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Abstract

Na+/H+ exchangers are the most common membrane proteins involved in the regulation of

intracellular pH that concurrently transport Na+ into the cells and H+ out of the cells. In this

study, the full-length cDNA of the Na+/H+ exchanger (NHE) from the Pacific white shrimp (Lito-

penaeus vannamei) was cloned. The LvNHE cDNA is 3167 bp long, contains a 5’-untrans-

lated region (UTR) of 74 bp and a 3’-UTR of 456 bp and an open reading frame (ORF) of 2637

bp, coding for a protein of 878 amino acids with 11 putative transmembrane domains and a

long cytoplasmic tail. LvNHE shows high sequence homology with mud crab NHE at the

amino acid level. LvNHE mRNA was detected in the hepatopancreas, gill, eyestalk, skin,

heart, intestine, muscle, brain and stomach, with the highest abundance in the intestine. In the

shrimp intestinal fragment cultures exposed to gradually declining pH medium (from pH 8.0 to

pH 6.4), the LvNHE mRNA expression was significantly stimulated, with the highest response

when incubated in pH 7.0 medium for 6 h. To investigate the functional roles of LvNHE in pH

regulation at the physiological and cellular levels, the LvNHE mRNA expression was silenced

by siRNA knockdown. Upon low-pH challenge, the hemolymph pH was significantly reduced

in the LvNHE mRNA knockdown shrimp. In addition, knockdown of LvNHE mRNA reduced

the recovery capacity of intracellular pH in intestinal fragment cultures after acidification. Alto-

gether, this study demonstrates the role of NHE in shrimp response to low pH stress and pro-

vides new insights into the acid/base homeostasis mechanisms of crustaceans.

Introduction

The Pacific white shrimp, Litopenaeus vannamei, is a penaeid shrimp naturally distributed

along the Pacific coast of the Americas from northern Mexico to northern Peru [1]. L. vannamei
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was introduced to East Asia in 1985 and has become one of the major cultured crustacean spe-

cies in this region [2, 3]. Under a high-density culture condition, the acidity/alkalinity (pH

value) of aquatic environments fluctuates frequently due to acid rain, organic residue decompo-

sition and carbon dioxide release, which may give rise to a harmful stress to L. vannamei [4, 5].

The shrimp may suffer physiological damage, such as suppressed immune activity [6], induced

respiratory burst [7] and disordered ion balance, which consequently result in slow growth,

abnormal behaviors and increased mortality [8].

It has been shown that pH is an important factor affecting crustacean life [9]. During the

changes in environmental pH, the intracellular pH (pHi) in aquatic crustaceans may be kept

stable to maintain an appropriate environment for cellular activities. L. vannamei can adapt to

the change in pH in culture and continue to live and function mainly by transporting ion and

water molecules across the cell membrane [8, 10, 11]. Several ion transport-related proteins

have been demonstrated in L. vannamei with their functions in salinity and/or pH homeosta-

sis, such as Na+/K+-ATPase (NKA) [12, 13], carbonic anhydrase (CA) [14], V-type H+ ATPase

(VHA) [15] and Na+/HCO3
- cotransporter (NBC) [16].

The sodium/proton exchanger (Na+/H+ exchanger or NHE), a member of the solute carrier

(SLC) 9A family that belongs to the cation/proton antiporters (CPA) superfamily, is a mem-

brane ion transport-related protein that concurrently transports Na+ into the cell and H+ out

of the cell [17]. The NHE gene was first isolated from the small intestine and kidney of rat [18].

After the first NHE gene was cloned, at least nine more functional mammalian NHE genes

were subsequently identified and named NHE1-9 (SLC9A1-9) [17]. The NHE isoforms contain

a similar topological structure with 11–13 transmembrane (TM) domains at the N-terminus

for ion exchange, and the C-terminus of NHE is a cytoplasmic regulatory region. In most

types of animal cells, NHE localizes in the cytoplasmic membrane and plays important roles in

regulating intracellular pH, and it is involved in cell volume regulation, transepithelial absorp-

tion and electrolyte secretion [19]. In cells at a physiological pHi, the basal activity of NHE is

very low. Upon a decrease in pHi, the NHE activity sharply increases to adjust the acidified

pHi by rapidly extruding protons in exchange for extracellular Na+. In humans, NHE is

involved in several pathophysiologic processes such as ischemia, hypertrophy, hypertension

and arrhythmias [20].

Mediation of pHi by NHE is one of the most ubiquitous and important mechanisms in cell

recovery after an acid pulse [21]. The NHE cDNA has also been identified in aquatic animals

including seawater fishes sculpin and mummichog [22], trout [23] and lobster [24]. However,

NHE has not been investigated in L. vannamei to date. To illustrate the potential roles of NHE

in the regulation of acid-base homeostasis in this widely cultured economic species, in this

study, the full-length NHE cDNA (designated LvNHE) was first isolated from the L. vannamei
intestine. The protein structure and tissue expression profile of LvNHE were further investi-

gated. The change in LvNHE transcript levels in the intestinal fragment culture was analyzed

after exposure of culture medium to gradually decreasing pH. The functions of LvNHE were

further investigated by measuring the capacity of pH regulation in the hemolymph and the

rates of pHi recovery in intestinal fragments after RNA interference (RNAi).

Materials and methods

Animals and sample collection

For the studies of molecular cloning, tissue distribution, intestine fragment culture and hemo-

lymph collection, healthy L. vannamei about 3-months old with body lengths of 7.0–9.0 cm

and body weights of 9.0–13.0 g were obtained from the Jinyang Shrimp Culture Center,

Maoming, China. Shrimp were acclimated for one week at 28±0.5˚C in tanks containing
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aerated seawater (salinity 30‰ and pH 8.0) and fed commercial shrimp feed twice daily until

24 h before the experiments began. The hepatopancreas, gill, eyestalk, skin, heart, intestine,

muscle, brain and stomach were collected, frozen immediately in liquid nitrogen and stored at

-80˚C for further studies.

Molecular cloning and sequence analysis

Total RNA from the L. vannamei intestine was extracted with the RNA Extraction Kit (Tian-

Gen) and reverse-transcribed into the first-strand cDNA using the PrimeScript RT Kit

(TaKaRa). Primers for LvNHE cDNA cloning (shown in Table 1) were designed based on the

sequence of a transcriptome from L. vannamei previously constructed in our laboratory [25].

To obtain the full-length cDNA sequence of LvNHE, 3’- and 5’-rapid amplification of cDNA

ends (RACE) was applied. The amino acid sequence, protein molecular weight (MW) and iso-

electric point (pI) of LvNHE were predicted using Lasergene 5.1 (DNASTAR, Inc.). The func-

tional sites and TM domains of LvNHE were deduced using the PROSITE program (http://

www.expasy.org/prosite) and TMHMM Server v. 2.0 (http://www.cbs.dtu.dk/services/

TMHMM/), respectively.

Tissue distribution of LvNHE mRNA

RNA extracted from the hepatopancreas, gill, eyestalk, skin, heart, intestine, muscle, brain and

stomach of three shrimp was reverse-transcribed into first strand cDNAs using the Prime-

Script RT Kit with gDNA Eraser (Takara). The gene-specific primers QLvNHE-F and

QLvNHE-R (Table 1) were designed based on the obtained cDNA sequences, and the

Table 1. Primers and siRNA sequences used in this study.

Name Sequence (5’-3’)

For cDNA cloning

3’ RACE1 TCTGTGGGTTTACACAATGCA

3’ RACE2 AGGCTGGTGCATTGAGTAGTTT

5’ RACE1 AGGGTAAGCGACACCAACAC

5’ RACE2 CACCGGAAGGACATGAGGT

C-NHEa-F CACTGTGCTGGATATCTGCAATGTGGAGAGCATGGGCGT

C-NHEa-R TGGTCTAACATGTTGGCCAGAGAGAA

C-NHEb-F CTGGCCAACATGTTAGACCAAACAATTGACCCAAGGAGGA

C-NHEb-R AGTCCAGTGTGGTGGAATTCTCAAACCACATCCTCATTTTCTGA

For qPCR

QLvNHE-F GGCGGAGCTCTTTCACTTCTC

QLvNHE-R GGTGCCAGATATGGTCTTTGC

Qβ-actin-F CCGGCCGCGACCTCACAGACT

Qβ-actin-R CCTCGGGGCAGCGGAACCTC

For RNAi

siRNA-1 sense GCAUCCACCUCAUGUCCUUTT

siRNA-1 antisense AAGGACAUGAGGUGGAUGCTT

siRNA-2 sense GCUUUAUUCUCUGGACAAUTT

siRNA-2 antisense AUUGUCCAGAGAAUAAAGCTT

siRNA-3 sense CCCGUCUUCCUGUAUCCAATT

siRNA-3 antisense UUGGAUACAGGAAGACGGGTT

NC siRNA sense UUCUCCGAACGUGUCACGUTT

NC siRNA antisense ACGUGACACGUUCGGAGAATT

https://doi.org/10.1371/journal.pone.0212887.t001
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expression pattern of LvNHE mRNA was detected by real-time PCR using SYBR Premix

Ex Taq™ II Kit (TaKaRa) by the following procedure: 40 cycles of 5 seconds at 95˚C for dena-

turation and 30 seconds at 60˚C for annealing, extension and signal capture. In this case, β-
actin was used as an internal control amplified with the specific primers Qβ-actin-F and

Qβ-actin-R designed based on L. vannamei β-actin cDNA sequence (Table 1). The relative

expression levels of LvNHE were calculated using the comparative Ct method with the formula

2-ΔΔCt.

pH challenge in intestine fragment culture

Intestines were removed from shrimp under sterile conditions. The excrements were dis-

carded, and intestines were washed in PBS containing 1 mg/ml streptomycin and 1000 IU/ml

penicillin for 5 min. After rinsing 5 times with PBS, intestines were cut into 3-mm pieces. The

fragments from 10 shrimp were mixed together, and 12 ml of Sf-900 II cell culture medium

(Sf-900 II SFM, ThermoFisher) containing 5% fetal bovine serum (Gibco), 1 mg/ml strepto-

mycin and 1000 IU/ml penicillin was added. The fragments were sequentially passed through

100 μM and 40 μM cell sieves, plated in 12-well plates (Corning) and cultured at 28˚C for 12 h

[26, 27]. Then, the intestinal fragments were collected by centrifugation at 1000 rpm for 3 min,

and the supernatants were discarded. The fragment resuspensions were treated with gradient

pH 6.4–8.0 medium for 2, 6 and 12 h. In this case, the fragments were independently cultured

in three wells for each pH at each time point, and the mRNA levels of LvNHE were detected by

real-time PCR as described above.

RNAi-mediated LvNHE gene silencing

Small interfering RNAs (siRNAs) were designed using the siDirect version 2.0 online pro-

gram (http://sidirect2.rnai.jp/). siRNA-1, siRNA-2, and siRNA-3 designed to target LvNHE
mRNA and a nontargeting siRNA (NC-siRNA) used as a negative control (Table 1) were syn-

thesized by Sangon Biotech Company and dissolved in DEPC-H2O. Shrimp about 1-month

old with body lengths of 5.12±0.61 cm and body weights of 3.55±0.82 g were used for RNAi

experiments. To confirm the interference efficiencies of the synthesized siRNAs, three siR-

NAs (siRNA-1, siRNA-2 and siRNA-3) were injected at the concentration of 1 μg/g body

weight (bwt). In this case, DEPC-H2O and NC-siRNA were injected as the control groups.

Shrimp were cultured at 28˚C in the tanks containing aerated seawater (salinity 30‰, pH

8.0). Intestines from 3 individuals in each group were respectively collected 6 and 12 h after

injection. The expression levels of LvNHE were measured by real-time PCR as described

above.

Measurement of hemolymph pH

Shrimp were randomly divided into 10 groups and cultured in 100-L independent tanks.

Shrimp injected with LvNHE siRNA (n = 29 for 6 h and n = 25 for 12 h), DEPC-H2O (n = 26

for 6 h and n = 24 for 12 h) and NC-siRNA (n = 21 for 6 h and n = 28 for 12 h), or without

injection (n = 24 for 6 h and n = 25 for 12 h) were cultured in pH 5.8-acidified seawater for 6 h

or 12 h. In this case, shrimp cultured in pH 8.0 normal seawater for 6 h (n = 19) or 12 h

(n = 20) were used as the control groups. Approximately 0.2 ml of hemolymph was collected

from the ventricles of the shrimp and centrifuged at 1000 g for 3 min. The supernatants were

transferred to a new EP tube, and the hemolymph pH levels were determined by using a micro

pH electrode (P13, Bante Instruments) connected to a pH analyzer (SevenEasy FE20, Mettler

Toledo).

Pacific white shrimp Na+/H+ exchanger
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Measurement of intracellular pH in intestine

The intracellular pH of shrimp intestinal fragment cultures was monitored using the pH-sensi-

tive dye 2’,7’-bis(carboxyethyl)-5(6)-carboxyfluorescein-pentaacetoxymethyl ester (BCEC-

F-AM) (B1150, Invitrogen) as described previously [28]. The fluorescence was measured by

using a Synergy H1 fluorescence spectrometer (BioTek) with an emission wavelength of 535

nm and excitation wavelengths of 440 nm and 490 nm. The calibration curve for the pHi signal

was constructed by the high potassium-nigericin technique [29, 30]. Intracellular pH was acid-

ified using the NH4Cl (20 mM) perfusion technique [28]. Briefly, after the excrements were

removed, shrimp intestine was cut into pieces of 1.0×1.0×1.0 mm3 in size with a McILwain tis-

sue chopper (Ted Pella), and fragments of approximately 30 mg per well were placed into the

96-well plate. The intestine fragments were incubated with Na+-free salt solution (Na+ was

replaced by N-methyl-D-glucamine), then perfused with a physiological salt solution contain-

ing 20 mM NH4Cl (NaCl was replaced by NH4Cl) for more than 10 min, which was then

switched to the NH4Cl free and Na+-free salt solution to produce an acid load [31, 32].

Approximately 5 min later, extracellular Na+ was introduced to initiate Na+/H+ exchanger-

mediated intracellular pH recovery. The physiological salt solution contained the following

(in mM): NaCl (125), KCl (5), MgSO4 (1.2), CaCl2 (1), KH2PO4 (2), glucose (5), and Hepes

(32.2), pH 7.4. The rates of pHi recovery (dpH/dt) were determined within 0 to 5 min follow-

ing the addition of extracellular Na+. The pHi of intestinal fragments and the pH recovery rate

of the LvNHE knockdown intestinal fragments were measured by using the method described

above.

Statistical analysis

Data are expressed as the mean±SE and were analyzed with Student’s t-test or one-way

ANOVA followed by Fisher’s least significant difference (LSD) test by using SPSS (IBM

Software).

Results

Molecular cloning and sequence analysis of LvNHE
The full-length cDNA sequence of LvNHE was obtained by the 3’-/5’-RACE approach. The

LvNHE cDNA is 3167 bp long, contains a 5’-untranslated region (UTR) of 74 bp, a 3’-UTR

of 456 bp and an open reading frame (ORF) of 2637 bp that encodes a protein of 878

amino acids. A typical polyadenylation signal (TATAAA) is located 40 bp upstream of the

poly-A tail (Fig 1). The deduced molecular weight of LvNHE was 98 kDa, the predicted iso-

electric point was 6.27, and transmembrane domains were predicted by TMHMM Server

(Fig 2A).

By phylogenetic analysis of NHEs from different animal species, our newly cloned LvNHE

(GenBank No. MK111428) has the shortest evolutionary distance from that of the mud crab

(Scylla olivacea) and is clustered with other crustacean NHEs, insect NHEs, and human NHE3

(Fig 2B).

Tissue expression pattern and pH-induced expression of LvNHE
Quantitative real-time PCR was used to detect LvNHE expression in multiple tissues. The

results showed that LvNHE transcripts were highly expressed in the intestine, stomach, brain,

and muscle, with the highest expression in the intestine (Fig 3A).

The shrimp intestinal fragments were exposed to the pH 6.4–8.0 gradient in the medium

for 2 h, 6 h, and 12 h, and mRNA levels of LvNHE were detected by real-time PCR. The NHE

Pacific white shrimp Na+/H+ exchanger
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mRNA expression in intestinal fragments significantly increased when incubated at pH 7.0

(Fig 3B). In culture medium at pH lower than 7.2, the NHE expression increased significantly

from 2 h to 6 h, but in culture medium at pH higher than 7.2, the NHE expression level

changed little with time, implying that the culture environment below pH 7.2 probably causes

acidification of the intracellular environment and induces LvNHE expression.

Fig 1. The full-length cDNA sequence and its deduced amino acid sequence of LvNHE. The start codon (ATG) and stop codon (TGA) are

shown in red. The transmembrane (TM) domains are indicated. The NEXCaM regulatory region is boxed. The consensus polyadenylation

(AATAAA) signal is underlined.

https://doi.org/10.1371/journal.pone.0212887.g001
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Effect of LvNHE mRNA knockdown on the hemolymph pH upon low pH

challenge

To understand the regulatory effects of LvNHE on hemolymph pH, shrimp were injected with

1 μg/g bwt siRNA-1, -2, -3, NC-siRNA or DEPC-H2O. The results showed that siRNA-2 had

the highest RNAi efficiency, especially 12 h after injection when more than 70% of LvNHE
mRNA was degraded (Fig 4A). At 6 h after challenge, the hemolymph pH of the pH 8.0 con-

trol, pH 5.8 control, pH 5.8 DEPC-H2O-injected and NC-siRNA injected and LvNHE siRNA-

2 injected groups were 7.57±0.005, 7.58±0.004, 7.59±0.003, 7.57±0.004 and 7.41±0.004, respec-

tively (Fig 4B). At 12 h after challenge, the hemolymph pH of the pH 8.0 control, pH 5.8 con-

trol, pH 5.8 DEPC-H2O-injected and NC-siRNA injected and LvNHE siRNA-2 injected

groups were 7.56±0.005, 7.59±0.004, 7.61±0.002, 7.61±0.003 and 7.44±0.003, respectively

(Fig 4B).

Fig 2. Structural domains of LvNHE and phylogenetic analysis. (A) Structural domains of LvNHE predicted by using the SMART program.

The 11 transmembrane (TM) domains and the NEXCaM_BD feature with respective locations are indicated. (B) Phylogenetic analysis of NHEs

in various species by using the Neighbor-Joining method with a bootstrap value of 1000. The newly identified LvNHE is marked by a triangle.

https://doi.org/10.1371/journal.pone.0212887.g002
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Effect of LvNHE mRNA knockdown on pHi recovery in intestinal fragment

culture

In this study, the pHi recovery rates after acidification in the control and NHE-knockdown

shrimp intestinal fragment cultures were determined. The pH-dependent fluorescence ratio

(490 nm/440 nm) was calculated with a high K+ gradient pH solution, and the calibration

curve was constructed (Fig 5A). In the intestinal fragments without prior intracellular acidifi-

cation by NH4Cl, the basal pH was 7.26±0.054. Then, an ammonium bath caused alkalization,

and when ammonium was removed to return to Na+-free buffer, a remarkable acidification

was observed. However, after the addition of Na+ to the bath solution, a Na+-dependent pHi

recovery was observed (Fig 5B). Records were obtained from two separate experiments. In the

control intestinal fragments, after Na+ introduction, cells started to recover toward their nor-

mal pH at a rate of 0.123±0.005 (for 6 h control) or 0.111±0.004 (for 12 h control) pH units per

min. In the LvNHE-knockdown intestinal fragments, the dpH/dt values for the 6 h group and

Fig 3. Tissue expression pattern and pH-induced expression of LvNHE. (A) Expression profiles of LvNHE mRNA in various L. vannamei
tissues, including the hepatopancreas (Hp), gill (Gi), eyestalk (Es), skin (Sk), heart (Ht), intestine (In), muscle (Ms), brain (Br) and stomach (St).

(B) LvNHE expression levels in the intestines after low pH challenge. The LvNHE mRNA levels were normalized by β-actin expression. The data

are expressed as the mean±SE (n = 3), and experimental groups denoted by the same letter represent a similar level (P>0.05, ANOVA followed

by Fisher’s LSD test).

https://doi.org/10.1371/journal.pone.0212887.g003
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12 h group were 0.035±0.004 and 0.021±0.005, respectively (Fig 5C and 5D). These results

showed that the recovery rates in LvNHE-knockdown intestinal fragments were significantly

lower than in the control groups, indicating that the LvNHE-interference affects the realkaliza-

tion process after acidification.

Discussion

Numerous studies have shown that NHEs play important roles in ion transport in animals

[33]. In the present study, a full-length cDNA encoding NHE from L. vannamei was first

cloned. Sequence analysis revealed that LvNHE contained 11 TM domains at the N-terminus

and a NEXCaM regulatory region at the C-terminus, with a coiled-coil structure for binding of

the Ca2+/calmodulin complex [34]. To assess the molecular evolutionary relationship between

LvNHE and its counterparts in other species, a phylogenetic tree was constructed and revealed

a high diversity in the family of Na+/H+ exchangers (Fig 2B). Additionally, phylogenetic analy-

sis further indicated that LvNHE was clustered with the NHEs from other crustacean species,

such as mud crab.

The tissue distribution results showed that LvNHE was expressed most abundantly in the

intestine of L. vannamei (Fig 3A). Osmotic and ionic regulation in crustaceans is mostly

Fig 4. Effect of LvNHE mRNA knockdown on the hemolymph pH upon low pH challenge. (A) Expression of LvNHE transcripts in shrimp

intestines after injection of DEPC-H2O, NC-siRNA and LvNHE siRNA-1, -2 and -3 at 6 and 12 h. (B) The hemolymph pH of LvNHE-siRNA-

injected shrimp upon low (5.8) pH challenge for 6 and 12 h. In this case, the dosages for all siRNA groups were 1 μg/g bwt, and the individual

numbers for all groups were 3. For mRNA and hemolymph pH measurements, the data are expressed as the mean±SE, and experimental groups

denoted by the same letter represent a similar level (P>0.05, ANOVA followed by Fisher’s LSD test).

https://doi.org/10.1371/journal.pone.0212887.g004
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accomplished by the multifunctional gills, together with the excretory and digestive organs

[35, 36]. Our results provided evidence that the intestine is one of the most important organs

for pH regulation in shrimp based on the highly abundant expression of LvNHE transcripts.

Similarly, the gastrointestinal tract is one of the major sites of NHE expression in mammals,

and the NHE cDNA was first isolated from the brush-border membrane vesicles in the small

intestine and kidney of rat [18].

Previous studies have shown that incubation in acidic medium may increase NHE expres-

sion in mammalian cells, for example, the NHE-3 mRNA expression in opossum kidney

(clone P, OKP) cells [37]. In the euryhaline marine fish Fundulus heteroclitus, significant

increases in both NHE1 and NHE3-like protein levels were induced by environmental hyper-

capnia [38]. In our current study, an inducible expression of intestinal LvNHE was detected

Fig 5. Effect of LvNHE mRNA knockdown on pHi recovery in intestinal fragment culture. (A) The calibration curve for transforming the

fluorescence ratio (490/440) into a pH value. (B) pHi recovery in intestinal fragment culture following intracellular acidification upon readdition

of Na+. Intracellular pH was measured, and an acid load was applied using the NH4Cl-prepulse technique in the absence of extracellular Na+.

(C) The pHi recovery rate (dpH/dt) of intestinal fragment culture from shrimp injected with LvNHE siRNA-2 for 6 and 12 h. The data for

calibration curve and pHi recovery rate are expressed as the mean±SE (n = 8), and experimental groups denoted by the same letter represent a

similar level (P>0.05, ANOVA followed by Fisher’s LSD test).

https://doi.org/10.1371/journal.pone.0212887.g005

Pacific white shrimp Na+/H+ exchanger

PLOS ONE | https://doi.org/10.1371/journal.pone.0212887 February 27, 2019 10 / 15

https://doi.org/10.1371/journal.pone.0212887.g005
https://doi.org/10.1371/journal.pone.0212887


upon low pH challenge. The upregulated LvNHE expression in the medium with a pH lower

than 7.2 could last from 2 h to 6 h, suggesting that LvNHE was sensitive to a relatively low pH

stress. Very interestingly, the up-regulation of LvNHE mRNA did not follow an acidity-depen-

dent manner, and the maximal response of this gene was activated by pH 7.0. Based on the fact

that the acidity/alkalinity of cells is mediated corporately by multiple ion transporters [39, 40],

we speculate that the when the pH further declines, more pH-regulatory ion transporter genes

may participate to prevent a further acidification of the cells, and the response and effect of

NHE may be reduced.

It is generally believed that epithelial cells in the gut, antennal glands, integument and gill of

crustaceans mediate the ion transportation into and across the tissues and thereby influence

the concentrations of ions in the hemolymph [41]. In this study, we knocked down the LvNHE
mRNA levels in shrimp by the RNAi approach and placed shrimp in an extreme environment

of pH 5.8 to determine the effect of LvNHE on the regulation of circulating pH.

The hemolymph pH was measured in shrimp with/without LvNHE RNAi 6 and 12 h after a

transfer from pH 8.0 to pH 5.8 seawater. At 6 h after the transfer to pH 5.8, the hemolymph

pH values in shrimp without injection or shrimp injected with DEPC-H2O and NC-siRNA

were highly comparable to that in shrimp kept at pH 8.0. However, the hemolymph pH in

shrimp injected with LvNHE siRNA-2 was significantly lower than in the other groups, indi-

cating that shrimp could not maintain the stability of hemolymph pH in acidified conditions

after silencing of LvNHE expression. A similar phenomenon was observed in shrimp trans-

ferred to pH 5.8 for 12 h. Very interestingly, a slight increase appeared in shrimp transferred

to pH 5.8 without RNAi of LvNHE. We speculate that there was an unknown physiological

response initiated against the harmful acidified environment.

In the normal cells, where pHi was reduced by acidification, the membrane ion transporters

may pump out the protons for the cell realkalization [42]. To investigate the functional roles of

LvNHE in the cell realkalization after acidification in shrimp, the pHi was detected in the intes-

tinal fragment cultures from shrimp with/without knockdown of LvNHE transcript expres-

sion. BCECF-AM is a nonfluorescent membrane-permeating acetoxymethyl ester, which can

be introduced into the cell where it is easily cleaved by nonspecific esterases into highly fluo-

rescent membrane-impermeable BCECF. Loading with the BCECF-AM ester and subsequent

concentration of de-esterified dye within the cell depend critically on the integrity of intracel-

lular enzymes and of the cell membrane. In a damaged cell, after cleavage of the ester bonds,

the hydrophilic BCECF would diffuse rapidly out of the cell, so it is used as an indicator of pH

in living cells [31]. The basal pHi of shrimp intestinal cells was 7.26±0.054 (Fig 5B), signifi-

cantly lower than the circulating pH. Similarly, the intracellular pH has been reported to be

~0.3 higher than the extracellular pH in humans, rainbow trout and the crab Cancer pagurus
[43]. The NH4Cl perfusion is a classic method for rapid acidification of cells [31], and it was

applied in this study. Cells were incubated in the absence of Na+ solution containing NH4Cl,

leading to cellular accumulation of NH4
+. Upon a subsequent shift to an NH4Cl-free solution,

cellular NH4
+ ions left the cells in the neutral NH3 form, leaving H+ behind, thus resulting in

cytoplasmic acidification [44]. The recovery rate of pHi in the LvNHE siRNA-2-injected group

was much lower than in the control group, indicating that LvNHE participates in the process

of cell realkalization after acidification. The acidification of pHi is normally caused by increases

in pCO2 [45], exposure to NH4
+ and subsequent removal [28], and acid exposure [46]. The

acidified intracellular conditions may give rise to a decrease in Na+ conductance and loss of

excitability [47], loss of electrical coupling in early embryonic cells [48] and decreased light

sensitivity in invertebrate photoreceptors [49]. Therefore, realkalization is necessary for cells

to survive after they are acidified. Previous studies have reported the involvement of the Cl-/

HCO3
- exchanger (AE) [46], V-type H+-ATPase [28] and NBC [50] in pHi recovery in
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mammals. The mechanism of cell realkalization has not yet been developed in L. vannamei,
and our present study is the first to provide the evidence for LvNHE participation in realkaliza-

tion of pHi in the L. vannamei intestine.

In summary, we first identified and characterized a full-length cDNA of the NHE gene

from L. vannamei and analyzed the tissue expression profile and intestinal subcellular localiza-

tion of LvNHE mRNA. The functional roles of LvNHE in pH regulation of L. vannamei were

demonstrated with the evidence that 1) the intestinal LvNHE mRNA levels increased under

the low pH challenge conditions, 2) knockdown of LvNHE mRNA may reduce the hemolymph

pH in shrimp under extreme low pH conditions, and 3) knockdown of LvNHE mRNA may

reduce the realkalization capacity of intestinal cells when they are acidified. Altogether, this

study sheds light on the regulatory effects of the NHE on extracellular (circulating) and intra-

cellular pH regulation of L. vannamei. Our findings also provide the basis for protecting cul-

tured L. vannamei from acidified aquatic environments.
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