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A B S T R A C T

Efficiently and objectively analyzing the complex, diverse multimodal data collected from patients at risk for dementia can be difficult in the clinical
setting, contributing to high rates of underdiagnosis or misdiagnosis of this serious disorder. Patients with mild cognitive impairment (MCI) are
especially at risk of developing dementia in the future. This study evaluated the ability of multi-modal machine learning (ML) methods, especially
the Ensemble Integration (EI) framework, to predict future dementia development among patients with MCI. EI is a machine learning framework
designed to leverage complementarity and consensus in multimodal data, which may not be adequately captured by methods used by prior
dementia-related prediction studies. We tested EI’s ability to predict future dementia development among MCI patients using multimodal clinical
and imaging data, such as neuroanatomical measurements from structural magnetic resonance imaging (MRI) and positron emission tomography
(PET) scans, from The Alzheimer’s Disease Prediction of Longitudinal Evolution (TADPOLE) challenge. For predicting future dementia development
among MCI patients, on a held out test set, the EI-based model performed better (AUC = 0.81, F-measure = 0.68) than the more commonly used
XGBoost (AUC = 0.68, F-measure = 0.57) and deep learning (AUC = 0.79, F-measure = 0.61) approaches. This EI-based model also suggested MRI-
derived volumes of regions in the middle temporal gyrus, posterior cingulate gyrus and inferior lateral ventricle brain regions to be predictive of
progression to dementia.

1. Introduction

Dementia affects millions of people worldwide, incurring a substantial burden on patients, families, healthcare professionals, and
the economy [1]. In 2022, there were 55 million people worldwide living with dementia, a figure that is expected to increase to 78
million by 2030 [2]. The annual global cost of dementia in 2022 was $1.3 trillion, and is projected to increase to $2.8 trillion by 2030
[2].

Physiologically, dementia has adverse impacts on cognition, quality of life, and the ability to live independently [3]. This condition
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is generally preceded by mild cognitive impairment (MCI), a stage of moderate memory and cognition loss beyond what is expected for
a patient’s age [4]. In the United States, around 15 % of people aged 60 or older live with MCI [5], and an estimated 12–20 % of these
individuals advance to dementia each year [6]. For this reason, early detection of dementia for MCI patients is crucial, since these
patients can be treated to slow cognitive decline [4,7]. However, if these patients progress to dementia, treatment options are limited
[8]. Therefore, a major emphasis in dementia research and treatment is to effectively and efficiently identify if a patient with MCI will
develop dementia in the future [5,9].

Currently the detection of dementia utilizes multimodal data like cognitive tests, MRI and PET scans, and other biomarkers [3].
However, despite the rich information in these data, it is estimated that over 18 % of dementia patients in the US are treated for the
wrong related illness [10], and almost two-thirds of dementia cases go undetected globally [11]. This can be partly attributed to the
difficulty in objectively and efficiently analyzing these complex, diverse data, even for experts. To address these issues and help
standardize the study of dementia and other neurodegenerative disorders, several research efforts have collected and organized these
multimodal data from a large number of at-risk patients. Prominent examples of such efforts are the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) [12], the National Alzheimer’s Coordinating Center (NACC) database [13] and the Australian Imaging, Biomarkers
and Lifestyle (AIBL) study of aging [14]. Since manual analysis of these large multimodal datasets is challenging, computational al-
gorithms, especially from machine learning (ML), have been applied to these data for the study of dementia and other neurodegen-
erative disorders, often with encouraging results [15,16].

Prior dementia-related prediction studies based on these multimodal data, especially from ADNI, have used various data inte-
gration and ML methods [16,17]. For instance, Beltrán et al. applied Gradient Boosting and other traditional ML methods to a
concatenated set of features frommultimodal ADNI data to predict Alzheimer’s disease (AD) progression [18]. Venugopalan et al. used
a set of stacked autoencoders and a convolutional neural network to combine features derived from similar multimodal data for the
early detection of AD [19]. Although these representative studies reported encouraging results, their strategy of deriving and con-
catenating/combining features into a single set before model training may obfuscate local signals exclusive to the individual data
modalities and hinder model performance [20–22]. This represents a major challenge for the automated prediction of future dementia
for MCI patients from clinically standard multimodal data.

An alternative, potentially more effective strategy is to derive specialized local predictive models from the individual modalities
before aggregating them into a global predictor. This approach leverages both the consensus and complementarity among the mo-
dalities to enhance prediction performance [23]. Our recent Ensemble integration (EI) framework systematically implements this
approach to develop effective predictive models from heterogeneous multimodal data [20]. The effectiveness of EI arises from its
ability to aggregate an unrestricted number and types of local models derived from each of the data modalities, thus incorporating their
inherent consensus and complementarity. In addition, unlike most prior data integration methods, EI also enables the interpretation of
the final aggregated model to identify the most predictive features over all data modalities.

In the current work, we evaluated EI’s potential for the early prediction of dementia for MCI patients. In particular, we system-
atically developed and evaluated a predictive model for the development of future dementia among MCI patients using multimodal
data derived from the ADNI cohort. In addition to developing this model, we also leveraged EI’s interpretation capabilities to identify
neuroanatomical features that may be associated with the progression of MCI to dementia.

2. Materials and methods

Below, we describe the data and methods used in our study. All the code used to process these data and implement the methods
described is available at https://github.com/GauravPandeyLab/TADPOLE_EI.

2.1. Data description and problem definition

Themultimodal data used in our study were from the TADPOLE Challenge [24], which were derived in turn from the ADNI 1, 2, and
GO studies [12,25,26]. These data modalities included cognitive test scores, demographic information and neuroanatomical mea-
surements from structural magnetic resonance imaging (MRI) and positron emission tomography (PET) scans. For specific details of
the data preparation and preprocessing steps taken in this Challenge, please refer to https://tadpole.grand-challenge.org/.

Several of the TADPOLE data modalities consisted of features that were missing for at least 30 % of the MCI patients (Supple-
mentary Fig. 1), which are difficult to impute reliably [27], and are likely to adversely affect downstream analyses [28]. These mo-
dalities were excluded from our analyses. Among the remaining modalities, the MRI measurements derived from fine-grained
segmented brain regions (MRI ROI) (processed using FreeSurfer [29] software) dominated the full set of features (313/341), which
may artificially dominate predictive modeling. To address this issue, we split the TADPOLE MRI ROI modality into five sub-modalities
based on the semantics of the constituent features. These sub-modalities were volume (white matter parcellation), volume (cortical
parcellation), cortical thickness standard deviation, cortical thickness average and surface area, each of which was then treated as its
own separate modality.

Missing values of features in the resultant modalities were imputed using K-Nearest Neighbor imputation (KNNImpute) [30] with K
= 5 within each modality. Categorical features were treated as continuous ones using their original values in TADPOLE to reduce
dimensionality, with the exception of APOE4, which was one-hot encoded [31] due to its close association with dementia risk [32,33].
The resultant continuous features were linearly normalized between 0 and 1. The resultant data modalities considered in our study are
detailed in Table 1, and the full set of features are provided in the first sheet of Supplementary File.

Since our focus was on identifying which patients currently diagnosed with MCI may progress to dementia, our study cohort
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derived from TADPOLE consisted of 841 patients diagnosed with (early (E) or late (L)) MCI at their first (baseline) visit (Fig. 1).
Accordingly, our target prediction problem was to predict which of these MCI patients’ diagnosis changed to dementia, and who stayed as
MCI, based only on data collected at baseline when they were diagnosed with MCI. A randomly sampled 80 % subset of this cohort was used
to train all the predictive models for the target problem. These models were then evaluated on the test set, which consisted of the
remaining 20 % of the cohort.

2.2. Identification of individual features associated with future dementia among MCI patients

As an initial examination of the relevance of our processed TADPOLE data to the target problem, we assessed which of the indi-
vidual features in the various modalities were associated with the future development of dementia among MCI patients. For this, the
Wilcoxon Rank-Sum test was used for continuous features and chi-squared test for categorical ones. The resultant p-values from these
tests were adjusted for multiple hypothesis testing using the Benjamini-Hochberg method [34] to yield the corresponding false dis-
covery rates (FDRs).

2.3. Ensemble integration (EI)

EI is a machine learning framework to build predictive models from multimodal data [20]. The effectiveness of EI arises from its
integration of local predictors trained on the individual data modalities into heterogeneous ensemble models. This allows EI to
leverage both the consensus and complementarity among the modalities more effectively than other data integration techniques. In the
current work, we applied EI to the baseline patient data from multiple TADPOLE modalities described above to build an effective
predictor of future dementia for MCI patients (Fig. 2). Specifically, each set of local predictors derived from the individual modalities
output probabilities of whether or not a patient with MCI will develop dementia in the future. EI models for this outcome were then
built on these probabilities using heterogeneous ensemble algorithms like mean aggregation, stacking and ensemble selection (ES).
Stacking learns a meta-predictor over the local models using any applicable classification algorithm (e.g., SVM and random forest),
while ES uses an iterative strategy to select a subset of the base predictors into the final ensemble. The EI model that performed the best
was then used to identify the most predictive features using the framework’s interpretation algorithm. To address the imbalance
between patients who progressed to dementia and those who remained at MCI, undersampling [35] was used for training all EI models.
Further technical details of the version of EI used in this work may be found in the original paper [20], Supplementary Tables 1 and 2
and the GitHub repository for this paper mentioned above.

2.4. Benchmark prediction approaches

To assess if EI produced more accurate predictions of future dementia for MCI patients than other methods, we considered two
benchmark prediction algorithms that were adaptations of methods used for similar problems and applied to ADNI data [18,19].

The first benchmark algorithm was XGBoost, an implementation of a gradient boosted decision tree algorithm [36], which is
considered to be one of the best methods for making predictions from tabular data [37]. We adopted this benchmark since it had been
used in a prior representative study to predict AD progression from multimodal ADNI data [18]. The second approach was inspired by
the Stacked Denoising Autoencoders (SDAE) method [19], where a series of autoencoders are each trained on the output of the
previous in an unsupervised manner, after which a final classification layer is added to produce a prediction. This deep learning-based
algorithm was adopted as a benchmark since it had been used for automated AD staging in a representative previous study [19]. In this
work, we concatenated all the TADPOLEmodalities considered for use with EI to make the resultant data compatible with both of these
benchmark methods. The XGBoost algorithm was run using the xgboost Python library [36], and the SDAE algorithm was

Table 1
Modalities in TADPOLE data used in this study. For each modality, a brief description and the number of features included is provided.

Data modality Description #
Features

Main cognitive tests Scores from neuropsychological tests, such as ADAS 13, CDR-SB, and MMSE, administered by a
clinical expert.

9

MRI volumes Volumes of seven large/general brain regions, such as the ventricles, medial temporal lobe, and the
cranial cavity.

7

MRI ROI (regions of interest): volume
(white matter parcellation)

Volumes from white matter parcellation of specific brain regions, such as left and right sections of the
thalamus, from MRI scans.

40

MRI ROI: volume (cortical parcellation) Volumes from cortical parcellation of specific brain regions from MRI scans. 69
MRI ROI: cortical thickness standard

deviation
Standard deviations of cortical thicknesses of specific brain regions from MRI scans. 68

MRI ROI: cortical thickness average Averages of cortical thicknesses of specific brain regions from MRI scans. 68
MRI ROI: surface area Surface areas of specific brain regions from MRI scans. 68
CSF biomarkers Measures of amyloid, tau and ptau proteins from cerebral spinal fluid (CSF). 3
Demographics, APOE4 allele and others Demographic variables, such age, ethnicity and marital status, as well as other relevant

measurements, such as the value of the APOE4 allele and the baseline diagnosis of early (E) or late (L)
MCI.

9
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reimplemented in Python based on the description in the original study [19]. Then, we trainedmodels using these algorithms to predict
future dementia in MCI patients.

Finally, to assess if, and how well, EI was performing its core task of integrating information from multiple data modalities, we also
compared EI’s performance to those of heterogeneous ensembles derived from the individual modalities using exactly the same un-
derlying algorithms as EI.

2.5. Evaluation methodology

All heterogeneous ensembles in EI applied to all and the individual data modalities were trained and evaluated on the training set
consisting of baseline data of 672 patients using a five-fold nested cross-validation (CV) setup [38] (Supplementary Fig. 2). The
XGBoost and autoencoder benchmark methods were trained and evaluated on the same training set in a standard five-fold CV setup.
The heterogeneous ensemble algorithm in EI that performed the best in this CV-based evaluation was then used to develop the final EI
model for evaluation on the test sets and interpretation. For comparison, final XGBoost and autoencoder models were also trained on
the whole training set and evaluated on the test set.

In our TADPOLE MCI cohort, only a minority of patients progressed to dementia, which made this outcome more challenging to
predict than the other class (patient staying at MCI). Thus, to assess the effectiveness of all the methods tested for predicting the
outcome of future dementia, we used Fmax [39,40], the maximum value of F-measure for all calculated precision and recall [41] scores
for predicting the minority outcome, as the representative evaluation measure. To further assess the quality of these predicted out-
comes, we also evaluated the methods using area under the ROC curve (AUC) [42] score, which summarizes the true positive and false
positive rates of predictions over all classification thresholds.

3. Results

3.1. Cohort characteristics

Our cohort derived from TADPOLE consisted of 841 patients diagnosed with MCI at their first visit (baseline). The diagnosis of 288
of these patients changed to dementia at a later time point, while 553’s diagnosis stayed as MCI. The distribution of basic clinical/
demographic characteristics of this cohort are provided in Table 2.

3.2. Individual features associated with future dementia among MCI patients

Univariate differential analysis revealed several individual features already known to be important for the detection of dementia
(full results in the third sheet of the Supplementary File). As expected based on clinical practice, several cognitive tests, such as ADAS
13 (Alzheimer’s disease assessment scale), FAQ (functional activities questionnaire) and ADAS 11, were the most significantly asso-
ciated [43,44]. Several measurements of the hippocampus were also highly significant, which was also expected given the association
between hippocampal atrophy and dementia [45–47].

3.3. Performance of EI and benchmark methods for early detection of dementia

Fig. 3 shows the cross-validation-derived performance on the training set of EI applied to all modalities, EI applied to each indi-
vidual modality and both benchmark methods (XGBoost and autoencoder). Specifically, this figure shows the performance of the

Fig. 1. Details of the patient cohort from TADPOLE analyzed in this study. Patients with an initial (baseline) diagnosis (DX) of MCI were identified,
along with the multimodal data recorded at this visit (see Table 1). The most recent diagnosis given to each patient (Final DX) was the outcome
predicted (stable MCI or progressed to dementia).
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various implementations of EI developed using the stacking, mean and ensemble selection algorithms used in the second stage of the
framework (Fig. 2). EI was applied to the individual modalities, as well as all of them taken together (All modalities). The resultant
performance was assessed in terms of both the (Fig. 3A) Fmax for the positive (MCI progressing to dementia) class, our primary
evaluation measure, as well as the commonly used (Fig. 3B) AUC measure. The benchmark algorithms, namely autoencoder and
XGBoost, were also applied to the individual and all modalities, and their performance assessed in terms of the same measures.

In terms of median Fmax measure, EI implementations applied to all the modalities in Table 1 outperformed those tested on the
individual modalities. Furthermore, four of the 11 EI implementations utilizing all modalities performed better than both benchmark
methods. In terms of AUC as well, EI implementations applied to all the modalities in Table 1 outperformed those tested on the in-
dividual modalities, and four of the 11 all-modality EI implementations performed better than both benchmark methods. These results
showed that EI indeed integrated and leveraged the information in all the modalities to yield a promising method to predict future
dementia among MCI patients. In particular, since EI based on stacking with random forest produced the highest cross-validated Fmax
and AUC, this implementation was used to develop the final EI predictive model from the whole training set. Fig. 4 shows the per-
formance of this model, as well as those trained using the XGBoost and autoencoder benchmark methods, on the test set in terms of the
F-measure (Fig. 4A) and AUC (Fig. 4B) measures. As on the training set, the EI model maintained relatively high performance on the
test set (F-measure = 0.68 and AUC = 0.81), and better performance than both benchmark methods (F-measure = 0.61 & 0.57 and

Fig. 2. Overview of the EI workflow for this study. Patient data from ADNI 1, 2 and GO were processed by TADPOLE Challenge organizers into the
structured data modalities used in this study. Within EI, sets of local predictive models were trained on each modality separately using algorithms
like SVM, random forest (RF) and multi-layer perceptron (MLP; traditional neural network). EI models were then trained on the outputs of all the
local models using heterogeneous ensemble algorithms like mean aggregation, stacking and ensemble selection to predict future dementia for MCI
patients. The most predictive features were identified by interpreting the best-performing EI model. Note that while MRI regions of interest (ROI) is
shown as a single modality in this figure for simplicity and clarity, this study divided it into five modalities based on the brain region measurements
included to balance the number of features across all resultant modalities (Table 1). Subimage credits: ADNI (logo), TADPOLE (logo), Nur Ceren
Demir for iStock (Raw MRI scans), Nguyen Dang Hoang for Unsplash (Tests of cognition) and Derks24 for Pixabay (Biomarker collection).
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AUC = 0.79 & 0.68 for Autoencoder and XGBoost respectively).

3.4. Most predictive features in final EI model

The EI framework enables the interpretation of its models, specifically in the form of a ranked list of features from all the input
modalities in terms of their contributions [20]. In the case of the final EI model to predict future dementia among MCI patients, several
features found to be the highest contributors were not found to be significantly associated in the univariate analyses. Table 3 provides a
list of the ten such top-ranked features in our processed TADPOLE data modalities, while the Supplementary File provides the EI
interpretation ranking for all the features, as well as the subset not individually associated with the outcome.

4. Discussion

This work investigated the potential of the Ensemble Integration (EI) framework [20], when applied to multimodal clinical data
from the ADNI-derived TADPOLE [24] cohort, to predict if a patient with MCI may develop dementia in the future, a pressing
healthcare need [4–6]. The results showed EI’s ability to effectively integrate data from a diverse set of clinical and imaging modalities
to predict future dementia among MCI patients. EI also performed better than other approaches that have been used for dementia
detection approaches on a test set consisting of MCI patients whose data were not used during the model training process.

EI showed improved performance at early dementia detection over the benchmark methods previously used in the area, namely
XGBoost and SDAE. The main reason behind this performance difference was the ability of EI to capture the signals specific to the
TADPOLE individual modalities into local models. The integration of these models allowed EI to leverage both the complementarity
and consensus across the modalities, a validation of the core hypothesis underlying the framework. In contrast, XGBoost and SDAE
were applied to the original TADPOLE modalities concatenated together, which did not allow them to benefit from the same critical
factors as effectively.

In addition, EI’s interpretation capability [20] revealed several predictive features that were not found to be individually associated
with this outcome by traditional statistical methods. Among these were MRI-derived volumes of the left middle temporal gyrus, right
posterior cingulate and left inferior lateral ventricle brain regions (Table 3). Changes in the morphologies of these brain regions have
been observed in cases of Alzheimer’s disease (AD), the most commonly observed form of dementia [48]. In a study of conversion from
MCI to AD at various time points using MRI derived features, Wei et al. found the volume of the left middle temporal gyrus to be a
consistent predictor of AD conversion at each future time point [49]. Specifically, Guo et al. studied multiple cortical features of MRI
and found that the volumes of both the middle temporal gyrus and the right posterior cingulate gyrus were significantly associated

Table 2
Distribution of clinical/demographic features from the demographics, APOE4 allele and others modality across the whole TADPOLE MCI cohort.
Distributions of these features in the training and test cohorts are in the second sheet of the Supplementary Excel File.

Features Overall (whole cohort) Stayed at MCI (whole cohort) Progressed to dementia (whole cohort)

n (%) or median (interquartile range)

All patients 841 555 286
Age at baseline 73.5 (68.0, 78.8) 72.7 (66.6, 78.25) 74.3 (69.5, 79.1)
Years of education 16.0 (14.0, 18.0) 16.0 (14.0, 18.0) 16.0 (14.0, 18.0)
Diagnosis at baseline visit
LMCI 543 (64.6 %) 291 (52.4 %) 252 (88.1 %)
EMCI 298 (35.4 %) 264 (47.6 %) 34 (11.9 %)

Sex
Male 499 (59.3 %) 326 (58.7 %) 173 (60.5 %)
Female 342 (40.7 %) 229 (41.3 %) 113 (39.5 %)

Ethnicity
Hispanic/Latino 28 (3.3 %) 19 (3.4 %) 9 (3.1 %)
Not Hispanic/Latino 809 (96.2 %) 533 (96.0 %) 276 (96.5 %)
Unknown 6 (0.7 %) 6 (1.1 %) 0 (0.0 %)

Race
White 786 (93.5 %) 511 (92.1 %) 275 (96.2 %)
Asian 14 (1.7 %) 9 (1.6 %) 5 (1.7 %)
Black 26 (3.1 %) 20 (3.6 %) 6 (2.1 %)
More than one 8 (1.0 %) 8 (1.4 %) 0 (0.0 %)
Hawaiian or other Pacific Islander 2 (0.2 %) 2 (0.4 %) 0 (0.0 %)

Marital status
Married 650 (77.3 %) 414 (74.6 %) 236 (82.5 %)
Never married 19 (2.3 %) 13 (2.3 %) 6 (2.1 %)
Divorced 77 (9.2 %) 64 (11.5 %) 13 (4.5 %)
Widowed 89 (10.6 %) 58 (10.5 %) 31 (10.8 %)

APOE4 allele frequency
0 414 (49.2 %) 317 (57.1 %) 97 (33.9 %)
1 334 (39.7 %) 193 (34.8 %) 141 (49.3 %)
2 93 (11.1 %) 45 (8.1 %) 48 (16.8 %)
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with progression from MCI to AD [50]. In a longitudinal analysis of cognitive decline in MCI and AD patients, Zhao et al. found a
significant difference in the volume of the left inferior lateral ventricle between MCI to AD converters and stable MCI patients at both
baseline and future measurements [51]. Some studies have also reported the association of intracranial volume (ICV) to the likelihood
of AD or dementia, although the extent of this association is unclear [52–54]. Such prior evidence suggests EI’s ability to recapture
known knowledge about progression to dementia.Furthermore, the other predictive features identified only by EI could serve as novel
hypotheses about dementia progression that would need to be (in)validated in future studies.

Finally, although this study yielded a predictor of, and potentially useful information about the future development of dementia
amongMCI patients, it also had some limitations. During our processing of the TADPOLE data, any feature with missing values for over
30 % of baseline MCI patients was eliminated. This resulted in several imaging modalities, namely FDG PET, AV45 PET, AV1451 PET
and DTI, being removed, since the missingness of all their constituent features was over the above threshold. This could cause a loss of
information and may have hindered the performance of EI and the benchmark prediction methods. Furthermore, the TADPOLE
Challenge data were aggregated frommultiple editions of ADNI (1, 2 and GO), whichmay have been processed in distinct ways, such as
using different versions of the evolving Freesurfer software. This may have made different subsets of the TADPOLE Challenge data

Fig. 3. Cross-validation-derived performance of all prediction methods on the training set evaluated in terms of the (A) Fmax and (B) AUC evaluation
measures. Note that the values for EI on all modalities and the individual ones are distributions, as the scores from each heterogeneous ensemble
algorithm used within the framework are displayed. In contrast, the XGBoost and autoencoder benchmark methods are single algorithms repre-
sented by horizontal lines. The performance of a random classifier is shown for reference.

Fig. 4. Performance of the training set-derived EI, XGBoost and autoencoder models on the test set in terms of the (A) F-measure and (B) AUC
scores. The EI model was trained using the stacking algorithm implemented with random forest. The F-measure (Y-axis of (A)) was evaluated for the
predictions generated by the models for the class of MCI patients that progressed to dementia using the corresponding classification thresholds from
the Fmax calculated for the same class during cross-validation (Fig. 3).
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slightly inconsistent with each other, which may have affected our prediction and interpretation results. In addition, since we were
concerned with detecting dementia in a MCI patient as early as possible, only baseline patient data from TADPOLE were considered,
and did not utilize the available longitudinal data. Examination of other missing data handling/imputational strategies and the use of
longitudinal data, although complex tasks, may further improve prediction performance and allow for additional insights into de-
mentia progression.

5. Conclusion

The application of the Ensemble Integration (EI) framework to multimodal clinical and imaging data derived from ADNI enabled
this study to develop a promising model to detect dementia early in MCI patients. Early detection of MCI patients may help healthcare
providers to plan early interventions and treatments for these patients more efficiently and objectively than current clinical practice.
The algorithmic interpretation of this model also revealed several clinical features to be particularly predictive of this outcome, which
may shed light on disease pathophysiology. Further enhancements to EI and/or the data used may enable further progress on this
pressing healthcare problem. These enhancements to EI include extending the framework to accommodate the longitudinal data that
are usually collected for MCI patients, enabling the modeling of their dementia status over time and potentially improving perfor-
mance. Similarly, although discrete features derived from MRI scans in the TADPOLE data were useful for our prediction task, the
effectiveness of this data modality can be further enhanced by utilizing the full scans and processing them through deep learning
methods within EI.

Data and code availability

The original TADPOLE data used in this study can be obtained from https://tadpole.grand-challenge.org/Data/. The code for pre-
processing these data for this study, as well as downstream analyses, e.g., EI, is available from https://github.com/GauravPandeyLab/
TADPOLE_EI.
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(Eds.), Machine Learning and Knowledge Discovery in Databases, Springer, Berlin, Heidelberg, 2009, pp. 423–438, https://doi.org/10.1007/978-3-642-04180-
8_45. Lecture Notes in Computer Science.

[22] M.W. Libbrecht, W.S. Noble, Machine learning applications in genetics and genomics, Nat. Rev. Genet. 16 (6) (Jun. 2015) 6, https://doi.org/10.1038/nrg3920.
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