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The conceptus is most vulnerable to developmental perturbation during its early
stages when the events that create functional organ systems are being launched.
As the placenta is in direct contact with maternal tissues, it readily encounters
any xenobiotics in her bloodstream. Besides serving as a conduit for solutes and
waste, the placenta possesses a tightly regulated endocrine system that is, of itself,
vulnerable to pharmaceutical agents, endocrine disrupting chemicals (EDCs), and other
environmental toxicants. To determine whether extrinsic factors affect placental function,
transcriptomics and other omics approaches have become more widely used. In casting
a wide net with such approaches, they have provided mechanistic insights into placental
physiological and pathological responses and how placental responses may impact the
fetus, especially the developing brain through the placenta-brain axis. This review will
discuss how such omics technologies have been utilized to understand effects of EDCs,
including the widely prevalent plasticizers bisphenol A (BPA), bisphenol S (BPS), and
phthalates, other environmental toxicants, pharmaceutical agents, maternal smoking,
and air pollution on placental gene expression, DNA methylation, and metabolomic
profiles. It is also increasingly becoming clear that miRNA (miR) are important epigenetic
regulators of placental function. Thus, the evidence to date that xenobiotics affect
placental miR expression patterns will also be explored. Such omics approaches
with mouse and human placenta will assuredly provide key biomarkers that may be
used as barometers of exposure and can be targeted by early mitigation approaches
to prevent later diseases, in particular neurobehavioral disorders, originating due to
placental dysfunction.

Keywords: trophoblast, serotonin, bisphenol A, endocrine disruptors, environmental chemicals, placenta-brain
axis, pharmaceutical agents, smoking

INTRODUCTION

The placenta and uterine tissue directly interact, and thus, factors circulating in the maternal
bloodstream easily transfer across the placenta, where they can affect this organ and secondarily
the fetus. This close relationship between the placenta and maternal tissue is essential for nutrient,
gas, and waste exchange. The placenta is also an endocrine organ that produces a range of hormones
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and cytokine factors that exert local paracrine effects in the
placenta but can also act upon maternal and fetal tissues.
Many biomedical studies examine effects on mouse or rat
placenta as rodents have an invasive hemochorial type of
placentation with syncytiotrophoblast (syncytioTB) cells that
are involved in nutrient and gas exchange and are bathed
in maternal blood, analogous to structural components of the
human placenta (Rosenfeld, 2015a). However, the fetal placental
cells, trophoblasts (TB), may also be immersed in compounds
percolating through the maternal blood. For this reason, TB
cells have some ability to detoxify select xenobiotic chemicals,
which may help buffer the fetus against such chemical assaults
(Myllynen et al., 2005; Obolenskaya et al., 2010; Corbel et al.,
2015; Nahar et al., 2015). However, being an endocrine organ
in of itself, the placenta is vulnerable to a myriad of exogenous
chemicals. The ability to respond to such environmental
challenges is also likely sexually dimorphic in nature (Mao et al.,
2010; Rosenfeld, 2015a).

Individual gene or protein expression patterns were used
to ascertain the effects of such chemical exposures on the
placenta. Microarray technology was the first method employed
to relate such chemicals exposures and transcriptomic changes
in the placenta (e.g., Imanishi et al., 2003; Avissar-Whiting
et al., 2010; Bruchova et al., 2010; Votavova et al., 2011; Tait
et al., 2015; Grindler et al., 2018). However, such studies were
confined to genes included on the arrays, and microarrays
were only developed for a few select species whose genome
was sequenced and annotated. RNA sequencing (RNAseq) is
a high throughput approach that has greatly expanded our
knowledge of how EDC, other environmental toxicants and
pharmaceutical agents affect global gene expression patterns in
the placenta (e.g., Green et al., 2020; Mao et al., 2020). Herein,
we will consider the studies to date that have shown such
extrinsic factors can affect transcriptomic profiles or protein
expression in the placenta as determined by microarray analyses,
RNAseq, or candidate gene/protein approaches. Further, we
will consider other omics approaches, including metabolomics,
proteomics, and methylomics, that have been used to characterize
the effects of xenobiotics on the human and rodent placenta.
The importance of miRNAs (miRs) is gaining currency as such
small RNAs have the ability to block translation by binding to
target mRNA (Van Wynsberghe et al., 2011; Moreno-Moya et al.,
2014). The miR/mRNA complexes can then be degraded prior
to the mRNA entering the cytoplasm to be translated into a
protein. In this way, miR represent the final epigenetic regulators.
Studies have thus examined how some of the above factors can
regulate miR and other non-coding RNA profiles by using small
RNAseq. Lastly, we will consider some of the recently developed
transcriptomic technology that will continue to advance our
understanding in placental toxicology and allow for pinpointing
transcriptomic changes in individual TB cell populations.

Endocrine Disrupting Chemicals
Endocrine disrupting chemicals (EDC) are synthetic and natural
compounds that can mimic or antagonize endogenous hormone
responses. BPA is a widely prevalent synthetic chemical that
can act through steroid and non-steroid receptor pathways

(Schug et al., 2011). Current production estimates for BPA are
around 20 billion pounds (Grand View Research, 2014).
Approximately 93% of the U.S. population unknowingly has
measurable amounts of BPA in their urine (Calafat et al., 2008).
Exposure to BPA and, its analog, bisphenol S (BPS) is primarily
dietary (Galloway et al., 2010; Sieli et al., 2011), but other routes
of exposure are known (Xue et al., 2016; Hines et al., 2018). BPA
readily can be transmitted from the maternal tissue to the fetal
placenta (Vandenberg et al., 2007; vom Saal et al., 2007). BPA
substitutes, such as BPS, are increasingly being used in a range of
consumer products labeled BPA-free. Yet, BPS may lead to similar
and potentially even more pronounced effects compared to BPA
(Rosenfeld, 2017; Wu et al., 2018).

BPA has been shown to affect placental gene expression
patterns (Imanishi et al., 2003; Kang et al., 2011; Susiarjo
et al., 2013; Tan et al., 2013; Tait et al., 2015; Xu et al.,
2015; Lee et al., 2016; Lan et al., 2017). Most of these reports
though only used a candidate gene expression approach (Kang
et al., 2011; Susiarjo et al., 2013; Tan et al., 2013; Tait et al.,
2015; Xu et al., 2015; Lee et al., 2016; Lan et al., 2017),
in particular for those known to be imprinted (Kang et al.,
2011; Susiarjo et al., 2013). More recent studies employed
microarrays to examine thousands of genes in a single experiment
(Imanishi et al., 2003; Tait et al., 2015), but such studies may
have been under-powered. One study that used microarrays
to examine the effects of BPA on the placenta found that the
high dosage of BPA tested resulted in significant degeneration
and necrosis of giant cells, vacuolization in the junctional zone,
and overall reduction of the spongioTB layer (Tait et al., 2015).
Nuclear accumulation of β-catenin was evident in TB within the
labyrinthine and spongioTB layers, suggestive of Wnt/β-catenin
pathway activation (Tait et al., 2015). The microarray studies
revealed that the low dosage of BPA tested promoted blood vessel
development and arborization, whereas the high dose inhibited
such angiogenic changes.

We used RNAseq analyses to examine the global
transcriptomic profile in embryonic age (E) 12.5 mouse
placenta following dietary exposure to BPA or BPS. BPA and
BPS altered the expression of an identical set of 13 genes
(Mao et al., 2020). Of which, 11 were downregulated and
two (Actn2 and Efcab2) modestly upregulated. Four of the
differentially expressed (DE) transcripts are typically enriched in
the placenta (Sfrp4, Coch, Gm9513, and Calm4) as determined
by the TissueEnrich program (Mao et al., 2020). Based on
the DE gene-sets, WNT and chemokine signaling pathways,
amino acid metabolism, and possibly neurotransmission are
pathways predicted to be affected in the placental samples
exposed to BPA/BPS.

In the same study, we examined for histopathological
changes in the placenta following BPA and BPS exposure.
Additionally, targeted and non-targeted metabolomics analyses
were performed to determine the extent to which these
EDCs affect other omics profiles and whether transcriptomics
and metabolomic changes correlated with BPA/BPS-associated
architectural modifications in the placenta (Mao et al., 2020).
Both exposures reduced the area occupied by spongioTB
relative to parietal trophoblast giant cells (pTGC) within
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the junctional zone. Both BPA and BPS markedly reduced
placental serotonin (5-HT) concentrations and lowered 5-
HT pTGC immunoreactivity. Concentrations of dopamine and
5-hydroxyindoleacetic acid), the main metabolite of 5-HT,
however, were increased. Dopamine-immunoreactivity in pTGC
was increased in BPA and BPS exposed placentas. By using
mixOmics analyses (Rohart et al., 2017), we found a strong
positive correlation between 5-HT positive pTGC cells and
reductions in spongioTB to pTGC area, indicative that 5-HT
is essential for maintaining cells within the junctional zone.
In contrast, an inverse correlation existed between dopamine
positive pTGC cells and reductions spongioTB to pTGC area.
The collective findings suggest that BPS exposure causes almost
identical placental effects as BPA. A major target of BPA/BPS
is either spongioTB or pTGC within the junctional zone.
BPA/BPS induced disruptions in placental 5-HT and dopamine
may affect fetal brain development through the placenta- brain
axis. It is clear that 5-HT as a morphogen may be one of
the primary conductors regulating early neural crest formation,
metamorphosis, neurogenesis, cell motility, synaptogenesis, and
development of the nociceptive system (Lauder, 1988; Lauder
et al., 1988; Whitaker-Azmitia, 1991; Herlenius and Lagercrantz,
2001). Strong evidence exists that the initial source of 5-HT to
orchestrate such neural changes is the placenta (Huang et al.,
1998; Bonnin and Levitt, 2011; Hadden et al., 2017). By using
such omics approaches in the placenta, it may also thus shed light
on how EDC compromise early neural development and thereby
increase the risk for neurobehavioral disorders.

BPA might also affect DNA methylation patterns in the
placenta. One study examined BPA concentrations, gene
expression patterns of BPA-specific metabolizing enzymes, and
global DNA methylations in the placenta of 2nd trimester human
fetuses (Nahar et al., 2015). Average LINE1 and CCGG global
methylation in the placenta were 58.3 and 59.2%, respectively,
Total BPA concentrations positively correlated with global
methylation for the placenta based on the LINE1 assay. BPA-
specific metabolizing enzymes, such as GUSB, UGT2B15, STS,
and SULT1A1 were identified in these placenta samples. The
findings suggest that maternal exposure to BPA might promote
hypermethylation of select genes in the placenta.

Phthalates are another class of EDCs found in commonly used
household items, including children’s toys, plastic containers, and
plastic wraps (Ferguson et al., 2011; Lioy et al., 2015; Schulz et al.,
2015; Jo et al., 2018). They are associated with adverse pregnancy
outcomes, including fetal loss and placental growth abnormalities
(Zong et al., 2015; Gao et al., 2017; Mahaboob Basha and Radha,
2017), but the full range of mechanisms by which they induce
such effects remains elusive. Examination of the DNA methylome
(Illumina Infinium Human Methylation 850k BeadChip) and
transcriptome (Agilent whole human genome array) in first-
trimester human placenta revealed 39 genes that demonstrated
altered methylation and gene expression patterns in women
exposed to high amounts of phthalates with most showing
reduced expression in this group (Grindler et al., 2018). The
combined usage of methylomics and transcriptomics revealed
epidermal growth factor receptor (EGFR) as a likely primary
mediator of phthalates on placental function.

Another cohort study revealed that chorionic gonadotropin
A (CGA) showed sex-dependent gene expression changes in the
placenta that were linked to various phthalate concentrations
detected in the urine of pregnant women (Adibi et al., 2017a).
CY19A1, CYP11A1, CGA expression in the placenta correlated
with maternal urinary concentrations of monobenzyl phthalate
(MBzP), MnBP, mono-iso-butyl phthalate (MiBP), and conceptus
sex (Adibi et al., 2017a).

In vitro culture approaches have aided our understanding
of how EDCs affect placental cells. One study used TB stem
cells from rhesus monkeys (Macaca mulatta) to screen global
transcriptome changes induced by several EDCs, atrazine,
tributyltin, bisphenol A, bis(2-ethylhexyl) phthalate, and
perfluorooctanoic acid (PFOA) (Midic et al., 2018). Atrazine
and tributylin, and to a lesser extent the other three EDCs,
suppressed genes involved in cytokine signaling related to
antiviral response, along with those involved in metabolism,
DNA repair, and cell migration.

Another study isolated human TB progenitor cells at 7–14
weeks. of pregnancy from two female and three male concepti, as
well as villous cytotTB cells (vCTBs) at 15–20 weeks. pregnancy
from three female and four male concepti. Primary cell lines were
cultured in the presence of one or more phthalates: mono-n-butyl
(MnBP), monobenzyl (MBzP), mono-2-ethylhexyl (MEHP), and
monoethyl (MEP) (Adibi et al., 2017b). Treatment of both
TB lines with MnBP, MBzP and MEHP at concentrations that
resemble those found in the urine of pregnant women altered
CGB and PPARG expression in these primary placental cells,
although the effects varied according to the sex from which the
placental cells were derived (Adibi et al., 2017b).

Other Environmental Toxicants
Other environmental toxicants, including heavy metals, such as
arsenic, and flame retardants can reach the placenta, whereupon
they may induce transcriptomic changes. The earth’s crust
contains arsenic, and it can also be found in the water, land, and
air. However, it is highly toxic in the inorganic form (WHO,
2018). Common routes of exposure to inorganic arsenic are
through drinking contaminated groundwater, using such water
in food preparation and irrigation of food crops, manufacturing
of it, consumption of contaminated food, and smoking tobacco
(WHO, 2018). As with the EDCs, the placenta can accumulate
high concentrations of arsenic that can lead to placental
alterations, including in the glucocorticoid receptor pathway,
oxidative stress, inflammation, linkages to pre-eclampsia, and
epigenetic changes (Ahmed et al., 2011; Caldwell et al., 2015;
Cardenas et al., 2015; Li et al., 2015; Green et al., 2016; Konkel,
2016; Appleton et al., 2017; Rahman et al., 2018; Punshon et al.,
2019; Winterbottom et al., 2019b; Meakin et al., 2020; Stone et al.,
2021).

To examine whether exposure to arsenic results in global
transcriptomic changes in the placenta, 46 pregnant women
were selected from the New Hampshire Birth Cohort Study
(NHBCS), which is a US cohort known to have low-to-moderate
arsenic levels in drinking water because of unregulated private
wells (Winterbottom et al., 2019a). Potential sex-dependent gene
expression changes in the placenta were correlated with prenatal
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exposure to arsenic, as determined by concentrations in the
urine of pregnant mothers. While no genes were differentially
expressed in female placenta based on arsenic exposure, several
hundred genes were affected in the placenta of males. Two of the
genes that showed the greatest downregulation in male placenta
exposed to arsenic were FIBIN and RANBP3L (Ahmed et al.,
2011; Caldwell et al., 2015; Cardenas et al., 2015; Li et al., 2015;
Green et al., 2016; Konkel, 2016; Appleton et al., 2017; Rahman
et al., 2018; Punshon et al., 2019; Winterbottom et al., 2019b;
Meakin et al., 2020; Stone et al., 2021).

To understand how such gene expression patterns might
originate in the placenta, a handful of studies have examined the
expression of epigenetic regulator genes and DNA methylation
profiles in the placenta of arsenic-exposed human cohorts. One
study analyzed the expression of over a hundred epigenetic
regulator genes, such as those that act as readers, writers
and erasers of post-translational histone modifications,
and chromatin remodelers (Winterbottom et al., 2019b).
Several of these genes demonstrated differences based on the
interaction between placental sex and arsenic exposure with
the histone methyltransferase (PRDM6) negatively correlating
with arsenic exposure. Placental glucocorticoid receptor
(NR3C1) methylation positively associated with arsenic exposure
(Appleton et al., 2017).

Global DNA methylation patterns based on CpG loci were
examined in placental samples obtained from 343 individuals
enrolled in the New Hampshire Birth Cohort Study and
correlated based on arsenic levels in the urine and toenails
samples of these pregnant mothers (Green et al., 2016). While no
linkages were found based on arsenic in maternal urine, strong
association were identified based on levels of this heavy metal in
the toenail samples. Of the 163 differentially methylated loci, the
primary one was for LYRM2 (Green et al., 2016). This study also
found that allocation of placental cell sub-populations changed
based on arsenic exposure.

Another study linked arsenic exposure and DNA methylation
patterns, as determined by Infinium HumanMethylation450
BeadChip array, in the placenta, in the umbilical artery, and
human umbilical vein endothelial cells (HUVEC) (Cardenas
et al., 2015). Genes regulating melanogenesis and insulin
signaling pathways were differentially methylated in the
placenta and umbilical artery based on arsenic exposure
(Cardenas et al., 2015).

The flame-retardant mixture, Firemaster 550 (FM
550) contains organophosphate flame retardants that was
hypothesized to disrupt placental function. To examine how this
environmental toxicant affected the placenta, pregnant Wistar
rats were treated with varying concentrations of this chemical
(Rock et al., 2020). This treatment altered the expression of genes
involved in transport and synthesis of 5-HT in the placenta
(Rock et al., 2020). Additionally, metabolites of 5-HT and the
kynurenine metabolic pathway were increased.

The cellular and transcriptomic effects of another flame
retardant, BDE-47- a polybrominated diphenyl ethers (PBDEs),
was tested in human placental cytotTB cells (CTBs) (Robinson
et al., 2019). This compound suppressed migration and invasion
by CTBs. BDE-47 induced transcriptome changes that were

dose dependent with genes involved in stress, inflammation,
lipid/cholesterol metabolism, differentiation, migration, and
vascular morphogenesis affected (Robinson et al., 2019).
Hypermethylation of CpG islands for genes involved in cell
adhesion and migration occurred in response to this treatment.

Pharmaceutical Agents
Pregnant women are often prescribed pharmaceutical agents
to regulate such conditions as depression, epilepsy, and pain.
While such drugs may be beneficial to the mother, they can have
untoward consequences on the conceptus, including the placenta.
Transcriptomics and other gene expression approaches have been
useful tools in understanding how such xenobiotics alter the
genetic machinery in this organ. In this section, we will consider
three such pharmaceutical agents, serotonin-reuptake inhibitors
(SSRI) used to treat depression, valproic acid (VPA) used to treat
seizures, and oxycodone (OXY) that is a commonly prescribed
analgesic agent.

Approximately 8–10% of pregnant women are prescribed
selective serotonin-reuptake inhibitors (SSRI) to combat
depression (Mitchell et al., 2011; Huybrechts et al., 2013).
Such drugs act by binding to SLC6A4/SERT within the
intracellular membrane, which in the central nervous system
prevents the presynaptic cells from accruing 5-HT. Inhibition
of SLC6A4/SERT results in increased concentrations of 5-HT
in the synaptic space that can continue to bind and activates
its cognate receptors. Such drugs though can also inhibit
SLC6A4/SERT within placental TB, namely the pTGC that use
this transporter to uptake maternal 5-HT. In vitro studies reveal
SSRIs disrupt various structural and hormonal properties of
placental cell lines (Hudon Thibeault et al., 2017; Clabault et al.,
2018a,b). In rats, in utero exposure to venlafaxine reduced fetal
placental weight (Laurent et al., 2016). Two SSRI, fluoxetine
and sertraline, reduced cell proliferation of extravillous TB
(JEG-3) cells (Clabault et al., 2018a). Norfluoxetine, a metabolite
of fluoxetine, increased MMP-9 activity by these TB cells but
suppressed MMP-9 activity in another cell line, HIPEC, derived
from extravillous TB. TIMP-1 and ADAM-10 showed increased
expression in JEG-3 cells treated with sertraline. Venlafaxine,
another SSRI, increased ADAM-10 in HIPEC cells (Clabault
et al., 2018a). Sertraline and venlafaxine induced fusion of
cultured primary villous TB cells (Clabault et al., 2018b). Both
compounds affect human chorionic gonadotropin beta (β-HCG)
secretion by BeWo TB-derived cells. Norfluoxetine stimulated
increased gene expression of chorionic gonadotropin beta (CGB)
and gap junction protein alpha 1 (GJA1) which are considered
biomarkers of syncytialization for these TB cells. Pregnant
mothers consuming SSRIs have been reported to deliver lower
birthweight infants and exhibit higher rates of placental-fetal
vascular malperfusion than controls (Levy et al., 2020).

Valproic acid (VPA) is a short-chain-fatty acid commonly used
as an antiepileptic drug and mood stabilizer (Chateauvieux et al.,
2010). Such beneficial effects are ascribed to its inhibition of
gamma amino butyric acid (GABA), transaminobutyrate, and
ion channels (Chateauvieux et al., 2010). More recently, it has
been shown that VPA can act as an histone deacetylase (HDAC)
inhibitor that increases transcription by preventing deacetylation
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of histone proteins (Monti et al., 2009). Thus, some of the actions
of VPA may be due to its epigenetic properties. Epilepsy is
the most common neurological disorder in pregnant women,
necessitating continued usage of antiepileptic drugs (AED) to
prevent seizures. VPA is one of the primary AED prescribed to
pregnant women, even though current data suggests that it may
be associated with adverse fetal outcomes and behavioral deficits
in children exposed in utero to this drug (Eadie, 2014; Elkjaer
et al., 2018; Richards et al., 2019; Vajda et al., 2019; Daugaard
et al., 2020). The placenta is also not immune to the effects
of this AED (Khera, 1992; Meir et al., 2016; Tetro et al., 2019;
Jinno et al., 2020; Shafique and Winn, 2021), and VPA-induced
changes in the placenta may adversely affect fetal development,
including the brain.

To examine the transcriptome changes in response to VPA,
term placenta from women who delivered via cesarean were
perfused with varying concentrations of VPA or vehicle. They
were than analyzed with a customized gene array panel to
examine the expression of carrier genes (Rubinchik-Stern et al.,
2018). This drug treatment changed the mRNA expression
patterns for transporters of folic acid, glucose, choline, thyroid
hormone, and serotonin. Placental folate concentrations were
also decreased with VPA treatment. VPA treatment to pregnant
rats altered the expression of other transporter genes with Abcc4
and Slc22a4 reduced in late gestation, but Abcc5 was increased
by VPA during mid-gestation (Jinno et al., 2020). Whether such
changes on transporter gene expression patterns in the human
and rat placenta is due to HDAC inhibition or other biological
effects of VPA remains uncertain.

Opioid drugs, especially oxycodone (OxyContin, OXY), are
widely prescribed analgesic agents to control pain in pregnant
women. This abuse is one of the leading non-infectious disease
public health concerns and economic challenges facing the
United States (Reinhart et al., 2018). Opioid use disorder
(OUD), is a particular health concern in women of child-
bearing age (SAMHSA, 2015) with OUD during pregnancy
estimated to affect 5.6 per 1000 live birth infants (Patrick
et al., 2012). Neonates exposed during gestation to opioids
are at risk for neonatal abstinence syndrome (NAS) (Jones
et al., 2019). Maternal OUD has been associated with poor fetal
growth, increased risk for premature births, low birthweight
offspring, and congenital defects (Yazdy et al., 2015; CDC,
2019). Adult-onset diseases due to developmental origin of
health and disease (DOHaD) effects of these drugs are also
possible (Grandjean et al., 2015; Rosenfeld, 2015b). The placenta
may be bathed and affected by any opioids circulating in the
maternal blood, whereupon it can affect this organ and be
transmitted to the fetus.

An endogenous opioid system is present in the placenta
that mediates several placental responses, including production
of maternal recognition of pregnancy factors, such as HCG
and placental lactogens (Cemerikic et al., 1991; Ahmed et al.,
1992; Cemerikic et al., 1992; Petit et al., 1993; Cemerikic et al.,
1994). Exogenous opioids that transit from the maternal blood
to the placenta can thus impact this system. Effects of OXY
and other opioids have been examined in cultured TB cells and
shown to affect production of steroid hormones, HCG, and other

placental factors (Cemerikic et al., 1988; Zharikova et al., 2007;
Neradugomma et al., 2017; Serra et al., 2017).

We tested whether maternal OXY exposure affects the
morphology and transcriptome profile as determined by RNAseq
in E 12.5 mice placenta (Green et al., 2020). Maternal OXY
treatment reduced pTGC area and maternal blood vessel area
within the labyrinth region. OXY exposure altered placental
gene expression profiles in a sexually dimorphic manner with
female placenta exhibiting up-regulation of several placental
enriched genes, including Ceacam11, Ceacam14, Ceacam12,
Ceacam13, Prl7b1, Prl2b1, Ctsq, and Tpbpa. Placenta of
OXY exposed males had alterations of many ribosomal
proteins. Weighted correlation network analysis revealed that
in OXY females vs. CTL females, select modules correlated
with placental histological changes induced by OXY. Such
associations were lacking in the male OXY vs. CTL male
comparison. Pathways that are likely affected in OXY females
based on gene-sets in these modules include extracellular
matrix reorganization, VEGF signaling, and regulation of actin
bioskeleton, collagen biosynthesis, peptide hormone signaling,
interferon signaling, interferon gamma signaling, and triglyceride
metabolism and catabolism.

Smoking
Inorganic arsenic in cigarettes can affect placental architecture
and function as discussed below. Other chemicals within
cigarettes may also act though upon the placenta. The placenta
expresses nicotinic acetylcholine receptor (nAChR) subunits
that regulate TB cell invasion but whose expression and
signaling pathway can be usurped by nicotine contained
within tobacco smoke (Lips et al., 2005; Machaalani et al.,
2014, 2018; Aishah et al., 2017; Chen et al., 2020). For
instance, nicotine acting through nAChR induced endoplasmic
reticulum stress in rat pTGC (Wong et al., 2016). Maternal
smoking has been linked with changes in gross placental
weight and microanatomical structure, especially for the
extravillous TB cells (Heidari et al., 2018a,b; Larsen et al.,
2018). Metabolism of lipids, namely long-chain polyunsaturated
fatty acids and transporters for glucose uptake transporters
(SLC2A1 and SLC2A3), amino acids (SLC7A8), and lipid gene
expression patterns in the placenta correlate with maternal
smoking (Walker et al., 2019; Weinheimer et al., 2020).
Circulating levels of placental-associated proteins, pregnancy-
associated plasma protein A (PAPP-A) and free (fβHCG)
are reduced in the serum of pregnant mothers who smoke
(Jauniaux et al., 2013).

Transcriptomic and DNA methylation studies have been
undertaken to determine whether maternal smoking affects
these parameters in the placenta. An Illumina Expression
Beadchip v3 that contained 24,526 transcripts was used
to survey placental samples and cord blood from women
who smoked while pregnant vs. non-smokers (Votavova
et al., 2011). Pathways that were likely affected in placental
and cord blood samples included xenobiotic metabolism,
oxidative stress, inflammation, immunity, hematopoiesis, and
vascularization. An earlier array-based study by this same
research group found that maternal smoking induced several
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genes involved in xenobiotic metabolism (CYP1A1, CYP1B1,
CYB5A, and COX412) collagen-associated genes (COL6A3,
COL1A1, and COL1A2), coagulation genes (F5 and F13A1),
and thrombosis-related genes (CD36, ADAMTS9, and GAS6)
(Bruchova et al., 2010). Another study that considered effects
of maternal smoking on gene expression and the proteome in
the placenta found that smoking down-regulated SERPINB2,
FGA, and HBB but upregulated SERPINA1, EFHD1, and
KRT8 (Huuskonen et al., 2016). Transcript expression for
CYP1A1 and CYP4B1 were elevated, whereas HSD17B2,
NFKB, and TGFB1 were suppressed by maternal smoking
(Huuskonen et al., 2016).

A handful of studies characterized DNA methylation changes
in the placenta based on maternal smoking (Suter et al.,
2011; Chhabra et al., 2014; Tsaprouni et al., 2014; Maccani
and Maccani, 2015; Fa et al., 2016; Morales et al., 2016;
Cardenas et al., 2019; Rousseaux et al., 2020). Exposure
to maternal smoking during the first trimester increased
methylation of the AHRR gene but did not alter its gene
expression pattern (Fa et al., 2018). In contrast, maternal
smoking during this period did not alter DNA methylation
of CYP1A1 but expression of this gene was upregulated (Fa
et al., 2018). DNA methylation analyses with the Illumina
HumanMethylation450 BeadChip for participants in the Infancia
y Medio Ambiente (INMA) birth cohort revealed that maternal
smoking decreased methylation levels of cg27402634 in the
placenta, and this change was also associated with decreased
birthweight (Morales et al., 2016). Another group that used
this same BeadChip reported CpG sites mapping to GTF2H2C
and GTF2H2D in the placental methylome strongly associated
with maternal smoking (Chhabra et al., 2014). Usage of the
Illumina HumanMethylation BeadChip technology in another
cohort population showed that methylation patterns within the
RUNX3 gene were linked to maternal smoking during pregnancy
with one of the loci correlating with decreased gestational age
(Maccani et al., 2013).

One study considered whether maternal cessation of smoking
prior to pregnancy would prevent some of the harmful DNA
methylation marks relative to women who continued to smoke
throughout their pregnancy (Rousseaux et al., 2020). The
placenta from both groups of women showed similar epigenetic
changes, including demethylation of LINE-1 sequences,
enrichment in epigenetic marks for enhancer regions (H3K4me1
and H3K27ac), and regions in proximity or overlapping
imprinted genes (NNAT, SGCE, PEG10, H19.MIR675). The
persistence of DNA methylation changes in those women who
quit smoking before becoming pregnant is worrying as it is
suggests that events even during the periconception period
can lead to a permanent stamp on the DNA methylome of
the placenta. Further work is clearly needed to determine
the extent to when such changes become irreversible and
whether these same methylation alterations are conferred
to the placenta of subsequent generations, i.e., potential
transgenerational effects. In this aspect, another study reported
that while cigarette smoking by pregnant mothers reduced
DNA methylation for several genes, including CPOX near
GPR15, PRSS23, AVPR1B, PSEN2, LINC00299, RPS6KA2, and

KIAA0087, cessation of smoking 3 months prior to pregnancy
partially reversed such methylation alterations in the placenta
(Tsaprouni et al., 2014).

Air Pollution
Particular matter that is around 2.5 µm in diameter (PM2.5)
in air pollution easily crosses the maternal-placental interface.
As such, the placenta is vulnerable to such environmental
toxicants. We will consider the evidence to date that air
pollution disrupts the placental transcriptome and methylome
profiles. Culturing of JEG-3 human placental cells in the
presence of such PM affected genes involved in immune
response, apoptosis regulation, calcium signaling pathway,
steroid hormone biosynthesis, and cytokine-cytokine receptor
interaction (Kim et al., 2018). Protein levels for mitogen
activated protein kinases (MAPK) and COX2 were reduced
in the PM2.5 exposed JEG-3 cells. A Rhode Island Child
Health Study (RICHS) revealed two developmentally sensitive
windows to PM2.5, with 12 weeks prior to and 13 weeks into
gestation also being associated with reduced infant birthweight
(Deyssenroth et al., 2021). This same study analyzed effects
of PM2.5 on placental gene expression patterns and relation
to birthweight. Two placental modules enriched for genes
involved in amino acid transport and cellular respiration
correlated with maternal PM2.5 exposure and infant birthweight
(Deyssenroth et al., 2021). Additional findings from this cohort
revealed that maternal exposure to PM2.5 or black carbon
(based on proximity to major roadways) changed the placental
expression if several imprinted genes with CHD7 showing
interactions between PM2.5 exposure/black carbon and infant
sex being linked to placental expression of ZDBF2 (Kingsley
et al., 2017). The ENVironmental Influences ON early AGEing
birth cohort was used to examine placental DNA methylation
patterns (via a bisulfite -PCR pyrosequencing approach) in
response to exposure to PM2.5 or black carbon (Neven et al.,
2018). Promoter methylation for APEX1, ERCC4, and p53
were positively linked with maternal PM2.5 exposure, whereas
DAPK1 showed a negative association to this extrinsic factor
(Neven et al., 2018). Maternal exposure to black carbon was
associated with increased promoter methylation for APEX1
and ERCC4.

MicroRNAs and Long Non-Coding RNAs
MicroRNAs (miR) and long non-coding (lnc)RNAs were once
considered junk, but this “rubbish” RNA is now known
to exhibit critical regulatory roles, including acting as the
goalie as to which mRNAs are allowed to exist out of the
nucleus and be translated to a protein vs. those that are
instead targeted for degradation (Clancy et al., 2007; Van
Wynsberghe et al., 2011; Moreno-Moya et al., 2014). Thus,
increasing number of researchers are studying the expression
of small and long non-coding RNAs in the placenta following
maternal exposure to various xenobiotics. The expression
pattern of such RNAs in the placenta might also provide
key insights into infant diseases. For instance, several miRs,
such as mR-379-3p, miR-335-3p, miR-4532, miR-519e-3p, miR-
3065-5p, and miR-105-5p, were found to be down-regulated
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in the placenta of infants born small for gestational age
(Östling et al., 2019).

BPA exposure has been linked to changes in miR expression
patterns in whole placenta and TB cell lines (Avissar-Whiting
et al., 2010; De Felice et al., 2015; Gao et al., 2018; Kaur et al.,
2021). BPA treatment of human immortalized cytoTB cell lines
and subsequent microarray analysis showed that several miRs
had altered expression following this treatment, in particular
miR-146a expression was strongly upregulated by BPA (Avissar-
Whiting et al., 2010). Overexpression of miR-146a in these
cell lines reduced cellular proliferation and rendered the cells
more vulnerable to a DNA mutagenic agent (Avissar-Whiting
et al., 2010). Genome-wide miR expression profiling revealed
that maternal exposure to BPA significantly correlated with
overexpression of miR-146a in whole placenta (De Felice et al.,
2015). In experiments with California mice exposed to BPA,
genistein, or the combination of these two EDCs, we found that
developmental exposure to one or both compounds upregulated
miR-146 in the hypothalamus of males and females (Kaur
et al., 2021). In the testes, BPA induced miR-146a-5p that in
turn impaired steroidogenesis through negative regulation of
Metastatic tumor antigen 3 (MTA3) signaling (Gao et al., 2018).
Taken together, miR-146 might be a biomarker for xenoestrogen
exposure in mammals.

Analyses of miR expression patterns in placenta derived from
a National Children’s Study (NCS) sought to link such profiles
to maternal exposure to a variety of environmental toxicants,
dichlorodiphenyldichloroethylene (DDE), bisphenol A (BPA),
polybrominated diphenyl ethers (PBDEs), polychlorinated
biphenyls (PCBs), arsenic (As), mercury (Hg), lead (Pb),

and cadmium (Cd) (Li et al., 2015). PBDE 209 positively
correlated with miR-188-5p but inversely associated with
let-7c. PCBs and Cd positively associated with miR-1537
expression. Hg and Pb exposure were linked with down-
regulation of several let-7 family members. However, maternal
exposure to DDE or BPA levels were not associated with any
changes in miR expression. The conflicting results between
the one cohort study above that found a linkage between
BPA and expression of miR-146a in the placenta and the NCS
findings might relate to variation in BPA exposure for the
cohort population of pregnant women examined, number
of women enrolled, and sequencing technique, including
depth of coverage.

The aforementioned Rhode Island Child Healthy Study
explored the linkage between placental cadmium concentrations
and lncRNA expression in the placenta (Hussey et al.,
2020). MIR22HG and ERVH48-showed increasing expression
corresponding to cadmium exposure and was linked with
elevated odds of small for gesational age birth. In contrast,
A114763.2 and LINC02595 demonstrated reduced expression
relative to cadmium concentrations but increased odds for
large for gestational age birth with increasing expression. In a
Bangladesh cohort population with known exposure to arsenic,
several placental miRs, miR-1290, miR-195, and miR27a, were
negatively associated with birthweight, and miR-1290 expression
varied based on arsenic exposure (Rahman et al., 2018).

One study explored whether maternal exposure to PM2.5
air pollution during different pregnancy trimesters was linked
with varying changes in placental miR (Tsamou et al., 2018).
Accordingly, miR-21 and miR-222 expression in the placenta

FIGURE 1 | The placenta-brain axis and effects of placental 5-HT on fetal brain development. The parietal trophoblast giant cells (pTGC) in the fetal placenta may
amass maternal 5-HT via SERT or may synthesize this morphogen. Placental-derived 5-HT may then act upon the developing fetal brain to promote neurogenesis,
synaptogenesis, increase dendritic spine complexity, and glial cell formation. In essence, early embryology and brain development may depend upon 5-HT
originating from the placenta.
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was inversely associated with PM2.5 exposure during the 2nd
trimester of pregnancy. However, exposure during the first
trimester appeared to increase placental expression of miR-
20a and miR-21. Based on the miR expression patterns,
target mRNAs can be predicted, and the expression of tumor
suppressor phosphatase and tensin homolog (PTEN) seems to
be affected by the miRs that changed in response to maternal
exposure to PM. Correspondingly, placental PTEN expression
was positively associated with 3rd trimester PM2.5 exposure
(Tsamou et al., 2018).

CONCLUSION

In acting as the gatekeeper, the placenta is vulnerable to
xenobiotics circulating in the maternal bloodstream, especially
in rodents and humans who exhibit an invasive, hemochorial
type of placentation. In this review, we have considered the
impact of EDCs, other environmental toxicants, pharmaceutical
agents, maternal smoking, and air pollution on the placental
transcriptome and other omics, including miR profiles,
along with associated changes such compounds induced
on placental morphology. What emerges from many of
these studies is that such xenobiotics act upon endogenous
receptors and transporters, e.g., steroid receptors, SERT
inhibitors, opioid receptors, and nicotinic acetylcholine
receptor, naturally expressed by the placenta that when
bound by their endogenous ligands are crucial in regulating
placental responses. Binding of xenobiotics to such receptors
or transporters evades normally homeostatic regulation and
prevents the endogenous ligands from binding and activating
their cognate receptors.

The placenta is an ephemeral organ but how it responds
to such xenobiotics can lead to longstanding effects on fetal
health. Such is particularly true in the case of the fetal brain that
depends upon placental hormones, especially 5-HT, for initial
forebrain development (Bonnin and Levitt, 2011; Rosenfeld,
2020, 2021). The current studies show that exposure to BPA, VPA,
and flame retardants suppress placental 5-HT, dopamine, and
likely other neurotransmitters (Rubinchik-Stern et al., 2018; Mao
et al., 2020; Rock et al., 2020). Such changes assumingly disrupt
paracrine actions that these factors would otherwise stimulate
in the placenta, but such placental disturbances can also lead
to ramifications on the fetal brain whose initial development
depends upon placental transfer of such substances, in particular
placental derived 5-HT (Bonnin and Levitt, 2011; Rosenfeld,
2020, 2021). 5-HT acting as a morphogen may be one of the
primary conductors regulating early neural crest formation,
metamorphosis, neurogenesis, cell motility, synaptogenesis, and
development of the nociceptive system (Lauder, 1988; Lauder
et al., 1988; Whitaker-Azmitia, 1991; Herlenius and Lagercrantz,
2001). Definitive evidence that the placenta is the initial
source of 5-HT for the developing fetal brain comes from
studies that blocked placental tryptophan hydroxylase 1 (TPH1)
enzymatic activity by in utero injecting the TPH inhibitor
p-chlorophenyalanine (PCPA) into the labyrinth region of E14.5
placentas (Bonnin and Levitt, 2011). Predictably, direct and short

exposure to this pharmacological inhibitor suppressed 5-HT
levels in the placenta, as well as notably in the fetal forebrain.
Thus, factors that affect placental synthesis and ability to amass
5-HT can also dramatically shape early brain development that
can result in longstanding neurobehavioral changes. This inter-
connection between the two organ systems, has been branded,
the placenta-brain-axis (Rosenfeld, 2021). Placental transmission
of 5-HT is likely one of many ways the placenta influences fetal
brain development, as shown in Figure 1. Many neurobehavioral
disorders likely trace their genesis to pathophysiological changes
in the placenta (Marsit et al., 2012; Lesseur et al., 2014;
Rosenfeld, 2015a).

One thing that also stands out in tracing the journey
of discovery based on these omics approaches is that the
experiments detailed herein employed techniques considered
innovative for their time. However, ideas and technologies
continue to evolve, and we must adapt our approaches
accordingly. The studies described in this review were done with
either whole placenta or isolated TB cell lines. Yet, the placenta
in rodents and humans is a complex mixture of cells, and it is
important to pinpoint how xenobiotics affect individual placental
cell populations and how such changes may affect neighboring
cells. The recently developed Visium spatial transcriptomics (ST)
technology from 10X Genomics allows quantification of mRNA
populations in the spatial context of intact tissue (Berglund
et al., 2018; Maniatis et al., 2019). We have recently used
this approach with mouse uteri (Mesa et al., 2021), but no
studies to date have used novel method with placental samples.
Single cell and single nuclei RNA-seq have been performed to
understand human and mouse TB differentiation (Liu et al., 2018;
Suryawanshi et al., 2018; Pique-Regi et al., 2019; West et al.,
2019; Marsh and Blelloch, 2020). The architectural landscape of
the placenta though is destroyed with both of these approaches.
Thus, ST technology where the histoarchitecture is retained may
complement these other techniques that allow for examination
of gene expression patterns at the cellular or tissue level. Such
approaches are predicted to become available to be able to
characterize how varying extrinsic and intrinsic factors affect
the DNA methylome, proteome, and global miR/other small
RNA expression patterns down to the cellular level. MixOmics
analyses (Rohart et al., 2017) and other integrative correlation
analyses to be developed will permit integration of omics data
and establish linkages between such molecular alterations to
phenotypic changes in the placenta.

In conclusion, the studies to date provide strong evidence that
xenobiotics affect placenta structure and molecular processes that
assumingly affect placental morphology. The coming years will
assuredly be devoted to tracing xenobiotic affects to individual
TB cell populations and how such effects change over the
course of pregnancy. How xenobiotics modify the placenta-
brain axis is also predicted to become an important avenue of
research. Identification of such placental changes may provide a
mechanistic understanding of the fetal origin of neurobehavioral
disorders in general and open up new avenues for early
diagnosis and potential treatments for patients with autism
spectrum disorders (ASD) caused by placental dysfunction
during pregnancy.
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