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Accumulating evidence has demonstrated that circular RNAs (circRNAs) play vital roles in cancer progression. However, the
underlying molecular mechanisms of circRNAs remain poorly elucidated in gastric cancer (GC). The main purpose of present
study is to explore the underlying regulatory mechanism by constructing a circRNA-associated competitive endogenous RNA
(ceRNA) network and further establish a robust prognostic signature for patients with GC. Based on expression data of
circRNA, microRNA, and mRNA derived from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA)
databases, a circRNA-associated ceRNA network, containing 15 cirRNAs, 9 microRNAs, and 35 mRNAs, was constructed using
the Starbase database. Functional enrichment analysis showed that the ceRNA network might be involved in many cancer-
related pathways, such as regulation of transcription from RNA polymerase II promoter, mesodermal cell differentiation, and
focal adhesion. A protein-protein interaction network was constructed based on genes within the circRNA-associated ceRNA
network. We found that six of ten hub genes within the PPI network were significantly associated with overall survival (OS).
Thus, using the LASSO method, we constructed a three-gene prognostic signature based on TCGA-GC cohort, which could
classify GC patients into low-risk and high-risk groups with significant difference in OS (HR = 1:9, 95%CI = 1:14‐3:2, and log-
rank p = 0:001). The prognostic performance of the three-gene signature was verified in GSE15459 (HR = 1:9, 95%CI = 1:27‐3:0,
and log − rank p = 2:2E − 05) and GSE84437 (HR = 1:5, 95%CI = 1:17‐2:0, and log − rank p = 6:3E − 04). Multivariate Cox
analysis further revealed that the three-gene prognostic signature could serve as an independent risk factor for OS. Taken
together, our findings contribute to a better understanding of the underlying mechanisms of circRNAs in GC progression.
Furthermore, a robust prognostic signature is meaningful to facilitate individualized treatment for patients with GC.

1. Introduction

Gastric cancer (GC) has been well known as one of the
most malignant tumors with high incidence and mortality
worldwide, which is responsible for over 1,000,000 new
cases and 780,000 deaths predicted each year, making it
ranks the fifth most frequently diagnosed cancer and the
third leading cause of cancer-related death [1]. Despite
recent improvements in comprehensive treatment of GC,
the 5-year overall survival (OS) and disease-free survival
(DFS) rate remain unsatisfactory, which has been largely
attributed to the lack of efficient screening programs and
a high frequency of recurrence and metastasis [2]. In clin-

ical practice, the current American Joint Committee on
Cancer (AJCC) TNM stage system has shown valuable
but insufficient information for prognosis and estimation
for GC patients [3]. Recently, several novel molecular clas-
sification schemas have been proposed according to the
heterogeneous molecular characteristics [4–6]. Therefore,
more efforts are needed to explore the molecular patho-
genesis of GC and identify reliable prognostic molecular
biomarkers, which can contribute to improving the under-
standing of GC progression and performing appropriate
and individualized therapies.

In the last few years, along with an extensive characteriza-
tion of the protein-coding genome in gastric cancer,
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increasing attention has been focused on circular RNAs (cir-
cRNAs), which are a class of endogenous noncoding RNAs
characterized by covalently closed loop structures. circRNAs
are abundant and stable in expression, and many of them are
evolutionary conserved in many tissues [7, 8]. Accumulating
evidence has demonstrated that the dysregulation of cir-
cRNAs could play critical roles in the initiation and progres-
sion of cancer [9, 10]. Hsiao et al. reported that circCCDC66
was upregulated in all stages of colon cancer and negatively
correlated with prognosis, highlighting a novel oncogenic
function in cancer progression and metastasis [11]. The
research performed by Yao et al. demonstrated that
circRNA_100876 expression was significantly elevated in
non-small-cell lung cancer tissues and was closely associated
with lymph node metastasis and tumor-node-metastasis
stage, indicating that circRNA_100876 may be a potential
cancer marker of patients with non-small-cell lung cancer
[12]. Currently, there are few reports describing the role of
circRNAs in GC. The biological function and regulatory
mechanism of circRNAs in GC remain poorly elucidated
and require further investigation.

Multiple properties of circRNAs have been identified in
recent years, among which the role of “miRNA sponges”
was most frequently discussed since some circRNAs possess
miRNA response elements (MREs) [13, 14]. circRNAs
sequester miRNAs to terminate the regulation of their target
genes acting as competing endogenous RNA (ceRNA), pro-
moting the cancer initiation, progression, and chemoresis-
tance [15–17]. For example, Song et al. validated that
upregulation of TPX2 by hsa_circRNA_101996-mediated
inhibition of miR-8075 contributed to cervical cancer prolif-
eration, migration, and invasion [18]. In addition, Yu et al.
found that hsa_circ_0001445 could promote the expression
of TIMP3, a well-known tumor suppressor, by sponging
miR-17-3p and miR-181b-5p and further showed that hsa_
circ_0001445 inhibits the growth and migration of hepato-
cellular carcinoma cells in vitro and in vivo data, providing
a fresh perspective on circRNAs in hepatocellular carcinoma
progression [19]. As comprehensive analysis of circRNAs
remains insufficient for GC patients, the circRNA-miRNA-
mRNA competing endogenous RNA network may provide
an effective way to understand the regulatory mechanism
and guide the individualized therapies.

In this study, by comprehensively integrating expression
data of circRNAs, miRNAs, and mRNAs, the GC-related
circRNA-miRNA-mRNA ceRNA network was established
to explore the regulatory mechanism of key circRNAs poten-
tially involved in GC progression. Moreover, we investigated
the clinical relevance of genes within the ceRNA network and
further developed a robust prognostic model for GC patients.
This study provided a valuable insight for elucidating the
regulatory mechanisms of circRNAs and constructing a reli-
able prognostic signature, which could guide individualized
therapies and improve the clinical outcome for GC patients.

2. Materials and Methods

2.1. Data Processing. All cohorts and clinical information
were described in Tables 1 and 2. circRNA expression pro-

files containing 5 pairs of GC and adjacent normal lung
tissues were downloaded from the GEO (https://www.ncbi
.nlm.nih.gov/geo/) database. The raw data were processed
by background correction and quantile normalization. The
expression data and clinical data of patients with GC were
retrieved from TCGA (https://portal.gdc.cancer.gov/).
Expression data included miRNA and mRNA expression
levels for each patient, and clinical information included
age, gender, pathological stage, lymph node metastasis, sur-
vival status, and overall survival time. The normalized count
values of level 3 gene expression data derived from Illumina
HiSeq V2 were extracted as gene expression measurement.
Only patients with both survival information and expression
data were included in this study. Ultimately, 345 patients
were retained in our study. Two independent cohorts col-
lected from GEO were used to test the prognostic ability.
The GSE15459 and GSE84437 series contained 192 and 433
patients with both gene expression and clinical information,
respectively. For expression data generated by the Affymetrix
platforms, the Robust Multi-array Average algorithm was
used for preprocessing the raw data. For expression data gen-
erated by the Illumina microarray platform, the originally
processed data were used. All gene expression measurements
were log2 transformed.

2.2. Construction of the circRNA-Associated ceRNA Network.
Differentially expressed circRNAs (DEcircRNAs) were iden-
tified by the Student t-test with p < 0:05 and ∣logFC ∣ >2
between GC and adjacent normal gastric tissues. As detected
by long and short probes (the two kinds of probe were named
CBC1 and CBC2, respectively), common DEcircRNAs were
selected to construct the ceRNA network. Differentially
expressed miRNAs (DEmiRNAs) and differentially
expressed mRNAs (DEmRNAs) were identified by edgeR
package with the threshold set at an FDR < 0:05 and ∣log 2
FC ∣ >2. To better understand the effect of circRNAs on
mRNAs mediated by combination with miRNAs in GC, a
ceRNA network was constructed based on DEcircRNAs,
DEmiRNAs, and DEmRNAs. Human sequences of DEcircR-
NAs and DEmiRNAs were downloaded from the circBase
(http://www.circbase.org/) and miRBase (version 21; http://
www.mirbase.org/) databases, respectively. The miRanda
prediction tool was used to predict the interactions between
DEcircRNAs and DEmiRNAs. Moreover, mRNAs targeted
by the DEmiRNAs were retrieved from the Starbase (http://
starbase.sysu.edu.cn/) database which provides the predic-
tion results of seven predicted programs (TargetScan,
microT, miRmap, picTar, RNA22, PITA, and miRanda).
The interactions between miRNAs andmRNAs were selected
if they were predicted in ≥3 programs. The target mRNAs
were then overlapped with the DEmRNAs. Ultimately,
removing the nodes that could not form a circRNA-
miRNA-mRNA axis, a circRNA-associated ceRNA network
was established and visualized by the Cytoscape software
(version 3.7.0; http://www.cytoscape.org).

2.3. Functional Enrichment Analysis. In order to investigate
the biological processes that the circRNA-associated ceRNA
network may be involved in, we selected the DEmRNAs
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within the ceRNA network and further performed functional
enrichment analysis using Database for Annotation, Visuali-
zation and Integrated Discovery (DAVID; http://www.david
.abcc.ncifcrf.gov/). DAVID offers systematic and integrative
functional annotation tools to unravel biological meaning
behind a large list of genes. Gene Ontology (GO) contains
three categories: biological processes, molecular function,
and cellular components. Kyoto Encyclopedia of Genes and
Genomes (KEGG) contains information about genomes,
chemical substances, biological pathways, and diseases. p <
0:05 was regarded as statistically significant.

2.4. Establishment of the Protein-Protein Interaction (PPI)
Network. PPI analysis is essential for illustrating the molecu-
lar mechanisms of key cellular activities in carcinogenesis.
The Search Tool for the Retrieval of Interacting Genes/Pro-
teins (STRING) database (https://string-db.org/) was used
to evaluate the PPI information and further construct a PPI
network based on DEmRNAs. An interaction score of 0.4
was regarded as the cutoff criterion, and the PPI network
was visualized by the Cytoscape software. Furthermore, the
univariate Cox regression analysis was used to evaluate the
association with clinical outcome.

2.5. Construction of Prognostic Signature for Patients with
GC. Based on DEmRNAs within the PPI network, we con-
structed a prognostic signature by the Least Absolute
Shrinkage and Selection Operator (LASSO) method to
achieve risk classification for GC patients. The LASSO
regression is a popular method for variable selection in fit-
ting high-dimension generalized linear model, which can
get a more refined model by constructing a penalty func-
tion to reduce the variable numbers and effectively avoid

Table 1: Cohorts analyzed in this study.

GSE100170 TCGA-GC GSE15459 GSE84437
circRNA miRNA mRNA Clinic mRNA Clinic mRNA Clinic

Normal 5 41 32 - - - - -

Tumor 5 345 345 345 192 192 433 433

Platform
Agilent circRNA Array

V1
Illumina HiSeq

V2
Illumina HiSeq

V2
Affymetrix U133 Plus

2
Illumina HT-12

V3

Table 2: Clinical information analyzed in this study.

TCGA-GC GSE15459 GSE84437

Sample

Normal - - -

Tumor 345 192 433

Mean age (years; range) 65 (35-90) 64 (23-92) 60 (27-86)

Gender

Male 219 125 296

Female 126 67 137

Stage

I 49 31 -

II 110 29 -

III 149 72 -

IV 37 60 -

Status

Alive 276 97 224

Dead 69 95 209

Platform
Illumina
HiSeq V2

Affymetrix
U133 Plus 2

Illumina
HumanHT-

12 V3

TCGA-GC

miRNA
expression

miRNA
expression

circRNA
expression

GSE100170

t-test

edgeR

edgeR

DEcircRNAs DEmiRNAs DEmRNAs

miRanda Starbase

ceRNA
network

GO KEGG

Functional enrichment

PPI
Network

DEmRNAs
within network

DAVID

STRING

DEmRNAs
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LASSO
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Clinical
information
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Figure 1: The flowchart for this study.
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overfitting. The glmnet package in R was utilized to per-
form the LASSO algorithm. Combining regression coeffi-
cient with corresponding gene expression values, a risk
scoring model was established. The risk scores were calculated
as shown in the following equation: Risk score = expression
of gene 1 ∗ β1 + expression of gene 2 ∗ β2 +⋯expression of

gene i ∗ βi. βi is the regression coefficient of gene i, which
represents the contribution of gene i to the prognostic risk
score. After calculating the risk scores, patients in each
cohort were classified into low-risk or high-risk group cor-
respondingly using the median risk score as the cutoff
point.
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Figure 2: Heat maps of differentially expressed circular RNAs based on long ((a) CBC1) and short probes ((b) CBC2) and volcano plots of (c)
differentially expressed mRNA and (d) differentially expressed miRNA. Red and green dots represent significantly upregulated and
downregulated RNAs, respectively (FDR < 0:05 and ∣log 2FC ∣ >2:0).
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2.6. Statistical Analysis. The Kaplan-Meier method was used
to assess the differences in survival time of low- and high-risk
GC patients, and the log-rank test was used to determine the
statistical significance of observed differences between
groups. Multivariable Cox regression analysis and stratifica-
tion analysis were used to assess whether the risk score was
independent of other clinical features, such as stage, age,
and gender. Hazard ratios (HRs) and 95% confidence inter-
vals (CIs) were computed based on the Cox regression anal-
ysis. The difference in mortality rate between different risk
groups was tested by Fisher’s exact test. p < 0:05was regarded
as statistically significant.

3. Results

3.1. Identification of Differentially Expressed RNAs. The flow-
chart for this study is shown in Figure 1. Using a cutoff
threshold of ∣log 2FC ∣ >2 and p < 0:05, a total of 52
circRNAs were differentially expressed between GC and
non-GC tissues by both long and short probes (the two kinds
of probe were named CBC1 and CBC2, respectively,
Figures 2(a) and 2(b)), among which 16 were upregulated
and 36 were downregulated. The concordance score was
100% (binomial test, p < 0:001). Using the “edgeR” package

in R, we analyzed the expression data of miRNAs and
mRNAs download from TCGA to select DEmiRNAs and
DEmRNAs. With cutoff criteria of FDR < 0:05 and
|log 2FC ∣ >2, 22 DEmiRNAs (including 11 upregulated and
11 downregulated miRNAs) and 520 DEmRNAs (including
210 upregulated and 310 downregulated mRNAs) were iden-
tified, respectively (Figures 2(c) and 2(d)).

3.2. circRNA-Associated ceRNA Network for GC. Using the
miRanda prediction tool, 35 circRNA-miRNA interactions
were predicted based on 17 DEcircRNA and 11 DEmiRNAs.
We further identified DEmRNAs targeted by these DEmiR-
NAs from the Starbase database. A total of 46 miRNA-
mRNA interactions were predicted, including 35 DEmRNAs
predicted for 9 of the 11 DEmiRNAs. Integrating circRNA-
miRNA interactions with miRNA-mRNA interactions, a
circRNA-associated ceRNA network was established after
removing the nodes that could not form a circRNA-
miRNA-mRNA axis. This network contained 15 DEcirR-
NAs, 9 DEmiRNAs, and 35 DEmRNAs, as shown in Figure 3.

3.3. Functional Enrichment of DEmRNAs. Using the DAVID
database, DEmRNAs within the circRNA-associated ceRNA
network were analyzed to explore the underlying functions
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Figure 3: The circRNA-associated competing endogenous network in gastric cancer. Triangles represent circRNAs, diamonds represent
miRNAs, ellipses represent mRNAs, and black lines represent circRNA-miRNA-mRNA interactions.
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and pathways which the ceRNA network might be involved
in. The result is shown in Figure 4. GO annotation showed
that DEmRNAs were significantly enriched in many
cancer-related terms. For example, regulation of transcrip-
tion from RNA polymerase II promoter, as the most signifi-
cantly enriched term, has been reported to be closely
related to the occurrence and progression of cancer. Another
significantly enriched term, mesodermal cell differentiation,
played key roles in endothelial cell development, which had
been demonstrated to be associated with cancer progression
and chemoresistance. From KEGG pathway enrichment
analysis, axon guidance was significantly enriched by DEmR-
NAs. A couple of studies have suggested that dysregulation of
genes within axon guidance pathway aid in the progression
of pancreatic cancer and breast cancer. Besides, focal adhe-
sion, as one of most common cancer-related pathways

involved in tumor invasion and metastasis, was also
enriched. Such results showed that DEmRNAs within the
ceRNA network played crucial roles in multiple cancer-
related processes, indicating that the circRNA-associated
ceRNA network might be involved in GC invasion and
progression.

3.4. Establishment of the PPI Network and Evaluation of the
Prognostic Relevance. Based on 36 DEmRNAs within the
circRNA-associated ceRNA network, we explored the inter-
actions among DEmRNAs using the STRING database. With
cutoff criterion of interaction score > 0:4, 15 interactions
were selected including 10 DEmRNAs after removing uncon-
nected nodes. As shown in Figure 5, a PPI network was visu-
alized by the Cytoscape software. Univariate cox regression
analysis was performed to evaluate the association between
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Figure 4: Enrichment of Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of differentially
expressed mRNAs within the competing endogenous RNA network.
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gene expression and clinical outcome. The results showed
that 6 of 10 DEmRNAs were significantly associated with
OS, indicating the ability to prognosis for GC patients
(Table 3).

3.5. Construction of the Prognostic Signature. Based on the
prognostic ability of genes within the PPI network for GC
patients, we tried to construct a prognostic signature based
on the LASSO method using the R package “glmnet.” The
degree of LASSO regression complexity is controlled by the
parameter λ ð0 < λ < 1Þ. We obtained the optimal value of
the parameter λ with the number of variables equal to three
through multiple cross-validation. Therefore, combining
the regression coefficients under the optimal λ value, we
constructed a three-gene signature to guide the prognosis of
GC patients. The risk-score formula was created as follows:

Risk score = ð0:088 ∗ expression level of COL1A1Þ + ð0:054
∗ expression level of DKK1Þ + ð0:169 ∗ expression level of
SERPINE1Þ. We calculated the risk score for each patient in
TCGA-GC cohort. Patients were subsequently divided into
a high-risk (n = 173) or a low-risk (n = 172) group according
to the median risk score. K-M survival analysis showed that
patients in high-risk group had significantly shorter OS than
patients in low-risk group (log-rank p < 0:001; Figure 6(a)).
After adjusting for clinical features including age, gender,
and stage, the multivariate Cox regression analysis showed
that the prognostic three-gene signature also had statistical
significance as an independent prognostic factor in TCGA-
GC training cohort (HR = 1:90, 95%CI = 1:14‐3:19, and p =
0:014; Figure 6(b)).

3.6. Validation of the Prognostic Signature. The prognostic
performance of the three-gene signature was validated in
two independent cohorts. In GSE15459 cohort, patients were
divided into high-risk (n = 96) and low-risk (n = 96) groups
with significant survival difference (log-rank p = 2:21E − 05;
Figure 6(c)). Patients with high risk score had poorer OS.
Besides, the mortality rate was 63.5% (61/92) in the high-
risk group, significantly higher than 36.9% (34/92) in the
low-risk group (p < 0:05, Fisher’s exact test). Multivariate
Cox regression analysis confirmed that the three-gene signa-
ture could serve as an independent prognostic factor for GC
(HR = 1:95, 95%CI = 1:27‐2:99, and p = 0:002; Figure 6(d)).
Similarly, each patient in GSE84437 cohort was classified
into high-risk or low-risk group. We found that patients in
high-risk group had a shorter survival time than patients in
low-risk group (log-rank p < 6:32E − 04; Figure 6(e)). The
mortality rate in high-risk group was significantly higher
than that in low-risk group (55.8% vs. 40.7%, p < 0:05, Fish-
er’s exact test). Besides, the multivariate Cox regression anal-
ysis also confirmed that the three-gene signature remained
significantly associated with OS after adjusting for clinical
features (HR = 1:54, 95%CI = 1:17‐2:03, and p = 0:002;
Figure 6(f)). The risk score distribution, survival status, and
expression profile of the three prognostic genes are shown
in Figure 7.

4. Discussion

Gastric cancer is one of the leading causes of cancer-related
mortality, and it has characteristically varying prognostic
outcomes [20]. Emerging evidence shows that stable
circRNAs play an increasingly important role in tumor prog-
ress, prognosis, and drug resistance [21–23]. In present
study, based on expression data of circRNAs, miRNAs, and
mRNAs, we screened aberrant RNAs and further constructed
a circRNA-associated ceRNA network to investigate the
regulatory mechanism for GC. To further evaluate the impact
on clinical outcome, we performed the LASSO method to
develop a robust three-gene prognostic model based on
the circRNA-associated ceRNA network. Our results fur-
ther highlight the important roles of circRNAs in GC
and suggest potential therapeutic targets that warrant fur-
ther investigation.

THBS2
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INHBA

CTHRC1

SERPINE1

DKK1

TNFRSF11B

SULF1

ADAM12

IL11

Figure 5: The protein-protein interaction network constructed by
differentially expressed mRNAs within the competing endogenous
RNA network.

Table 3: Univariate Cox analysis of DEmRNAs within the PPI
network.

DEmRNAs HR 95% CI: low 95% CI: high p value DEdir

ADAM12 1.35 1.08 1.70 0.008 1

COL1A1 1.25 1.06 1.47 0.006 1

CTHRC1 1.23 1.04 1.45 0.016 1

DKK1 1.10 0.98 1.23 0.094 1

IL11 1.17 0.98 1.39 0.083 1

INHBA 1.26 1.03 1.54 0.027 1

SERPINE1 1.33 1.13 1.56 <0.001 1

SULF1 1.15 0.99 1.34 0.067 1

THBS2 1.16 1.01 1.34 0.044 1

TNFRSF11B 1.01 0.87 1.16 0.977 1

Note: DEmRNAs: differentially expressed mRNAs; HR: hazard ratio; CI:
confidence interval; DEdir: differentially expressed direction.
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Figure 6: Prognostic performance of the three-gene prognostic signature. Kaplan-Meier curve of the overall survival between low-risk and
high-risk groups in (a) TCGA-GC, (c) GSE15459, and (e) GSE84437, respectively; the forest maps calculated by multivariate Cox analysis
in (b) TCGA-GC, (d) GSE15459, and (f) GSE84437, respectively.
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circRNAs are a new type of highly stable and abundant
endogenous noncoding RNAs. With the development of
high-throughput sequencing technique and bioinformatics
analysis, circRNAs were found to function as ceRNAs to
sponge miRNAs and then suppress their functions, indicat-

ing a novel mechanism for regulating miRNA activity and
providing a promising mode of action for circRNAs.
Recently, researchers continually focus on exploring the
underlying biological mechanism for specific circRNAs
involved in cancer occurrence and development [24, 25],
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Figure 7: The risk score distribution, survival status, and expression profile of the three prognostic genes in (a) GSE15459 and (b) GSE84437
cohorts, respectively.
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especially gastric cancer [26]. In the current study, we con-
structed a circRNA-associated ceRNA network to make a
systematic analysis for the regulatory mechanism of
circRNAs related to GC progression. 15 circRNAs were char-
acterized as core roles of GC progression in the circRNA-
associated ceRNA network. For example, we found that
hsa_circ_0081143 was significantly upregulated in GC tissues
and predicted that hsa_circ_0081143 might regulate the
expression of SERPINE1 as the sponge of miR-145 based
on the circRNA-associated ceRNA network in our study.
We further found that SERPINE1 was significantly related
with OS, indicating the prognostic role of hsa_circ_0081143
for GC patients. Xue et al. confirmed that hsa_circ_0081143
was significantly upregulated in GC tissues, whose expression
was closely association with advanced TNM stage, lymph
node metastases, and poor overall survival of GC patients
[27]. hsa_circ_0081143 silencing in vitro by siRNA can sup-
press GC cell viability and invasion ability and induce the
sensitivity of GC cells to cisplatin (DDP) in vitro. Another
circRNA, named hsa_circ_0058097, was also significantly
upregulated in GC tissues. We found that hsa_circ_0058097
regulated multiple carcinogenic and prognosis-related
genes, which might contribute to GC progression and
prognosis by the regulatory axes, such as hsa_circ_
0058097/hsa_miR_145-5p/SERPINE1, hsa_circ_0058097/
hsa_miR_133a-3p/COL1A1, and hsa_circ_0058097/hsa_
miR_1-3p/MET. Previous study had reported that hsa_
circ_0058097 enhanced the expression of downstream
target gene histone deacetylase 4 by sponge adsorption of
miR-365a-5p, promoting tension-induced degeneration of
endplate chondrocytes [28]. Besides, Fang et al. had
reported that hsa_circ_0091742 was significantly upregu-
lated in GC tissues [29]. In our study, we found that
hsa_circ_0091742 was significantly upregulated in GC
tissues. We predicted that hsa_circ_0091742 might bind
to four miRNAs (including miR-145, miR-196a, miR-
196b, and miR-552) and further regulate the expression
of target genes related to GC progression and prognosis,
such as SERPINE1, GCNT4, and EPHA7. Although other
screened circRNAs have not been reported previously, the
underlying regulatory mechanism was predicted by the
circRNA-associated ceRNA network. More importantly,
our research provided a guide for further experimental inves-
tigation to characterize the expression level and biological
function of circRNAs in GC.

In present study, we further constructed a robust three-
gene prognostic signature based on DEmRNAs involved in
the circRNA-associated ceRNA network, which could be
used as an independent indicator to make a risk classification
for GC patients. We found that all three genes (SERPINE1,
COL1A1, and DKK1) had been reported to be closely related
to cancer progression. Lots of investigations have demon-
strated the aberrant expression of SERPINE1 in various types
of cancer [30, 31]. A recent article concluded that overexpres-
sion of SERPINE1 showed an activation effect on the pheno-
type of GC cells and EMT process, leading to a short overall
survival for GC patients [32]. COL1A1, encoding the subunit
of type I collagen, is the main constituent of the extracellular
matrix (ECM) component in tumor microenvironment and

plays critical role in cancer development and metastasis
[33, 34]. Researchers found that COL1A1 expression was
significantly upregulated in tumor tissues and was signifi-
cantly associated with clinical outcome [35]. Moreover,
knockdown of COL1A1 in gastric cancer cells curbed the
proliferative, migratory, and invasive ability of cancer cells
[36]. DKK1, a Wnt/ß-catenin pathway antagonist, has now
emerged as an important regulator in a variety of human
cancers. However, the role of DKK1 in cancer appears to
be diverse. Many researches have suggested the tumori-
genic effect of DKK1 [37, 38], while others have showed
that DKK1 acts as a tumor suppressor [39, 40]. Lee
et al. reported that overexpression of DKK1 in tissue and
increased levels of DKK1 in serum were significantly asso-
ciated with unfavorable prognosis in patients with GC
[41]. In contrast, Jia et al. showed that the levels of
DKK1 were decreased in serums and tissues of GC and
restoration of DKK1 in tumor cells inhibited tumor cell
growth and invasion [42]. In our study, we found that the
DKK1 expression was significantly upregulated in tumor
tissues and was significantly associated with overall survival.
Furthermore, based on the circRNA-associated ceRNA net-
work, all three genes might be regulated by multiple miRNAs
and circRNAs. Results from our study showed that hsa_circ_
0058097, as the hub node in the ceRNA network, might con-
tribute to GC progression and prognosis by the regulatory
axes, such as hsa_circ_0058097/hsa_miR_145-5p/SER-
PINE1, hsa_circ_0058097/hsa_miR_133a-3p/COL1A1, hsa_
circ_0058097/hsa_miR_133b/COL1A1, and hsa_circ_0058
097/hsa_miR_1-3p/DKK1. Further experimental investiga-
tion is needed to warrant these inferences.

5. Conclusions

To summarize, based on the expression data of circRNAs,
miRNAs, and mRNAs, we developed a circRNA-associated
ceRNA network to investigate the underlying regulatory
mechanism in GC. Several important circRNAs were identi-
fied from the circRNA-associated ceRNA network, which
might play crucial roles in GC progression. Moreover, we
constructed a robust three-gene prognostic signature based
on the DEmRNAs within the circRNA-associated ceRNA
network, which could be used to make a risk classification
for GC patients. This study provided a valuable insight for
elucidating the regulatory mechanisms of circRNAs and
constructed a reliable prognostic signature that could guide
individualized therapies and improve clinical outcome for
GC patients.
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