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Despite extraordinary advances that have been achieved in the last few decades,

cancer continues to represent a leading cause of mortality worldwide. Lethal cancer

types ultimately become refractory to standard of care approaches; thus, novel effective

treatment options are desperately needed. Tumor Treating Fields (TTFields) are an

innovative non-invasive regional anti-mitotic treatment modality with minimal systemic

toxicity. TTFields are low intensity (1–3 V/cm), intermediate frequency (100–300 kHz)

alternating electric fields delivered to cancer cells. In patients, TTFields are applied

using FDA-approved transducer arrays, orthogonally positioned on the area surrounding

the tumor region, with side effects mostly limited to the skin. The precise molecular

mechanism of the anti-tumor effects of TTFields is not well-understood, but preclinical

research on TTFields suggests it may act during two phases of mitosis: at metaphase,

by disrupting the formation of the mitotic spindle, and at cytokinesis, by dielectrophoretic

dislocation of intracellular organelles leading to cell death. This review describes the

mechanism of action of TTFields and provides an overview of the most important in

vitro studies that investigate the disruptive effects of TTFields in different cancer cells,

focusing mainly on anti-mitotic roles. Lastly, we summarize completed and ongoing

TTFields clinical trials on a variety of solid tumors.

Keywords: Tumor Treating Fields, alternating electric fields, mitosis, cancer treatment, TTFields, centrosome,

mitotic spindle

INTRODUCTION

The paradigm of standard care for cancer treatment has dramatically changed in the past two
decades due to a greater understanding of tumor development and treatment resistance to more
classical therapies (1) including novel immune and molecularly targeted therapies (2). Tumor
Treating Fields (TTFields) are a recently developed distinct antineoplastic therapy consisting
of low-intensity and intermediate frequency alternating electric fields. Data supporting clinical
effectiveness accumulated from preclinical and clinical studies since their initial proposal (3) led
to US Food and Drug Administration (FDA) approval as a single agent therapy in recurrent
glioblastoma (GBM), as adjuvant therapy along with standard chemoradiation for postoperative
glioblastoma (4, 5), and for therapy of mesothelioma (6).
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TTFields are applied to the localized tumor using an array
of ceramic applicators powered by a portable 3 lb battery pack.
These fields are believed to exert their inhibitory effect on
dividing cells by inducing a disruption of cytokinesis during
mitosis, leading to cell cycle arrest and cell death (7). This
review describes the TTFields putative mechanisms of action,
recapitulating the key in vitro investigations. Finally, we provide
an up-to-date summary of approved and ongoing clinical studies
highlighting the multifaceted applications of TTFields.

TUMOR TREATING FIELDS: PHYSICS
PRIMER AND PUTATIVE MECHANISMS OF
ACTION

Low Intensity Alternating Electric Fields
and Seminal Use as an Anti-mitotic
With a basic understanding of Gauss’s law and Coulombic
attractions between oppositely charged particles, one can
visualize electric fields through a thought experiment involving
a parallel plate capacitor connected to a battery. By definition, an
electric field produces a voltage difference in space (8). When the
battery is on, a uniform electric field is generated with a constant
voltage between the two capacitor plates, with an infinite number
of parallel field lines of equal strength traveling from the negative
to the positive end. However, TTFields create a non-uniform
electric field by introducing curvature or by alternating, with
intermediate frequency (100–300 kHz) and low-intensity (1–3
V/cm), surface conductivity; the generated electric field lines are
no longer uniform, but vary inmagnitude, are more concentrated
near the charges, and become curved (9). These non-uniform
electric fields can affect tumor cell growth and cell division
(10, 11); importantly, this effect was observed only in dividing
cells, and not quiescent cells. A more extensive description of
electric fields and their effects have been elegantly reviewed by
Kolosnjaj-Tabia and colleagues (12).

The pioneering study from the Palti group reported for
the first time that alternating electric fields affect tumor cells.
By using insulated electrodes with an intensity of 2 V/cm
and a frequency between 100 and 300 kHz, they observed cell
cycle arrest and cell rupture, leading to cell death in different
actively dividing tumor cells, in vitro. Similarly, these effects
were observed in vivo in two different animal models, resulting
in a significant tumor growth reduction (3). These data not
only prove the effects of TTFields on biological processes both
in vitro and in vivo, but importantly, paved the way for the
development of a novel therapeutic intervention for different
cancer types. These early developments led to more detailed
molecular explanations through which TTFields exert their
function on dividing cells.

TTFields and Mechanisms for Anti-mitotic
Effects
Preclinical studies to date suggest TTFields have two major
effects on cancer cells, namely prolonged mitosis and mitotic
spindle assembly disruption and cell membrane destruction
close to the cleavage furrow during telophase. The established

mechanisms through which TTFields are believed to exert
effects on dividing cells include: (1) impairment of mitotic
spindle microtubule formation; and, (2) the dielectrophoretic
effect, in telophase/cytokinesis, which compromises organelles
and biomolecules impairing chromosomal segregation and cell
division. These mechanisms have been suggested to result in
cancer cell death, offering a therapeutic effect by reducing
tumor growth.

The cell cycle is an essential process consisting of four
phases, G1, S, G2, and M linked to cell division resulting in
two daughter cells. The first three phases, known as interphase,
are associated with cellular growth and genetic material
duplication, ultimately segregated to daughters. Mitosis (M),
is a multi-step process, orchestrating dense DNA compaction
into chromosomes that are evenly distributed among daughters,
culminating in their separation from the parent cell. The
macromolecular machine segregating chromosomes among the
two daughter cells during mitosis is known as the mitotic spindle.
Its main components, the microtubules, are formed from α-
and β-tubulin dimers. Microtubules are in a dynamic state
of polymerization/depolymerization which is important for the
cytoskeleton remodeling during mitosis (13–15).

Much of the focus of TTFields mechanism of action lies in
mitosis (Figure 1). This anti-mitotic effect has been investigated
by Giladi et al., in different cancer cells, exposing them to
TTFields. Under these conditions, actively dividing treated
cells displayed a decreased ratio between polymerized and total
tubulin, resulting in an impaired mitotic spindle organization.
Furthermore, upon treatment with TTFields, cancer cells
displayed altered chromosomal count, suggesting that TTFields
induce cell aneuploidy. The disruption of the mitotic spindle
machinery, critical for mitosis, results in abnormal chromosome
formation and formation of multinucleated cells. Giladi
et al. demonstrated that TTFields exposure to cells in vitro
phenocopied defects in the mitotic spindle and in some cases
caused cells to undergo mitotic catastrophe or a form of cell
death-linked to grossly abnormal mitosis. Further analyses of
TTFields-treated tumor cells showed disruptive mitotic spindle
formation in vivo and a prolonged mitosis. Detailed cell cycle
analysis of exposed cells revealed that there was significant
accumulation of cells in M phase (compared to untreated cells)
and the majority of treated cells underwent a caspase-mediated
apoptosis (16).

The second proposedmechanism by which alternating electric
fields affect cell division is by dielectrophoresis, a phenomenon
occurring in neutral particles where their motion is induced
by a non-uniform electric field between electrodes (17). In
this context, TTFields have been proposed to impair cell
division by dielectrophoresis of the mitotic cleavage furrow
during telophase. TTFields potentially affect polar biomolecules
by moving them close to the furrow region, leading to a
defective telophase/cytokinesis (18). A recent mathematical
modeling investigated the correlation between electric forces
and mitosis, showing that cells with a narrow mitotic furrow
during telophase/cytokinesis were more sensitive to TTFields,
compared to the control. At this narrow mitotic region, the
power absorption (as consequence of TTFields delivery) was
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FIGURE 1 | Proposed effects of Tumor Treating Fields on cancer cells. The

application of TTFields is believed to disrupt two distinct phases in the mitotic

process. In metaphase, TTFields interfere with the mitotic spindle assembly

and disturb the alignment of tubulin subunits; in telophase, non-uniform

electric fields cause a change in the cell shape and conformation, and

compromise polar elements (shown in red) which move to the cleavage furrow

leading to an impaired cell division (right-hand side). Normal metaphase and

telophase are shown on the left-hand side.

higher and dependent on field frequency. This effect was only
appreciated when the mitotic furrow was aligned and parallel
to the electric field and may explain why cell proliferation is
not completely blocked by TTFields, but only partially decreased
(19). Subsequent computational modeling calculated the electric
field distribution in the brain during TTFields therapy and
investigated the reliability of their predictions with respect to
heterogeneous, anisotropic dielectric properties. Using virtual
head models, TTFields treatment on brain tumors in silico was
successfully replicated (20).

Korshoej et al. estimated the required anti-tumor dose and
optimized a treatment plan of TTFields for cancer therapy. This
study offers a new perspective on TTFields therapy considering
complex conductivity distributions of the head and addressing
individual differences in patient anatomy and tumormorphology
previously unconsidered. The authors described the principal
component decomposition of average field vectors induced over
an activation cycle, which quantifies both the mean intensity
and unwanted spatial correlation of TTFields, with the hope
of combining the two values into a single measure of clinical
significance (21, 22).

Lastly, research investigated the novel anti-tumor effect of
altering the tumor cell membrane potential by targeting ion
channels via TTFields induced dielectrophoresis. Theoretical
calculations postulate that the electromagnetic forces generated
by TTFields alone are too weak relative to Brownian motion to
have a significant effect on tubulin dimers alignment and hence
cannot have a direct mechanical effect on the cytoskeleton during
the early stages of mitosis. TTFields instead were hypothesized
to generate changes in the cell membrane potential that initiate
apoptosis within dividing tumor cells while sparing non-dividing
cells. The TTFields-induced membrane potential change across
the cell membrane of normal cells is only about 3% of the non-
dividing cell membrane potential, while in the dividing tumor cell
membrane potential can be as high as 17%. Mechanistically, as
Ca2+ is a regulator of microtubule polymerization, manipulating
the calcium ion channel may offer a mechanistic clue to an anti-
tumor effect. Altering the cell membrane potential of a tumor cell
in prophase and increasing Ca2+ flow into the cell could decrease
microtubule polymerization. The disruption of ionic homeostasis
thus offers a unique explanation regarding the ability of TTFields
to exhibit an anti-microtubule effect during the early stages of
mitosis (23).

Centrosomes are critical organelle structures serving as the
major cell microtubule organizing center, critical for animal cell
mitosis, and present in one copy until the time leading up to
cell division where one duplication is made. The presence of
supernumerary centrosomes (SNC) in the majority of tumors has
been observed and believed to contribute to genomic instability
through chromosome mis-segregation errors (24). Many cancers
acquire this form of genomic instability by eroding the pathways
that serve to maintain genome integrity (25). Cancers with
SNC seem to increase the frequency of chromosome segregation
errors, but at the same time in order to survive and overcome
mitotic catastrophe, cancer cells cluster their SNC into two
spindle poles, a phenomenon known as centrosome clustering
(26). Centrosome clustering inhibition may provide a means to
selectively kill cancer cells with SNCs, forcing them into lethal
multipolar divisions without affecting cell division of normal
cells without SNC. Further research on centrosomes could reveal
whether TTFields exert their function selectively on tumor cells
in general by affecting microtubule biology and specifically on
cells with SNC.

TTFields and Non-mitotic Cellular Effects
Over the years, several in vitro studies conducted on human
cancer cell lines have reported the non-mitotic effects of TTFields
(3, 16, 27). A set of more recent studies have shown that
TTFields could render cancer cells less efficient in their DNA
damage repair capacity, with cells showing higher DNA damage
and replication stress (28, 29). Gene expression analysis on a
variety of non-small cell lung cancer (NSCLC) cell lines treated
with TTFields revealed not only changes in cell cycle and
mitosis-related pathways, but also in DNA damage response
pathways. Results from ingenuity pathway analyses, confirmed by
immunoblotting in four different cancer cell lines, revealed, upon
exposure to TTFields, a significant down-regulation of BRCA1, a
well-known tumor suppressor involved in DNA double breaks
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repair and maintaining genomic stability through cell cycle
checkpoints. In addition, Story and colleagues demonstrated
that TTFields induce DNA double strand breaks, as confirmed
by the formation of γ-H2AX foci and reduce DNA damage
repair following radiation. Interestingly, TTFields enhanced
cancer cell sensitivity to radiation when cells where exposed to
radiation after TTFields delivery, opening up new possibilities for
developing novel radiosensitization treatment protocols. Taken
together, these data proposed an additional mechanism of action
of TTFields in vitro (28, 29). Although the biological effects
of TTFields have been explored, the full knowledge regarding
TTFields biophysical mechanism of action against cancer cells is
still likely an area ripe for further investigation.

TTFIELDS AS A CANCER THERAPY

In the following section we review application of TTFields as
a cancer therapy both in preclinical cancer mouse models and
in human clinical trials as monotherapy and in combination
treatment trials for different solid tumors.

Preclinical Studies in Mouse Models
In some of the first in vivo evidence for the TTFields
effect on cancer cells, mice intradermally inoculated with
malignant melanoma (B16F1) or adenocarcinoma cells (CT-
26) and TTFields-treated exhibit a significant tumor growth
inhibition compared to non-treated tumors (3). Similar results
were observed in rats intracranially inoculated with F-98 glioma
cells and treated with TTFields (11) as well as in B16F10
melanoma cells injected into mice. After TTFields delivery,
tumor volume reduction, and prolonged animal lifespan were
reported, compared to control. Increased apoptosis, reduced
CD34-positive cells and decreased level of VEGF protein were
also shown. These findings propose a potential mechanism
associated with TTFields, by disturbing tumor blood vessels and
consequently leading to tumor growth inhibition (30). Further
investigations have suggested that TTFields exert their effects on
tumor blood vessels by downregulating VEGF and/or HIF-1α
suppressing angiogenesis (31).

TTFields also inhibit solid tumor metastases in mice with
malignant melanoma and rabbits with squamous cell carcinoma.
In both cases, not only did treated animals showed a longer
lifespan, but a lower number of lung metastasis was observed
compared to the control. Although a mechanistic explanation
was not provided, the authors speculated that TTFields could
enhance the immune response to cancer cells or directly inhibit
migration and invasion of tumor cells leading therefore to lower
metastases (32).

Lastly, preclinical studies have also reported combination
treatments that are enhanced with TTFields. The efficacy of
TTFields combined with pemetrexed, cisplatin, or paclitaxel
in NSCLC, was evaluated demonstrating that tumor growth
inhibition was superior compared to the single arm treatments
(33). Similarly, enhanced anti-tumor effects of combined
TTFields-paclitaxel was demonstrated in ovarian cancer (34).

Clinical Trials
Recurrent Glioblastoma as a Single Agent
The first trial ever conducted using TTFields as monotherapy was
against GBM initiated in 2007 on a small cohort of 10 patients
(11). The safety results from this study led to a phase II trial
where TTFields was delivered after radiotherapy and adjuvant
temozolomide (TMZ) showing a median overall survival (OS)
>39 months (35). A randomized trial (EF-11) included 120
GBM patients treated with TTFields showed similar OS and
response compared to 117 patients who received standard
systemic therapies (36). Based on this data, in 2011, the FDA
approved the first-generation TTFields device (NovoTTF-100A)
as therapy for recurrent GBM (4).

Newly Diagnosed Glioblastoma Along With Standard

Therapy
The multicenter, open-label, randomized phase III EF-14 trial
enrolled 695 patients with newly diagnosed GBM to assess the
TTFields effectiveness when administered after completion of
concurrent chemoradiation. The trial positive results led FDA
approval of an improved TTFields device (Optune), for newly
diagnosed GBM patients (5). The trial randomized patients
to receive TTFields after completion of chemoradiation in
combination with standard adjuvant TMZ or TMZ as single
treatment.Median progression-free survival from randomization
was 6.7 vs. 4.0 months (P < 0.001) and median OS was 20.9
vs. 16.0 months (P < 0.001), both in favor of the TTFields-
TMZ combination. Systemic and neurologic adverse events and
health-related life quality were similar, but mild-to-moderate
skin toxicity underneath the transducer arrays occurred in
52% of patients who received TTFields-TMZ (37–40). The
planned TRIDENT trial will randomize patients to standard
TTFields initiated during adjuvant TMZ against earlier initiation
during concurrent chemoradiation and continuing through
adjuvant TMZ.

Mesothelioma
A chest applicator NovoTTF-100L has been developed to
administer TTFields to the thoracic cavity. The STELLAR trial
resulted in a median OS of 18.2 months (compared to 12.1
months in historical controls) for patients treated with TTFields
with inoperable and previously untreated mesothelioma in
combination with pemetrexed and cisplatin or carboplatin (6).
FDA approval of NovoTTF-100L was granted in 2019 for
use along with pemetrexed and platinum-based chemotherapy
for first-line treatment of unresectable, locally advanced or
metastatic, malignant pleural mesothelioma.

Other Solid Tumors
Additional clinical trials in other histologies have also evaluated
the efficacy of TTFields. In the LUNAR trial, unresectable
advanced NSCLC were treated with TTFields in combination
with pemetrexed and showed treatment tolerability with no
adverse reactions (expect localized mild dermatitis), and 1-
and 2-years survival of 53 and 27%, respectively (41). Based
on these promising results, a LUNAR phase III randomized
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TABLE 1 | Summary of completed and ongoing clinical trials using TTFields as monotherapy or in combination with other therapeutic agents to treat solid malignancies.

Completed Clinical Trials

Clinical trial

name

Phase Cancer type Treatment modality Results References

EF-11 III Recurrent GBM TTFields vs. chemotherapy OS of 6.6 months (36)

EF-14 III GBM TTFields + temozolomide vs.

temozolomide

OS of 20.5 months (37)

LUNAR II Unresectable advanced

NSCLC

TTFields + pemetrexed OS of 13.4 months (41)

INNOVATE II Recurrent ovarian

carcinoma

TTFields + paclitaxel PFS of 8.9 months (43)

PANOVA II Locally advanced or

metastatic PDAC

TTFields + gemcitabine and

TTFields + gemcitabine +

nab-paclitaxel

PFS of 8.3 months

and PFS of 12.7

months

(44)

STELLAR II Unresectable and

previously untreated

mesothelioma

TTFields + pemetrexed + cisplatin

or carboplatin

OS of 18.2 months (6)

Ongoing Clinical Trials

INNOVATE-3 III Recurrent ovarian cancer TTFields + Paclitaxel N/A https://ClinicalTrials.gov/show/NCT03940196

PANOVA-3 III Locally advanced PDAC TTFields + Gemcitabine and

TTFields + gemcitabine +

nab-paclitaxel

N/A https://ClinicalTrials.gov/show/NCT03377491

HEPANOVA II Advanced hepatocellular

carcinoma

TTFields + Sorafenib N/A https://ClinicalTrials.gov/show/NCT03606590

LUNAR III Stage IV NSCLC TTFields + anti-PD-1 or docetaxel N/A https://ClinicalTrials.gov/show/NCT02973789

METIS III 1–10 brain metastases

from NSCLC

TTFields following radiosurgery N/A https://ClinicalTrials.gov/show/NCT02831959

COMET II 1–5 brain metastases

from NSCLC

TTFields following optimal standard

local treatment

N/A https://ClinicalTrials.gov/show/NCT01755624

2-THE-TOP II Newly diagnosed GBM Adjuvant TTFields + temozolomide

and pembrolizumab

N/A https://Clinicaltrials.gov/ct2/show/NCT03405792

N/A I/II Newly diagnosed GBM TTFields + temozolomide +

radiation therapy

N/A https://ClinicalTrials.gov/show/NCT03705351

https://ClinicalTrials.gov/show/NCT03477110

N/A II Unresectable gastric

adenocarcinoma

TTFields + oxaliplatin or

capecitabine or trastuzumab

N/A https://ClinicalTrials.gov/show/NCT04281576

N/A II Brain metastases from

SCLC

TTFields following stereotactic

radiosurgery

N/A https://ClinicalTrials.gov/show/NCT03488472

N/A II Recurrent GBM TTFields + nivolumab +/-

ipilimumab

N/A https://ClinicalTrials.gov/show/NCT03430791

TIGER N/A GBM TTFields N/A https://ClinicalTrials.gov/show/NCT03258021

N/A II Brain metastases from

SCLC

TTFields N/A https://ClinicalTrials.gov/show/NCT03995667

N/A II Recurrent GBM TTFields + niraparib N/A https://Clinicaltrials.gov/show/NCT04221503

TTFields, Tumor Treating Fields; GBM, glioblastoma multiforme; NSCLC, non-small cell lung cancer; PDAC, pancreatic ductal adenocarcinoma; SCLC, small cell lung cancer; OS, overall

survival; PFS, progression-free survival; N/A, not available.

trial is currently ongoing. The study will evaluate the TTFields
treatment efficacy with docetaxel or anti-PD1 in NSCLC (42).

TTFields treatment against other solid malignancies, such as
ovarian cancer and pancreatic adenocarcinoma, were examined
in INNOVATE and PANOVA phase II clinical trials, respectively.
The INNOVATE was a single arm trial testing the efficacy of
TTFields combined with paclitaxel in patients with recurrent
ovarian carcinoma. The 6-months and 1- year survival rates were
90 and 61%, respectively (43). The PANOVA study involved forty

patients with newly diagnosed, locally advanced, or metastatic
pancreatic ductal adenocarcinoma (PDAC). Patients received
combination of TTFields and gemcitabine (with a median
progression-free survival of 8.3 months) or gemcitabine and
nab-paclitaxel (with a median progression-free survival of 12.7
months). No adverse events were reported, and the treatment was
tolerable (44). A phase III PANOVA-3 trial is currently ongoing
(45). Several clinical trials investigating TTFields are underway
and listed with completed clinical trials in Table 1.
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CONCLUSIONS

The movement from initial laboratory observations to the
implementation of several clinical trials have shown the
significant strides TTFields havemade as a promising therapeutic
agent for the treatment of different solid cancers. Likely
through the disruption of cell proliferation and tumor growth
by curtailing mitotic activity, TTFields show promise as
an innovative, non-invasive anti-cancer treatment modality.
However, there remain questions regarding exactly how TTFields
exert anti-cancer effects on cancer cells. Mathematical modeling
suggests TTFields do not produce strong anti-mitotic effects
through microtubule disruption but instead induce changes in
cell membrane potential causing deleterious downstream effects
during cell separation at the cleavage furrow. Additionally,
several other open-ended mechanistic questions remain to be
answered. The action of TTFields in each phase of the cell
cycle and the link between TTFields, DNA repair pathways and
mitotic catastrophe remain to be characterized. One promising
area of investigation could evaluate whether TTFields exert their
function selectively on tumor cells by affecting microtubule
biology through centrosomes. Surely, gaining more insights into
TTFields mechanisms will pave the way for further innovative
clinical trials. With six completed clinical trials to date, and 14
ongoing at different phases, a deeper understanding of TTFields
biology is crucial to identify novel vulnerabilities in specific

malignancies thatmight be efficiently targeted by TTFields, either
as monotherapy or in combination with other therapeutics.
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