents the

entire workflow of information.

Note that WP functions can be useful for developers or advanced users also to generate

novel R packages or simply novel R-functions that automatically trace their usage. In this way,

at the price of an initial effort of writing wrapper functions, their usage will be automatically

traced in any context.

Results

To better illustrate the capabilities of easyreporting (version 1.3.2 released with Bioconductor

3.13), we first show its usage for generating an analysis report in a case study concerning the

analysis of RNA-seq data (see S1 File for details), then we illustrate how to implement a simple

GUI that automatically traces the performed step with code and parameters choice to produce

a report.

Easyreporting for the creation of analysis report

The RNA-seq data used in the example allows investigating the differences in CD8+ dendritic

T-cells of the immune response of two different antibodies compared with control, see [19] for

more details. We chose this illustrative example since it is well-known that the analysis of

RNA-seq data can lack reproducibility [20]. The dataset contains the raw counts of 37991

genes and is composed of two replicates for each of the three conditions: DEC (fd-scaDEC-205

antibody samples); E2 (E2 antibody samples) and UNTR (control samples). For illustrative

PLOS ONE Easyreporting simplifies the implementation of Reproducible Research layers in R software

PLOS ONE | https://doi.org/10.1371/journal.pone.0244122 May 10, 2021 6 / 13

https://shiny.rstudio.com
https://www.bioconductor.org
https://doi.org/10.1371/journal.pone.0244122

purposes, in our S1 File, we start the analysis from the raw count-matrix. Moreover, we

released the raw counts as supplementary data with the easyreporting package, allowing the

readers to reproduce our example. The naive pipeline will first load the data, perform some

diagnostic plots, filter and normalize the raw counts, and visualize the principal component

projection. It will then perform differential gene expression analysis and depict the results as a

Venn diagram and MA-plots. A specific CC describes each phase.

In the following, we show the main fundamental steps that a user can adapt to any analysis,

and we refer to S1 File for the detailed description of the remaining steps and S2 File for the

complete report.

Report initialization. After loading the easyreporting package in the R environment, the

analyst needs to initialize an analysis report by providing the file name (i.e., “rnaseq_report”)

and the title of the document (i.e., “RNA-seq Analysis Report”). It is also possible to specify

one or more authors (i.e., “Dario Righelli”) with additional associated information. For sim-

plicity, we set-up a project directory path starting from the working directory for our report,

but the user can choose other locations by setting the filenamepath parameter. The initializa-

tion is carried out by using the easyreporting() function. Note that the filenamepath and title

Fig 2. Example of a graphical user interface working with easyreporting package.

https://doi.org/10.1371/journal.pone.0244122.g002

PLOS ONE Easyreporting simplifies the implementation of Reproducible Research layers in R software

PLOS ONE | https://doi.org/10.1371/journal.pone.0244122 May 10, 2021 7 / 13

https://doi.org/10.1371/journal.pone.0244122.g002
https://doi.org/10.1371/journal.pone.0244122

are mandatory parameters, while the author(s) is optional. The following Listing 1 code illus-

trates the initialization of a report. We refer to S1 and S2 Files (chunk of code 1) for an example

where multiple authors with affiliations and additional information are provided during the

initialization.

Listing 1. Initialization chunk

library(“easyreporting”)
proj.path <- file.path(getwd(), “rnaseq_report”)
bioEr <- easyreporting(filenamepath = proj.path,

title=“RNA-seq Analysis Report”,
author = c(“Dario Righelli”))

Creation of a chunk of code. Once the analyst has initialized the report, he/she can add a

CC for each step of the analysis. As mentioned in the General Exploitation section, easyreport-
ing provides two main approaches for adding CCs within a report: 1) building up the CC step

by step (as shown in Listing 2) and 2) using several kinds of wrapper functions (as shown in

Listing 3).

As mentioned above, in the first case, the analyst has to use themkdCodeChunkSt to open a

new CC. Then, he/she needs to add the code to markdown, by using themkdVariableAssign-
ment and/or themkdGeneralMsg functions, for tracking variables and functions. Finally, the

analyst has to close the CC using themkdCodeChunkEnd function. The following Listing 2

code illustrates a step-by-step CC for loading the counts’ matrix released with the package.

Listing 2. Step-by-step chunk construction

mkdTitle(bioEr, title=“Loading Counts Data”)
mkdCodeChunkSt(bioEr, sourceFilesList = system.file(

“script/importFunctions.R”,
package=“easyreporting”),
isComplete = TRUE)

mkdVariableAssignment(bioEr, “geneCounts”,
paste(“as.matrix(
importData(system.file(’”,
“extdata/BMDC_counts_FeatureCounts.xlsx’, “,
“package=’easyreporting’)))”, sep=“\n”),
show = FALSE)

mkdGeneralMsg(bioEr, “head(geneCounts, 20)”)
mkdCodeChunkEnd(bioEr)

Although the first approach leaves complete freedom to the analyst, it can be tricky for

small CCs. The second approach can be more straightforward for small CCs. To this purpose,

themkdCodeChunkComplete function allows tracing the steps through the message parameter.

The following Listing 3 code illustrates an example of a single step CC. As for the above CC,

we assume that the analyst wants to read the raw counts using a user-defined function, here

named “importData.R”, that we stored into the importFunctions.R file available in the package

“script” folder. To simplify the code writing, we embraced the calls with the quote function,

which allows passing raw code facilitating parenthesis highlighting and function recognition

to the user (see Listing 3 for an example). Additionally, it is possible to pass multiple instruc-

tion as a list of quote with the c() operator (see Section 3.3 in S1 File for an illustrative

example).

Listing 3. One command chunk construction

mkdCodeChunkComplete(object = bioEr,
code = quote(geneCounts <-

as.matrix(importData(system.file(

PLOS ONE Easyreporting simplifies the implementation of Reproducible Research layers in R software

PLOS ONE | https://doi.org/10.1371/journal.pone.0244122 May 10, 2021 8 / 13

https://doi.org/10.1371/journal.pone.0244122

’extdata/BMDC_counts_FeatureCounts.xlsx’,
package=’easyreporting’)))),

sourceFilesList = system.file(
“script/importFunctions.R”,
package=“easyreporting”),
optionList = makeOptionsList(evalFlag = FALSE))

Note that themkdCodeChunkComplete allows also to provide specific options for the CC

that we are creating. In particular, in this case, turning the evalFlag to FALSE the code is not

compiled during the final report construction.

It is possible to organize the report using themkdTitle function. The user has to repeat this

operation for each step of the analysis, as shown in S1 File. At the end of the process, it is possi-

ble to compile the easyreporting instance and obtain the analysis report as in S2 File in the

user-defined format (default is HTML).

Implementing automatically tracing functions. This section shows a possible approach

to encapsulate easyreportingmethods into third-parties functions to trace the analysis step and

execute the code automatically.

First of all, the developer has to write an R function that performs the analysis step of inter-

est (such as theMAedgeRMAPlotEx function for rendering an MA-plot, in our example). List-

ings 4 shows a simple example of rendering function.

Listing 4. MA-plot rendering function

MAedgeRMAPlotEx <- function(degList)
{
for (i in seq_along (degList)) {
degenes <- degList [[i]] $FDR < 0.01
with (degList [[i]], plot (logCPM, logFC,
pch = 16, cex = 0.2, main = names (degList) [i]))

with (degList [[i]], points (logCPM[degenes],
logFC [degenes], col='red', pch = 16, cex = 0.2))

}
}
Note that the developer does not require any extra effort at this stage. Moreover, the render-

ing function could also be any function available from other packages.

Then, the developer needs also to write a wrapper function (here traceAndPlotMAPlot). The

wrapper function should take as input the arguments of the rendering function (hereMAedgeR-
MAPlotEx), and a generic easyreporting object (here er). Moreover, the wrapper function has to

call themkdCodeChunkTitledCommented function of easyreporting (where we insert the render-

ing function call to be traced (MAedgeRMAPlotEx) in the code argument) and the call to render-

ing function (MAedgeRMAPlotEx). Listings 5 shows the wrapper function of our example.

Listing 5. Tracing wrapper function chunk

traceAndPlotMAPlot <- function(degList, er)
{
mkdCodeChunkTitledCommented(er,
title=“Recursive Tracing Function”, level = 2,
code = quote(MAedgeRMAPlotEx(degList=‘degList‘)))

MAedgeRMAPlotEx(degList = degList)
}
In this way, the wrapper function allows both to show the result and trace the function in

the same step. It is easy to place the traceAndPlotMAPlot function-call wherever needed in the

main code.

PLOS ONE Easyreporting simplifies the implementation of Reproducible Research layers in R software

PLOS ONE | https://doi.org/10.1371/journal.pone.0244122 May 10, 2021 9 / 13

https://doi.org/10.1371/journal.pone.0244122

Listing code 5 shows how to use the wrapper function. In particular, we pass as input i) the

object required by the rendering function (an edgeR result class in this particular example), ii)

an easyreporting class instance (here it is the bioEr instantiated in the example).

Listing 6. Tracing function call chunk

traceAndPlotMAPlot(degList = degList, er = bioEr)
Note that writing the wrapper function is the only extra effort required to achieve reproduc-

ibility. This approach can be used for writing user-friendly tools, novel R-packages or simply

user-defined R-functions that automatically traces their usage.

Easyreporting for GUI implementation

To better illustrate how to incorporate a RR layer into a GUI, easyreporting contains a simple

Shiny-App example for plotting a Volcano plot. The command erGUIVolcano() allows

executing the app and opens the user interface. The user interface allows the user to choose a

threshold for the P-value (i.e., the P-value threshold for detecting the significant genes in this

example) and provide a text area for adding comments. In the interface, there are also two

buttons (Perform Plot and Compile Report) for executing the plot and compiling the report,

respectively. The ui function provides the code for the user interface. This code does not need

to be modified to allow reproducibility. Instead, the back-end of the interface that executes

the job has to incorporate a wrapper function (here traceAndPlotVolcano), and the call to the

wrapper function, respectively. In this example, we also added the report’s initialization. The

server function provides the code for the back-end interface.

Fig 2 right side shows a schematic representation of the user interface as in the ui function.

The left side illustrates the back-end as in the server function. By using the Perform Plot button

(red box), the user activates the WF into the server-side, which in turn performs the plot and

traces the executed function (the red cascade). In blue is highlighted the argument value and

how it is traced through the function cascade.

Additionally, when the user adds its comments (yellow box) to the performed analysis step,

the text is passed to the server.

Finally, the user can compile the report using the Compile Report button (green box). In

this way, the server executes the compile() function and produces the HTML report that is

automatically showed to the user.

This simple example can be generalized to complex interfaces to trace all user interactions.

Conclusions

Easyreporting can be used to support RR in different analysis contexts. However, it is particu-

larly suited for analyzing omics data and developing software/GUIs, as we have shown in this

work. Compared to other previously proposed solutions such as [21], that require not negligi-

ble commitments by the final user, potentially bringing him/her to renounce to include RR

inside the scripts, the implementation of a RR layer with our approach is straightforward.

Moreover, it leaves maximum freedom to the developer/analyzer for automatically creating

and storing an rmarkdown document and providing methods for its compilation and adding

comments in natural language. However, in omics data analysis, it is common to use mixed

scenarios and combine different programming languages depending on the availability of spe-

cific methods and functionalities in the community or to integrate analysis with queries to on-

line databases. Easyreporting can provide support also for these cases, at least up to a certain

level. Using interface functions between R and other programming languages, we can execute

in R a few steps of an analysis implemented in other languages. For example, thanks to the R

package reticulate it is possible to run in R some Python functions. Similarly, using suitable

PLOS ONE Easyreporting simplifies the implementation of Reproducible Research layers in R software

PLOS ONE | https://doi.org/10.1371/journal.pone.0244122 May 10, 2021 10 / 13

https://doi.org/10.1371/journal.pone.0244122

API functions, we can easily interface R with on-line databases and execute the queries within

the R environment. For example, using the R packages GEOquery or TCGAbiolinks, we can

query and process data from the Gene Expression Omnibus (GEO) and the Genomic Data

Commons (GDC) Data Portal, respectively. Nowadays, in the Bioconductor repository, many

API packages allow interfacing the most common biological databases. By contrast, we should

underline that if the analyses are not performed within the R environment, the user must man-

ually document the external steps (for example, in the current release, using comments, add-

ing.bib files, or linking to external resources as databases identifiers). Unfortunately, if the

manual documentation is not detailed, the full reproducibility might be lost. Future releases of

easyreporting will provide additional tools for handling the mixed case scenario.

Although several functionalities are already available, easyreporting can still benefit from

some extra features such as methods for file editing, graphical representation of the analysis,

and data caching. In particular, file editing can be useful for modifying specific CCs, and the

graphical representation of the analysis can be useful to provide reports not only readable by

third-party users but also graphically visualized as workflows. On the other hand, even though

a dedicated data caching infrastructure can offer more manageability and share-ability of the

data at the moment, it can be already performed in easyreporting by rmarkdown CCs option

flag.

Finally, thanks to its versatility, easyreporting can be ideally included in any well-structured

R project and the development of GUIs and packages, helping to fulfil most of the proposed

rules in [2]. Moreover, if combined with virtualization solutions such as docker containers

(i.e., docker4seq [22]) it helps to create fully reproducible projects. Easyreporting naturally com-

plements docker containers in terms of reproducibility, allowing both the preserve code lines

and user parameters and the computational environments and dependencies.

To conclude, our approach still requires the developer’s effort to implement a RR layer into

their software, which makes us imagine possible future works in this area where the code trac-

ing is entirely left to the machine. The Java language provides a well-known example that uses

the Aspect-Oriented Programming (AOP) paradigm for the software logging aspects. Unfortu-

nately, this paradigm is still missing in the R language, but possible future approaches in the

Reproducible Research area inside R could rely on implementing it, which, combined with

rmarkdown or similar procedures, can be used to trace ad-hoc tagged functions and to log

them into the report file. In such a way, reproducibility could be easier to implement and lesser

subject to human errors.

Supporting information

S1 File. An illustrative example for the creation of an analysis report.

(PDF)

S2 File. The report file obtained using the analysis steps described in S1 File.

(PDF)

Author Contributions

Conceptualization: Dario Righelli, Claudia Angelini.

Data curation: Dario Righelli.

Formal analysis: Dario Righelli.

Funding acquisition: Claudia Angelini.

PLOS ONE Easyreporting simplifies the implementation of Reproducible Research layers in R software

PLOS ONE | https://doi.org/10.1371/journal.pone.0244122 May 10, 2021 11 / 13

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0244122.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0244122.s002
https://doi.org/10.1371/journal.pone.0244122

Methodology: Dario Righelli, Claudia Angelini.

Software: Dario Righelli.

Supervision: Claudia Angelini.

Writing – original draft: Dario Righelli, Claudia Angelini.

Writing – review & editing: Dario Righelli, Claudia Angelini.

References
1. Ioannidis JPA. Why most published research findings are false. In: Getting to Good: Research Integrity

in the Biomedical Sciences; 2018.

2. Sandve GK, Nekrutenko A, Taylor J, Hovig E. Ten Simple Rules for Reproducible Computational

Research; 2013.

3. Brito JJ, Li J, Moore JH, Greene CS, Nogoy NA, Garmire LX, et al. Recommendations to enhance rigor

and reproducibility in biomedical research. GigaScience. 2020; 9(6):1–6. https://doi.org/10.1093/

gigascience/giaa056

4. Griffin PC, Khadake J, LeMay KS, Lewis SE, Orchard S, Pask A, et al. Best practice data life cycle

approaches for the life sciences. F1000Research. 2018;. https://doi.org/10.12688/f1000research.

12344.2

5. Knuth DE. Literate Programming. The Computer Journal. 1984; 27(2):97–111. https://doi.org/10.1093/

comjnl/27.2.97

6. Russo F, Righelli D, Angelini C. Advantages and Limits in the Adoption of Reproducible Research and

R-Tools for the Analysis of Omic Data. In: International Meeting on Computational Intelligence Methods

for Bioinformatics and Biostatistics. Springer; 2015. p. 245–258.

7. Bailey DH, Borwein JM, Stodden V. Facilitating Reproducibility in Scientific Computing: Principles and

Practice. In: Reproducibility: Principles, Problems, Practices, and Prospects; 2015.

8. Boettiger C. An introduction to Docker for reproducible research. In: Operating Systems Review (ACM);

2015.

9. Piccolo SR, Frampton MB. Tools and techniques for computational reproducibility; 2016.

10. Leisch F. Sweave: Dynamic Generation of Statistical Reports Using Literate Data Analysis. Compstat.

2002;.

11. Yihui Xie, J J Allaire GG. R Markdown: The Definitive Guide. Transforming Climate Finance and Green

Investment with Blockchains. 2018; https://doi.org/10.1016/B978-0-12-814447-3.00041-0

12. Landau WM. The drake R package: A pipeline toolkit for reproducibility and high-performance comput-

ing. Journal of Open Source Software. 2018; 3(21):550. https://doi.org/10.21105/joss.00550

13. Russo F, Angelini C. RNASeqGUI: A GUI for analysing RNA-Seq data. Bioinformatics. 2014;. https://

doi.org/10.1093/bioinformatics/btu308 PMID: 24812338

14. Russo F, Righelli D, Angelini C. Advancements in RNASeqGUI towards a Reproducible Analysis of

RNA-Seq Experiments. BioMed Research International. 2016; 2016:11. https://doi.org/10.1155/2016/

7972351 PMID: 26977414

15. Greenbaum D, Rozowsky J, Stodden V, Gerstein M. Structuring supplemental materials in support of

reproducibility. Genome Biology. 2017;. https://doi.org/10.1186/s13059-017-1205-3 PMID: 28381262

16. Rue-Albrecht K, Marini F, Soneson C, Lun AT. iSEE: interactive summarizedexperiment explorer.

F1000Research. 2018; 7. https://doi.org/10.12688/f1000research.14966.1 PMID: 30002819

17. Criscuolo NG, Angelini C. StructuRly: A novel shiny app to produce comprehensive, detailed and inter-

active plots for population genetic analysis. Plos one. 2020; 15(2):e0229330. https://doi.org/10.1371/

journal.pone.0229330 PMID: 32074134

18. Di Filippo L, Righelli D, Gagliardi M, Matarazzo MR, Angelini C. HiCeekR: a novel Shiny app for Hi-C

data analysis. Frontiers in genetics. 2019; 10:1079. https://doi.org/10.3389/fgene.2019.01079 PMID:

31749839

19. Costa V, Righelli D, Russo F, De Berardinis P, Angelini C, D’Apice L. Distinct antigen delivery systems

induce dendritic cells’ divergent transcriptional response: New insights from a comparative and repro-

ducible computational analysis. International Journal of Molecular Sciences. 2017; 18(3):494. https://

doi.org/10.3390/ijms18030494 PMID: 28245601

20. Simoneau J, Dumontier S, Gosselin R, Scott MS. Current RNA-seq methodology reporting limits repro-

ducibility. Briefings in Bioinformatics. 2019; https://doi.org/10.1093/bib/bbz124

PLOS ONE Easyreporting simplifies the implementation of Reproducible Research layers in R software

PLOS ONE | https://doi.org/10.1371/journal.pone.0244122 May 10, 2021 12 / 13

https://doi.org/10.1093/gigascience/giaa056
https://doi.org/10.1093/gigascience/giaa056
https://doi.org/10.12688/f1000research.12344.2
https://doi.org/10.12688/f1000research.12344.2
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1016/B978-0-12-814447-3.00041-0
https://doi.org/10.21105/joss.00550
https://doi.org/10.1093/bioinformatics/btu308
https://doi.org/10.1093/bioinformatics/btu308
http://www.ncbi.nlm.nih.gov/pubmed/24812338
https://doi.org/10.1155/2016/7972351
https://doi.org/10.1155/2016/7972351
http://www.ncbi.nlm.nih.gov/pubmed/26977414
https://doi.org/10.1186/s13059-017-1205-3
http://www.ncbi.nlm.nih.gov/pubmed/28381262
https://doi.org/10.12688/f1000research.14966.1
http://www.ncbi.nlm.nih.gov/pubmed/30002819
https://doi.org/10.1371/journal.pone.0229330
https://doi.org/10.1371/journal.pone.0229330
http://www.ncbi.nlm.nih.gov/pubmed/32074134
https://doi.org/10.3389/fgene.2019.01079
http://www.ncbi.nlm.nih.gov/pubmed/31749839
https://doi.org/10.3390/ijms18030494
https://doi.org/10.3390/ijms18030494
http://www.ncbi.nlm.nih.gov/pubmed/28245601
https://doi.org/10.1093/bib/bbz124
https://doi.org/10.1371/journal.pone.0244122

21. Napolitano F. repo: An R package for data-centered management of bioinformatic pipelines. BMC Bio-

informatics. 2017; 18(1):112. https://doi.org/10.1186/s12859-017-1510-6 PMID: 28209127

22. Kulkarni N, Alessandrı̀ L, Panero R, Arigoni M, Olivero M, Ferrero G, et al. Reproducible bioinformatics

project: A community for reproducible bioinformatics analysis pipelines. BMC Bioinformatics. 2018; 19

(10):211. https://doi.org/10.1186/s12859-018-2296-x PMID: 30367595

PLOS ONE Easyreporting simplifies the implementation of Reproducible Research layers in R software

PLOS ONE | https://doi.org/10.1371/journal.pone.0244122 May 10, 2021 13 / 13

https://doi.org/10.1186/s12859-017-1510-6
http://www.ncbi.nlm.nih.gov/pubmed/28209127
https://doi.org/10.1186/s12859-018-2296-x
http://www.ncbi.nlm.nih.gov/pubmed/30367595
https://doi.org/10.1371/journal.pone.0244122

