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1  | INTRODUC TION

Approximately a year ago, severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) in humans was described for the first time 
in Wuhan, China.1 Since, SARS-CoV-2 and its clinical manifestation, 
known as coronavirus disease 2019 (COVID-19), have dominated 
the news and varying restrictions to everyday life have been intro-
duced in essentially all continents in an international effort to limit 
human-to-human spread as well as decrease hospitalization rates.2 
Updated information on confirmed high pathogenic CoV infections 
and fatalities in humans are provided in Table 1. This synopsis rep-
resents the third update on recent findings on animal sources that 
could pose a risk for human SARS-CoV-2 infection. The information 
provided is intended to update people working closely with animals 
on new evidence of cross-species transmission of SARS-CoV-2 from 
humans.

2  | ORIGIN OF SARS- COV-2:  WHAT HAVE 
WE LE ARNED SO FAR?

When assessing any new virus, it is essential to identify its origin as 
this could yield important data which could help in preventing future 
outbreaks. Further investigations into the origin of SARS-CoV-2 re-
vealed that the virus itself likely originated from a bat sarbecovirus, 
a virus circulating in horseshoe bats.3-5 Horseshoe bats can be found 

in tropical and temperate regions in Europe, Japan, Asia, and Africa. 
Divergence dates between SARS-CoV-2 and the bat sarbecovirus 
reservoir were estimated as 1948 and 1982, suggesting that the lin-
eage which produced SARS-CoV-2 has been circulating unnoticed 
in bats for decades.3,6 Of note, the virus was introduced to humans 
via spillover or cross-species transmission but details still need to 
be estabilished. SARS-CoV-2 adapted quickly to its new human host 
resulting in rapid human-to-human transmission, with a mean re-
productive number (R) estimated to be 3.28 (median 2.79),7 which 
indicates that an infected person can potentially infect 3 to 4 others.

In theory, it is possible that SARS-CoV-2 in its current form evolved 
directly from horseshoe bats, but an intermediate host, such as pan-
golins or another species, is also plausible.3 SARS-CoV-2 emerged in 
Wuhan, China during the winter season, perhaps indicating that there 
was an intermediate host present at that time.6 As we outlined in 
our previous commentary,8 the pangolin has been proposed as the 
missing link bridging bats and humans in the context of SARS-CoV-2. 
Pangolins in some cases have developed natural disease associated 
with SARS-CoV-2 infection, perhaps indicating they may not be a nat-
ural reservoir.3,6 The current consensus is that more data is needed to 
conclusively determine the origin of SARS-CoV-2. Identifying inter-
mediate host species capable of supporting SARS-CoV-2 replication 
is important as this could provide clues on future reservoir hosts. It 
has been determined that the likelihood of fish, birds, reptiles and am-
phibians to become a possible SARS-CoV-2 intermediate host in the 
future is low.9,10 Among livestock species including ruminants, pigs 
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and domestic poultry, reports of serious disease outbreaks, possibly 
suggesting a species jump of SARS-CoV-2, have not been reported to 
date. However, there is evidence that pigs11 and ruminants12 can be 
experimentally infected with SARS-CoV-2 at a low level, and livestock 
may pose a greater risk of serving as a reservoir in the future, when 
SARS-CoV-2 becomes more established in humans.13 A potentially 
important role in cross-species transmission has been suggested for 
rodents including squirrels, rats, mice, hamster and others.14 Rodents 
exist in sufficient numbers and densities for continuous transmission 
and are often in close proximity to humans, but so far experimental 
studies indicate a low probability or no risk of SARS-CoV-2 infection 
for mice and rats.13 Interestingly, it has been found more recently that 
Chinese tree shrews, a squirrel-like mammal with a wide distribution 
in Southeast Asia, could not only be infected with SARS-CoV-2 but 
also developed clinical signs analogous to COVID-19 in humans.15 
Chinese tree shrews have been used as animal models in viral hepati-
tis, psychosocial and visual defect studies due to their phylogenetical 
closeness to primates.16

3  | VIR AL SPECIES JUMP OF SARS-
COV-2 AND IMPLIC ATIONS: WHY IS IT 
IMPORTANT?

Many research efforts focus on the animal-human interface of 
SARS-CoV-2. With the high rate of infections and the overall high 
virus load present in the human population today, it is likely that 
SARS-CoV-2 may enter other new hosts. This process is known as 
species jump or spillover and requires some level of adaption of the 
virus to the new host. Three stages of viral disease emergence lead-
ing to successful host switching have been defined previously.17

3.1 | Stage 1

During the first stage, a new host species becomes infected but 
there is no onward transmission. This scenario is likely true for dogs 
and cats: SARS-CoV-2-viremia or even clinical signs have occasion-
ally been demonstrated in these pets, which were essentially always 
in close contact with COVID-19 infected humans and were the direct 
results of human-dog infection18 or human-cat-infection.19 However, 
to date, there have been no confirmed natural infections between 

dogs, between cats or from cats or dogs to humans and compan-
ion animals are unlikely to spread COVID-19 at a larger scale.20 Of 
note, naive cats kept under experimental conditions in close contact 
with SARS-CoV-2 infected cats can become infected, confirming a 
successful transmission between cats.21,22 However, under normal 
circumstances domesticated cats live solitary lives without socially 
structured groups and are not in regular close contact with other 
cats. The documented events so far suggest that pet cats and dogs 
can be considered dead-end hosts.

3.2 | Stage 2

The second stage of viral disease emergence are spillovers that go on 
to cause local chains of transmission in the new host population be-
fore the epidemic fades out (outbreaks). The authors are not aware 
of any SARS-CoV-2 infections in domestic or wild animals that fall 
into this category.

3.3 | Stage 3

The third stage is development of an epidemic or sustained endemic 
host-to-host disease transmission in the new host population. This 
stage has likely been reached in farmed mink populations, where all 
factors consistent with stage three have been observed, including 
confirmed human-to mink infections, mink-to-mink transmission 
with clinical signs in a large number of animals and mink-to human 
infection.23 This has resulted in the culling of many commercial mink 
farms in the Netherlands,24 Spain (https://www.bbc.co.uk/news/
world​-europ​e-53439263), the USA (https://www.aphis.usda.gov/
aphis/​newsr​oom/stake​holde​r-info/sa_by_date/sa-2020/sa-08/sare-
cov-2-mink) and Denmark25 among other countries.

The species jump of viruses into a new host is in general of 
concern because of the potential introduction of genome mu-
tations driven by inadequate replication in the intermediate or 
novel host. These changes can impact virus fitness in general 
and occasionally may result in increasing viral replication rate in 
the intermediate or novel host.26 Unique SARS-CoV-2 mutations 
were identified in Dutch and also in Danish mink after the virus 
adapted to this species.25,27 Subsequently, the same mutated vi-
ruses were also detected in humans who were in close contact with 

TA B L E  1  Facts on high pathogenic human CoVs

Virus Time of circulation
Laboratory 
confirmed cases Deaths Case fatality rate

Country 
distribution

SARS-CoVa  2002-2003 8096 774 9.6% 26

MERS-CoVb  2012-ongoing 2494 853 35% 27

SARS-CoV-2c  2019-ongoing 67 210 778 1 540 777 2.3% Global pandemic

aSource: https://www.who.int/csr/sars/count​ry/table​2004_04_21/en/. 
bSource: https://www.who.int/emerg​encie​s/mers-cov/en/. 
cSource: https://covid​19.who.int (Accessed 9 Dec 2020). 

https://www.bbc.co.uk/news/world-europe-53439263
https://www.bbc.co.uk/news/world-europe-53439263
https://www.aphis.usda.gov/aphis/newsroom/stakeholder-info/sa_by_date/sa-2020/sa-08/sare-cov-2-mink
https://www.aphis.usda.gov/aphis/newsroom/stakeholder-info/sa_by_date/sa-2020/sa-08/sare-cov-2-mink
https://www.aphis.usda.gov/aphis/newsroom/stakeholder-info/sa_by_date/sa-2020/sa-08/sare-cov-2-mink
https://www.who.int/csr/sars/country/table2004_04_21/en/
https://www.who.int/emergencies/mers-cov/en/
https://covid19.who.int


     |  3 of 8OPRIESSNIG and HUANG

the mink.25,27 During vaccine development, it is crucial to monitor 
any viral changes which may occur at vaccine target sites, as these 
may render a novel vaccination product ineffective.28 At this point, 
scientists suggest that the mink-specific SARS-CoV-2 mutations 
identified so far will not jeopardize the effectiveness of potential 
COVID-19 vaccines.29

SARS-CoV-2 belongs to the RNA class of viruses, which are prone 
to high mutation rates (expressed as the number of substitutions per 
nucleotide per generation). Despite this fact, fortunately and simi-
lar to SARS-CoV, which is mutating at a slow rate (0.80-2.38 × 10-3 
nucleotide substitution/site/year),30 SARS-CoV-2 has an estimated 
annual substitution rate of 26 and an estimated evolutionary rate 
of approximately 0.90 × 10−3 substitution/site/year.31 In lay terms, 
this means that SARS-CoV-2 only has approximately two single mu-
tations per month on average; this is half the rate seen in influenza 
viruses and a quarter of the mutations acquired by HIV.32

4  | NE W INFORMATION ON SARS- COV-2 
SUSCEPTIBLE ANIMAL SPECIES

At the time of our last update, it had been confirmed that Felidae, 
Canidae, and Mustelidae can become naturally infected with SARS-
CoV-2.8 Under experimental conditions, Cricetidae and Macaques 
can also be infected but often only develop subclinical disease.8 
The following information is an update on the current knowl-
edge relevant to the susceptibility of different animal groups to 
SARS-CoV-2.

4.1 | SARS-CoV-2 in pets

Today pets often live in close contact with humans and are com-
monly considered part of the family. It comes as no surprise that 
SARS-CoV-2 has been detected in dogs and cats living in COVID-
19 households.33-35 Often SARS-CoV-2 in cats or dogs was only 
detected by PCR assays, occasionally the pet in question serocon-
verted, and in only a few cases, mild clinical signs were described.8 
Commonly, field assessments of the general cat and dog population 
using serology assays resulted in a low prevalence of antibody-pos-
itive animals.36,37 Overall, this has triggered a number of controlled 
experimental and observational studies. Since our last update, a few 
more experimental cat studies have been published (Table  2) fur-
ther confirming that cats often remain asymptomatic while able to 
transmit SARS-CoV-2 to sentinel cats.21,22,38 Moreover, it was also 
reported that cats shed the virus for approximately 5 days with peak 
titres achieved from nasal shedding at day 3 and, when infected 
with SARS-CoV-2 twice 4 weeks apart, mounted an effective im-
mune response and did not become reinfected.22 In contrast, SARS-
CoV-2 shedding in experimentally infected dogs was not observed; 
however, seroconversion was reported.22 The overall data provided 
by research into canine and feline SARS-CoV-2 infection indicates 
these are end-stage hosts, there is no evidence of virus transmission 
to other dogs, but cats can infect naïve cats during the acute stage 
of infection if in close contact with each other.

Under experimental conditions, Golden Syrian hamsters39,40 as 
well as ferrets41,42 can be readily infected with SARS-CoV-2, which 
causes mild to no clinical signs with limited and often short-lived 

TA B L E  2  Summary of research studies demonstrating SARS-CoV-2 in pets

Species Data type
Positive animals/total number of 
animals tested

Inoculation details

ReferenceRoute Dosea 

Domestic cats Experimental 14/14 Intranasal 1.0 × 105 PFU 43

6/6 Oral/intranasal 1.0 × 106 TCID50
38

6/6 Intranasal/oral 5.2 × 105 PFU 21

5/5 Intranasal 3.0 × 105 PFU 22

Surveillance 6/60 NAb  NA 44

0/87 NA NA 45

1/131 NA NA 36

15/39 NA NA 37

Domestic dogs Experimental 1/5 Intranasal 1.0 × 105 PFU 43

3/3 Intranasal 1.4 × 105 PFU 22

Surveillance 8/180 NA NA 44

0/497 NA NA 45

13/172 NA NA 36

Ferrets Experimental 10/10 Intranasal 1.0 × 105 TCID50
46

9/9 Intranasal 1.0 × 105 PFU 43

Golden Syrian hamster Experimental Frequently used as animal models for human SARS-CoV-2

aMedian tissue culture infectious dose (TCID50) per animal or plaque-forming unit (PFU). 
bNA, not available. 
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virus shedding. To the authors’ knowledge, there have been no re-
ports of SARS-CoV-2 naturally infecting pet hamsters or ferrets.

In general, it would appear pets are not easily infected. 
Confirmed reports of cats and dogs naturally infected with SARS-
CoV-2 are very limited, while confirmed human infections have 
reached over 67 million cases, as outlined in Table  1. Therefore, 
pets do not pose a major threat to humans at this point and human 
infection from cats, dogs, ferrets or Golden Syrian hamsters has not 
been reported.

4.2 | SARS-CoV-2 in livestock species

Fortunately, studies investigating the susceptibility of livestock spe-
cies to SARS-CoV-2 have rarely resulted in finding viral infectivity 
(Table 3). SARS-CoV-2 experimental infection trials in poultry using 
chickens, ducks, turkeys, quail and geese demonstrated these ani-
mals lacked susceptibility to the virus.46,47

For pigs, most available data points towards this species not 
being susceptible to SARS-CoV-2; however, there are some re-
cent conflicting reports. A US study found no evidence of clinical 
signs, viral replication or SARS-CoV-2-specific antibody responses 
in 9 5-week-old pigs when infected through the oral, intranasal 
and intratracheal routes; however it was also found that porcine 
cell lines including a porcine kidney cell line and swine testicular 
(ST) cell line could be readily infected.48 In a Spanish study, 20 
5-6-week-old pigs were divided into groups of 5 pigs and infected 
with SARS-CoV-2 using the intranasal (IN), intratracheal (IT), in-
tramuscular (IM), or intravenous (IV) routes.49 Pigs in the IN group 
were euthanized at 1 or 2 days post infection (dpi) while all other 
pigs were euthanized at 2 or 22 dpi. Nasal or rectal shedding of 
viral RNA was not detected in any of the pigs. Proximate trachea 
from a single IN-inoculated pig was SARS-CoV-2 RNA positive at 
1 dpi. All other tissues from this pig and all tissues from all other 
pigs were SARS-CoV-2 RNA negative. No productive infection was 
observed in any of the pigs. Evidence of seroconversion against 

TA B L E  3  Summary of research into SARS-CoV-2 infection in livestock species

Species Data type
Positive animals/total 
number of animals tested

Inoculation/study details

ReferenceRoute Dosea 

Pigs Experimental 0/9 Intranasal 1 × 105 TCID50
46

0/5 Intranasal 1 × 105 PFU 43

0/9 Oral/intranasal/
intratracheal

1 × 106 TCID50
48

0/20 Intranasal, intratracheal, 
intramuscular or 
intravenous

1 × 105.8 TCID50
49

3/16 Oronasal 1 × 106 PFU 11

Surveillance 0/187 NAb  NA 45

Swine cell lines Infection readily possible Swine testicle (ST) cell 
line

Porcine kidney (PK) cell 
line

0.05 multiplicity of 
infection (MOI) of
passage 3 of a VeroE6-
passaged SARS-CoV-2

48

Cattle Experimental 2/6 Intranasal 1 × 105 TCID50
12

Surveillance 0/107 NA NA 45

Sheep Surveillance 0/133 NA NA 45

Chickens Experimental 0/17 Oculo-oronasal 1 × 105 TCID50
46

0/5 Intranasal 1 × 104.5 PFU 43

0/10 Intrachoanal 1 × 105.4 TCID50
47

Surveillance 0/153 NA NA 45

Ducks Experimental 0/5 Intranasal 1 × 104.5 PFU 43

0/10 Intrachoanal 1 × 106 TCID50
47

Surveillance 0/153 NA NA 45

Turkeys Experimental 0/10 Intrachoanal 1 × 105.4 TCID50
47

Japanese quail Experimental 0/10 Intrachoanal 1 × 105.4 TCID50
47

White Chinese 
geese

Experimental 0/10 Intrachoanal 1 × 106 TCID50
47

aMedian tissue culture infectious dose (TCID50) per animal or plaque-forming unit (PFU). 
bNA, not available. 
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the SARS-CoV-2 spike glycoprotein was detected at 14 and 22 dpi 
while neutralizing antibodies were detected at 22 dpi in pigs inoc-
ulated by parenteral routes (IM or IV). It was suggested that pigs 
may be a good model for SARS-CoV-2 immunogenicity studies.49In 
contrast, a Canadian study using 16 8-week-old pigs inoculated 
with SARS-CoV-2 via an oronasal route did find low susceptibility 
to infection in these pigs due to detection of viral RNA in nasal 
wash (2/16 pigs at 3 days post-challenge) and pooled oral fluids 
from another room (1/2 at 3 days post-challenge), as well as the 
successful isolation of virus from a pig. Furthermore, 2/16 pigs, 
unrelated to the SARS-CoV-2 RNA positive pigs, developed low 
neutralizing antibody titres against SARS-CoV-2 between 11 and 
15 days post-challenge.11

Little research has been done in ruminants so far; however, 
a recent study using six 4 to 5-month-old cattle intranasally in-
oculated with SARS-CoV-2, found low level virus replication and 
antibody development in 2 of the 6 animals.12 A sentinel control 
animal did not become infected. While this may seem concern-
ing, to date there is no indication that cattle play any role in the 
human pandemic nor are there any reports of naturally infected 
bovines.12 For a natural human-to-cattle SARS-CoV-2 infection to 
happen, cattle need to be in close contact with an infected human 
and this may not occur frequently in today's cattle-raising facili-
ties. However, further confirmation of this data is needed and the 
susceptibility of other ruminant livestock species such as sheep 
and goats needs to be investigated.

4.3 | SARS-CoV-2 in farmed mink

SARS-CoV-2 in mink behaves differently compared to other animal 
species. It is commonly associated with severe clinical outbreaks 
including high morbidity and mortality in infected farms; however, 
subclinical disease can also occur. So far, outbreaks have been re-
ported in several European countries and in the USA. As a conse-
quence of the various outbreaks seen in mink farms, several culling 
interventions have been carried out, as outlined in Table 4. Recently, 
a Chinese research group investigated the biological properties of 
SARS-CoV-2 in experimentally infected mink.50 It was determined 
that SARS-CoV-2 replicates efficiently in the respiratory tract, as 
expected, and is transmitted among mink via respiratory droplets. 
As lesions in mink are similar to humans suffering from COVID-19, 
the mink model was proposed as a useful animal model to evaluate 
COVID-19 therapeutics or vaccines.50

4.4 | SARS-CoV-2 in wildlife species

Investigations into wildlife species are perhaps under represented at 
this point in time. In large cats living in zoos, SARS-CoV-2 has been 
identified on several occasions, including in tigers and lions in New 
York, NY, USA in April,51 in a puma in Pretoria, South Africa in July 
(https://www.oie.int/wahis_2/publi​c/wahid.php/Revie​wrepo​rt/

Revie​w?page_refer​=MapFu​llEve​ntRep​ort&repor​tid=35399) and 
in tigers in the Knoxville, TN, USA in October (https://www.zookn​
oxvil​le.org/wp-conte​nt/uploa​ds/2020/10/028-Zoo-Knoxv​ille-Ti-
ger​-Tests​-Posit​ive-for-SARS-CoV-2-.pdf?_ga=2.16313​462.17079​
33573.16043​53641​-13191​89766.16040​71942). All large cats that 
were confirmed as infected displayed mild respiratory signs, which 
promoted investigation, and had been in contact with COVID-19 posi-
tive animal handlers. In addition to large cats, research macaques can 
be readily infected under experimental conditions and also appear to 
present with mild clinical signs.52,53 No data is available on macaques 
or wild cats living in their natural habitats or any other wild animals.

The search for possible SARS-CoV-2 animal reservoirs in wildlife 
species is akin to the search for a needle in a haystack. In sub-clini-
cally infected animals, SARS-CoV-2 viremia and shedding would be 
very short-lived and may not be detected even if recently infected 
animals were tested. Other alternative approaches to investigate 
the SARS-CoV-2 human-wildlife interface likely need to be pur-
sued and may need to rely on mass sequencing on water,54 air55,56 
or pooled faecal samples from common areas such as freshwater 
reservoirs or feeding areas. Interestingly, in August 2020, China 
announced regular coronavirus tests at wholesale markets (weekly 
for major markets, monthly for smaller operations), with a focus 
on knives used at major stands, workers' clothing, surfaces, freez-
ers, meat, seafood, sewage, restrooms, garbage trucks and offices 
(https://prome​dmail.org/prome​d-post/?id=20200​801.7635820).

5  | SUMMARY

SARS-CoV-2 emerged in the human population towards the end 
of 2019 and has been spreading at an alarming rate and cases in 
humans continue to increase. This is predicted to continue until 
commercial vaccines, which recently became available in selected 
countries (https://www.bbc.co.uk/news/uk-55227325), are ap-
proved and have been distributed to a larger number of people, en-
suring that a certain proportion of the global population is protected. 
Pet animals such as cats and dogs do not currently appear to pose 
a risk to humans; however, continuous monitoring of these animals 
is warranted. SARS-CoV-2 spillover into farm animals has not been 
reported to date, but if it happens, it likely happens very sporadically 
and involves a low number of animals. An exception to this is farmed 
mink, where SARS-CoV-2 spreads quickly and causes clinical disease 
in infected animals. As a precaution, nearly all affected mink farms 
implemented immediate mass culling. The rapid identification of a 
human-animal spillover event and its removal or containment is criti-
cal in safeguarding humans and also other animal species. Careful 
consideration and attention should be given to other future SARS-
CoV-2 spillover events into the animal population in order to effec-
tively control the ongoing pandemic.
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