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ABSTRACT Microbial natural products, particularly those produced by filamentous
Actinobacteria, underpin the majority of clinically used antibiotics. Unfortunately,
only a few new antibiotic classes have been discovered since the 1970s, which has
exacerbated fears of a postapocalyptic world in which antibiotics have lost their util-
ity. Excitingly, the genome sequencing revolution painted an entirely new picture,
one in which an average strain of filamentous Actinobacteria harbors 20 to 50 natu-
ral product biosynthetic pathways but expresses very few of these under laboratory
conditions. Development of methodology to access this “hidden” biochemical diver-
sity has the potential to usher in a second Golden Era of antibiotic discovery. The
proliferation of genomic data has led to inconsistent use of “cryptic” and “silent”
when referring to biosynthetic gene clusters identified by bioinformatic analysis. In
this Perspective, we discuss this issue and propose to formalize the use of this termi-
nology.
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Almost a century of research and industrial activity has earned Streptomyces species
and other filamentous Actinobacteria a well-deserved reputation for their ability to

produce a vast array of natural products, many of which have found utility in the clinic.
Consequently, these microbes have been an important resource for the pharmaceutical
industry. Indeed, some compounds that were developed into drugs (e.g., clavulanic
acid, chloramphenicol, spectinomycin, ivermectin, amphotericin, and nystatin) are now
considered essential medicines by the World Health Organization (1). The Golden Age
of antibiotic discovery came to an end in the 1970s, because existing pipelines for new
molecules ran dry and rediscovery of known compounds was common (the so-called
“dereplication problem”). Generally, natural product discovery programs were replaced
with combinatorial chemistry platforms that produced large chemical libraries for
high-throughput screening, which largely failed to produce new lead compounds. In
the longer term, industrial antibiotic discovery programs were no longer financially
viable and Big Pharma divested from discovery programs (2). This reduction in antibi-
otic discovery capacity has been against a backdrop of increasing antimicrobial-
resistant infections within the clinic and community to the point that there is now an
urgent need to discover and develop novel antimicrobials for the clinic.

It is not all doom and gloom, however; we are living in the “Genomics Age” of
antibiotic discovery, which began in 2002 with the sequencing of the first Streptomyces
genome, Streptomyces coelicolor A3(2) (3). Analysis of this genome sequence identified
a greater number of natural product biosynthetic gene clusters (BGCs) than the
organism was known to produce. A further 18 BGCs were identified, but at the time,
only four compounds had been observed in the laboratory. This exciting revelation
gave rise to the notion that on the whole, secondary metabolism in S. coelicolor A3(2)
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is relatively inactive in a laboratory setting, with most molecules detected in laboratory
culture having been previously identified and linked to biosynthetic gene clusters
(BGCs) (Known Knowns).

This was established as a widespread phenomenon, rather than a quirk of S.
coelicolor, when the genomes of Streptomyces avermitilis, Streptomyces griseus, and
Streptomyces scabies were sequenced and analyzed (4–6). Since these genomes were
“mined” for secondary metabolites, it has become apparent that the genomes of
Actinobacteria represent a vast repository of novel natural product chemistry. For
example, a study of 830 actinobacterial genomes identified �11,000 natural product
BGCs that represent �4,000 chemical families (with chemical families being com-
pounds with similar chemical backbones that may possess similar physical and chem-
ical properties [7]) which tells us that there is vast chemical space out there in nature.
While there are rare cases of similar or identical molecules being produced by evolu-
tionarily distinct BGCs (8, 9), the prevalence of this scenario will remain unknown until
high-throughput chemical analysis catches up with genomics. The newfound abun-
dance of genomic data has resulted in an explosion of methods to computationally
mine actinobacterial genomes for natural product BGCs such as antiSMASH, PRISM,
EvoMining, and DeepBGC (10–13), which can be linked to natural product databases
(MIBiG, antiSMASH database, and Natural Product Atlas) (14–16). The prioritization of
which BGCs to study remains a challenge in the field, but the wealth of data available
indicates that there are many new compounds out there to be discovered (17).

The increase in genome sequencing and genome mining studies has, however, led
to inconsistency in the terminology used to refer to the “hidden treasures” encoded by
the genomes of natural product-producing organisms. In the literature, the use of
“cryptic” and “silent” has become pervasive, and these terms are often used inter-
changeably to describe natural product BGCs for which the genes encoding the
enzymes for biosynthesis have been identified but for which no product has been
observed during laboratory culture. Inconsistent use of these terms is confusing,
especially for newcomers to the field. In this perspective, we disambiguate “silent” and
“cryptic” and propose rules for their use when applied to natural product BGCs.

“Cryptic” is derived from the Greek kruptós meaning “hidden” and is used widely in
biology to describe well-camouflaged species (https://en.wiktionary.org/wiki/cryptic) or
where two or more species have been misclassified as a single taxon due to being
morphologically indistinguishable but are genetically distinct (cryptic species) (18). In
microbiology the use of “cryptic” to describe plasmids that do not encode any known
beneficial traits (19) is found regularly, but this perhaps reflects our poor understanding
of the role these plasmids play in the ecology of many organisms, rather than them not
being beneficial. “Silent” is a straightforward term that most are familiar with. For
instance, “gene silencing” is well understood in RNA interference (RNAi) scenarios and
“silent” is also used to describe gene conversion events in antigenic variation—a gene
is present, but is not expressed, but can be expressed following a mutational event.
These systems often reflect complicated and/or poorly understood gene regulatory
systems. Thus, we propose that the term “cryptic” should be used for describing BGCs
and/or natural products that are hidden or unknown and the term “silent” should be
used only for describing BGCs that are not expressed.

For instance, consider the following scenario and what the description of the BGC
and product would be. One has bioinformatically analyzed a Streptomyces genome
sequence, and a BGC has been identified that encodes a putative polyketide biosyn-
thetic (PKS) system. Expression of the BGC has not been analyzed, so the use of “silent”
is inappropriate. Future experimentation may establish that the PKS BGC is in fact
unexpressed, which means the BGC should at this point be described as “silent.” By
definition this means that the associated polyketide product is, of course, “cryptic,”
because it cannot be produced if its biosynthetic genes are not expressed. We outline
various other scenarios for the usage of cryptic and silent in Fig. 1.

The majority of the confusion has crept into literature when discussing the Known
Unknowns and the Unknown Knowns. This is where it is important for the term “cryptic”
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to be used accurately. The use of “cryptic BGC” is appropriate when a natural product
has been observed, but where its cognate BGC has not been experimentally identified,
i.e., the compound is known, but its biosynthesis is cryptic (Unknown Knowns). Equally,
the term “cryptic” can be appropriately used when expression of a BGC has been
experimentally validated, but a product predicted from that BGC cannot be observed
under laboratory culture conditions (Known Unknowns), i.e., the product of the BGC is
cryptic.

Interestingly, it is the last category, the Unknown Unknowns, where the real hidden
treasures likely lie. Currently, around one-third of all protein-encoding genes in bacte-
rial genomes lack functional annotation (20). It is within these hypothetical protein-
encoding genes where truly “cryptic BGCs” (Unknown Unknowns) may be located.
These are completely novel BGCs, where the lack of functional annotation precludes
them from being identified by the multitude of bioinformatic tools and natural product
databases. The resulting secondary metabolites are also more likely to be missed when
analyzing culture supernatants for bioactive molecules—we often look for the kinds of
molecules that we are already familiar with. Again, screening natural product libraries
for bioactivity does not investigate all “bioactivity space,” since it is usually confined to
activity against a panel of well-known surrogate indicator organisms/cell lines (21).

Progress has been made in identifying these kinds of truly cryptic gene clusters
using evolutionary mining methods to identify the expansion and repurposing of
enzyme families from central metabolism. This is exemplified by the discovery of a BGC
for an arsenopolyketide (22) and an unusual thiotemplated nonribosomal peptide
synthetase (NRPS)-independent BGC encoding closthioamide biosynthesis (23, 24). The
same evolutionary rationale applies to the duplication of some housekeeping genes,
which confer resistance to the antibiotic, so-called target duplication (25). Broadly
speaking, these evolutionarily guided approaches can expand the predictions of com-

FIG 1 A summary of the description of various permutations of the cryptic or silent nature of secondary
metabolism.
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monly used BGC prediction algorithms by up to 26% (12) and can potentially identify
BGCs for natural products that have novel modes of action (25). With the exciting
expansion of genomic, metagenomic, and metabolomic resources and their integration
with both small- and large-scale functional studies (26), we owe it to ourselves to be
precise in our terminology.
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