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This paper presents a systematic analysis of a game controlled by a Brain-Computer Interface (BCI) based on Steady-State Visually
Evoked Potentials (SSVEP).The objective is to understand BCI systems from the Human-Computer Interface (HCI) point of view,
by observing how the users interact with the game and evaluating how the interface elements influence the system performance.
The interactions of 30 volunteers with our computer game, named “Get Coins,” through a BCI based on SSVEP, have generated a
database of brain signals and the corresponding responses to a questionnaire about various perceptual parameters, such as visual
stimulation, acoustic feedback, background music, visual contrast, and visual fatigue. Each one of the volunteers played one match
using the keyboard and four matches using the BCI, for comparison. In all matches using the BCI, the volunteers achieved the
goals of the game. Eight of them achieved a perfect score in at least one of the four matches, showing the feasibility of the direct
communication between the brain and the computer. Despite this successful experiment, adaptations and improvements should be
implemented to make this innovative technology accessible to the end user.

1. Introduction

ABrain-Computer Interface (BCI) is a system able to directly
associate the brain activity to a command to be operated
by a computer or an electrical device, bypassing the output
pathways (nerves and muscles) of a standard device of
interface, which makes it attractive for the development of
assistive technologies, such as automatic wheelchairs [1, 2],
robotic arms [3], and speller communication [4], as well as
for entertainment applications, such as games, augmented
reality, and virtual reality [5–8].

One of the first BCIs was developed in 1964 by Dr. Grey
Walter. During a surgery for another reason, Dr. Walter
placed electrodes on the motor cortex of a patient and

recorded the brain activity while the patient pushed a button
to advance a slide projector. Subsequently, the system was
connected to a projector and allowed the patient to advance
the slides even before he/she had actually pushed the button
[9]. Since then, BCI systems have been the focus of many
researches that have contributed to the advancement of
technology and understanding of the human brain [10].

Interface devices that mediate the interaction between
humans and computers should be as simple, secure, precise,
and enjoyable as possible. The research field of Human-
Computer Interface (HCI) aims precisely at the development
of such interfaces, so that the user experience occurs in the
best possible way. However, in the context of BCI systems,
the guidelines are not yet consolidated.
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Figure 1: Diagram of a BCI based on SSVEP system.

The present study analyzes a BCI system based on
Steady-State Visually Evoked Potentials (BCI-SSVEP) from
the perspective of HCI, in such a way as to understand
how the elements of the interface affect the user and how
the interaction occurs. For this purpose, a game with four
commands controlled by BCI-SSVEP has been developed
and tested in a controlled experiment involving 30 volunteers.

Results include a large database of brain signals linked to
the users’ perception about various aspects of the graphical
user interface and the interaction with the application.
Qualitative and quantitative considerations about acoustic
feedback; shape, position, and contrast of visual stimuli;
visual fatigue; background music; feeling of control; among
others, are presented and discussed. The whole experiment
and observations constitute a rich and important material to
assist in future projects on BCI systems, especially for BCI-
SSVEP with visual stimulation projected on a screen.

1.1. BCI Based on SSVEP. A BCI is a closed-loop system
that acquires and analyzes brain signals, in such a way as to
establish a communication channel between the brain and
an application, as shown in Figure 1. The development of
a BCI requires multidisciplinary skills, involving knowledge
about functional aspects of the human brain, computer
systems, and engineering. The system can be modularized
as follows: (1) acquisition of brain activity, (2) processing
of brain signals, and (3) generation of the commands to be
executed by an application. In turn, the application performs
some actions perceived by the user, constituting the system
feedback [11].

A BCI system can be classified as exogenous or endoge-
nous, depending on the nature of the recorded signal.
Exogenous BCI systems depend on neuron activity evoked
by external stimuli. In contrast, endogenous systems do
not rely on external stimulus, since they are based mainly
on brain rhythms and other potentials. In this article, the
focus is on exogenous BCI-SSVEP [12]. The SSVEP is a
neurophysiological response to a visual stimulation. When
a user is visually stimulated by a LED, lamp, or an image
projected on a screen that flickers at a well-defined frequency,
the electroencephalographic records from his/her occipital
lobe are synchronized with the frequency of the stimulus.
Therefore, the analysis of the brain signal allows to identify

the frequency of the stimulus to which the user was exposed.
A BCI-SSVEP employs several visual stimuli, each one
flickering at a different frequency and associated with a
command of the application [13].

In the present study, the BCI-SSVEP developed by our
research group in the School of Electrical and Computer
Engineering at the University of Campinas was used to
control our game, called “Get Coins” [14, 15]. The details of
eachmodule of our BCI systemare described in the following.

2. Materials and Methods

2.1. Acquisition of Brain Signals. The acquisition of a brain
signal can be invasive, in which case the electrodes are placed
on the cortex by surgical procedures, or noninvasive, a case
not requiring a brain surgery. The electroencephalography
(EEG) procedure is a usual noninvasive technique employed
to measure brain activity. In this approach, the electrodes
are positioned directly on the scalp [9] and the EEG records
present a signal-to-noise ratio (SNR) lower than that obtained
with invasive techniques.

In the present study, the EEG was employed, since it
does not expose the volunteers to the risks of a surgery, is
cheaper, and allows easy, fast, and safe assembling of the
electrodes. The equipment used for brain signal recording
were the g.SAHARAsys� with 16 dry-electrode and the
g.USBamp� biosignal amplifier [16]. The signal was recorded
at a sample rate of 256Hz using MATLAB�. Before starting
signal acquisition, the following procedures were performed:
channel calibration; verification of the electrode impedance
calibration (not exceeding 5.0 kΩ); connection of the ground
and reference onmastoids; andwaiting for the stabilization of
the signal. The electrodes were arranged at O1, O2, Oz, POz,
Pz, PO4, PO3, PO8, PO7, P2, P1, Cz, C1, C2, CPz, and FCz,
according to the international 10-10 system [17].

Figure 2 shows an example of EEG signal recorded on the
visual cortex (Oz position) when a user was exposed during
12 seconds to a stimulus flickering at 12Hz. Figure 2(a) shows
the signal in the time domain and Figure 2(b) the spectrum
of the signal from which a peak at 12Hz can be identified.

2.2. Brain Signal Processing. The signal processing can be
divided into four stages: preprocessing, feature extraction,
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Figure 2: EEG signal with SSVEP response for a stimulus flickering at 12Hz: (a) time domain and (b) frequency domain.

feature selection, and classification. The purpose of the pre-
processing is to improve signal quality by increasing the SNR.
The feature extraction consists of describing the information
embedded in the brain signal succinctly.The feature selection
realizes a filtering of the most relevant features necessary
to discriminate the classes (stimuli/commands). Finally, the
classifier interprets the brain signal through the features and
generates the control signal for the application.

In the following subsections, we describe how each stage
was designed for this study.

2.2.1. Preprocessing. To remove the smooth displacement and
electromagnetic artifacts, the EEG signal was filtered by an
analog Butterworth bandpass filter (5–60Hz) of order 8 and
by a notch filter (58–62Hz) of order 4. To remove other
artifacts, as eye blinking, the data were then submitted to a
spatial filtering using the CommonAverage Reference (CAR)
method, defined as

𝑉CAR𝑖 = 𝑉
ER
𝑖 −
1
𝑛

𝑛

∑
𝑗=1

𝑉ER𝑗 , (1)

in which 𝑉ER𝑖 is the potential of the 𝑖th electrode measure-
ment with respect to a common reference, and 𝑛 is the
number of electrodes in the array, in our case 𝑛 = 16.
The average value is subtracted from the potential of each
electrode, eliminating artifacts present in most them. As
simple as it may be, CAR is an effective solution to improve
the SNR and the BCI-SSVEP performance [15].

2.2.2. Feature Extraction. The stage of feature extraction is
responsible for representing the input data in a compact
way, reducing their dimensionality. The process is conducted
without loss of the information that allows to discriminate the
stimuli. Indeed, the feature extraction should emphasize the
relevant characteristics of the input signal to facilitate the task
of the classifier.

For EEG signals with SSVEP response, a classical feature
is the spectral amplitude estimated by the Fast Fourier
Transform (FFT) algorithm. In the present case, every two
seconds 512 brain signal samples were recorded on channel
𝑖, generating the following features subvector 𝐴ch𝑖 with four
inputs, corresponding to the peak values of the FFT at
frequencies 6, 10, 12, and 15Hz:
𝐴ch𝑖 = [𝑎6Hz,ch𝑖 𝑎10Hz,ch𝑖 𝑎12Hz,ch𝑖 𝑎15Hz,ch𝑖] . (2)

The following features vector 𝐻, with 64 entries, stores the
four features, for the 16 electrodes, every two seconds of brain
signal recording:

𝐻 = [𝐴ch1 𝐴ch2 ⋅ ⋅ ⋅ 𝐴ch16] . (3)

2.2.3. Feature Selection. Part of the features in vector 𝐻
can be eliminated to further reducing the dimensionality of
the problem. The purpose of feature selection is to use just
the data that provide useful information to discriminate the
classes, eliminating redundant information and those that
may impair classifier performance.

Feature selection can be performed with filter or wrapper
techniques [18, 19]. The filter approach uses statistical mea-
sures to quantify the relevance of each feature, whereas the
wrapper approach ranks the characteristics according to the
classifier performance. For the feature selection problem in
BCI-SSVEP systems, the search in the feature space using
greedy heuristics, called forward wrappers, has been shown
to be quite efficient [15]. This technique considers the set of
features used in the training step together with the classifier
to select the set of features that provides the best performance
for the BCI system. The algorithm used here works as
follows:

(i) Initially, the BCI performance for each subvector𝐴ch𝑖
alone is evaluated; that is, the data coming from each
electrode are tested one by one, individually.

(ii) Subsequently, the subvector 𝐴ch𝑖 that provides the
best accuracy is maintained, and the system perfor-
mance is evaluated by combining 𝐴ch𝑖 with 𝐴ch𝑗 , for
𝑖 ̸= 𝑗.

(iii) The progressive inclusion of new 𝐴ch‘s continues as
long as the system performance increases. The stop-
ping criteria were as follows: (1) when performance
degradation occurs for two consecutive times with
any new combination; (2) when the signals coming
from all 16 electrodes are already employed.

After applying the forward wrappers algorithm, the feature
vector𝐻 is reduced, resulting in a vector �̃� of order less than
or equal to 64.

2.2.4. Classification. The last stage of the signal processing
module is the classification. The classifier must evaluate the
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characteristics of the vector �̃� and identify the stimulus to
which those features correspond.

A linear classifier based on the least squares method was
used. This approach is computationally inexpensive and is a
well-established technique in the literature for discriminating
signals with SSVEP response [15].

The classifier comprises two steps: training and operation.
In the first step, the system is fed with the labeled features of
the four classes and the separation hyperplanes are generated
by solving the following equation:

𝜔𝑐 = (𝑋
𝑇𝑋)
−1
𝑋𝑇r𝑐, (4)

in which𝑋 is the feature matrix, composed of several vectors
�̃�, 𝑋𝑇 is the transpose of 𝑋, and r𝑐 is the vector of labels of
class 𝑐, with entries +1 for the corresponding class and −1 for
the other classes. In our study,𝑋 has 192 entries, being 48 for
each class (stimulus).

In the operation step, the user is controlling the applica-
tion at run time.The output of the classifier is given by solving
the following expression for each hyperplane:

𝑦𝑐 = �̂�𝜔𝑐, (5)

with

�̂� = [�̃�; 1] . (6)

Ideally, the variable 𝑦𝑐 must have a +1 if it belongs to the class
𝑐, and −1 otherwise. As a decision criterion, if more than one
solution 𝑦𝑐 presents positive values, it is decided as the class
with the highest value of 𝑦𝑐 [20].

2.3. Application:TheGame “Get Coins”. Wehave developed a
computer game, here called “Get Coins,” using the Unity3D�
game engine, to evaluate the user interaction with an appli-
cation controlled by the previously presented BCI-SSVEP.
Figure 3 shows the game screen. The main goal of this game
is to collect as many coins as possible by moving the small
ball around the board. The simplicity of the game makes its
objective and mechanisms quite intuitive, allowing an easy
understanding for people with different familiarities with
computer games and thus minimizing the influence of game
characteristics on the study’s objective, which is to evaluate
user interaction with an BCI-SSVEP.

The direction of the small ball is determined by the
four stimuli positioned intuitively on the sides of the board
corresponding with the commands to move the small ball
to the left, right, down, and up. The stimuli are squares
that alternate between black and white in the frequencies
of 6Hz (left), 10Hz (right), 12Hz (down), and 15Hz (up).
The players can give a command every two seconds, during
which time they should gaze at the stimulus corresponding
to the desired command. The period of two seconds was
chosen considering the compromise between the system hit
rate and the user’s visual fatigue. A long time of concentration
in the stimulus leads to a more intense SSVEP response in
the spectral analysis of the signal, which contributes to a
better performance of the system. On the other hand, very

Figure 3: Screenshot of the “Get Coins” game.
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Figure 4: Stimulus at 10Hz generated by a sine wave.

long periods lead to visual fatigue, stressing the user and
compromising the dynamics of the game.

When the player collects a coin, the counter located on
the upper left side of the screen is incremented by 1.Theplayer
has two minutes, corresponding to 60 movements, to collect
the four coins.The game is ended after the player has collected
all coins or after two minutes.

A key point in the development of the interface for
BCI-SSVEP is to guarantee precision in the flickering rate
of stimuli [13]. In the present study, a sine wave has been
generated internally to change the visual stimuli from black
to white and vice versa, in well-defined frequencies. Figure 4
shows a 10Hz sine wave in an interval of 1 s, alternating the
pattern of the stimulus at each zero-crossing of the sine wave,
generating the flickering stimulus in the desired frequency of
10Hz.

Also, two feedback modalities were included: visual and
acoustic.The visual feedback is given by the movement of the
ball, while the acoustic feedback consists of a beep sounded
after each movement.The beep informs that a command was
executed, avoiding that the user loses concentration on the
stimulus to visualize the movement of the ball. During the
game, a log file is generated by fetching the time spent to
collect the coins, the number of steps taken by the ball and
the path traveled by the ball.

Before arriving at the final version of the game presented,
an inspection was conducted by four HCI experts from the
Institute of Computing at the University of Campinas. The
ten usability heuristics for user interface design, proposed by
Nielsen, were used to evaluate the game interface [21]: (1)
visibility of system status; (2)match between system and the
real world; (3) user control and freedom; (4) consistency and
standards; (5) error prevention; (6) recognition rather than
recall; (7) flexibility and efficiency of use; (8) aesthetic and
minimalist design; (9) helping users recognize, diagnose, and
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Figure 5: Experimental setup.

recover from errors; and (10) help and documentation. The
main recommendations were as follows:

(1) Adjust the position of the coins in such a way as to
require a number of steps to collect them compatible
with the time that the players have to complete the
game.

(2) Limit the duration of the game in 120 seconds to avoid
fatigue of the player.

(3) Increase the size of the small ball to allow its visual-
ization through peripheral vision.

(4) Insert a coin counter at the top to guide and motivate
the players about their performance.

2.4. Experimental Setting. A total of 30 volunteers aged from
20 to 45 years, average 29.93 ± 6.11, being 22 males and 8
females, have participated in this study. Half of the volunteers
reported to play digital games frequently and the other 15
stated that they had not played any digital game before. All
of themwere adequately informed about the research and the
experimental protocol and signed the consent form approved
by the Ethics Committee of the University of Campinas
(n. 791/2010). All volunteers were healthy individuals, with
normal or corrected for normal vision.

The experiment was performed in a room with low light
intensity to avoid interference from lightning.The volunteers
were seated at approximately 70 cm from the monitor and
were instructed to remain as motionless as possible to avoid
mechanical artifacts. They made use of an antistatic wrist
strap to discharge electrostatic energy. The cap with 16 dry
electrodes was positioned on the scalp, as shown in Figure 5
with the experimental setup.

The experimental protocol consisted of training, playing,
and answering a personal perception questionnaire. During
the training, a screen with four stimuli, as shown in Figure 6,
was presented. The visual stimulation setup followed the
same standards during training and online procedures. The
volunteers were informed about the need of focusing their
gaze on specific visual stimulus by 12 seconds. The stimulus
to be focused and the initial and final time were informed
orally. The process was repeated eight times for each of the
four stimuli. The recorded brain signal was used to train the
classifier of the BCI and to estimate the expected performance
of the player.

Figure 6: Training screen.

After the training, the game “Get Coins” was introduced
to the volunteer along with a tutorial on how to play.
The volunteers played five versions of the game, each one
evaluating different aspects of interface and interaction, as
shown in Table 1.

All versions of the game were played in a random order
for each volunteer, in such a way as to minimize the bias of
the results due to fatigue or learning of the player. In Version
2, the game was controlled by the keyboard, to compare this
input device with the interaction via BCI.

At the end of eachmatch, volunteers answered a question-
naire with continuous scale items about their perception.The
questions and the ranges are presented in Table 2.

Moreover, the following assertive questions with yes/no
answers were asked:

(i) Did you feel your eyes watering?
(ii) Did you feel dizzy?
(iii) Did you think about quitting in the middle of the

game?
(iv) Did you feel uncomfortable posture?

The questionnaire additionally had an optional field for
comments and suggestions.

This qualitative information together with the quantita-
tive data recorded in the log file (collecting the course of
the ball, number of steps, total time of play, and number
of coin catches) has allowed us to draw a parallel between
the perception of users and their performance in the game.
All data were statistically evaluated and the 𝑝 value was
estimated using the Wilcoxon 𝑡-test for the comparison of
two groups and the ANOVA model for the comparison
of three or more groups. The confidence value was set at
95%.

3. Results and Discussion

The experiment allowed the generation of a brain signal
database from 30 individuals collected during the training
stage, containing 8 repetitions of 12 s for the four frequencies
(6, 10, 12, and 15Hz). Additionally, the users’ perception
about the interface elements and their interaction with
the game were registered. All these data have significantly
supported the present study for a better understanding on
how interaction with BCI-SSVEP occurs.
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Table 1: Versions of the game Get Coins.

Visual stimulus Acoustic feedback Background scenario Background music Control by BCI Control by keyboard
Version 1 Yes Yes

Black

No Yes No
Version 2 No Yes No No Yes
Version 3 Yes Yes Yes Yes No
Version 4 Yes No No Yes No
Version 5 Yes Yes Gray (50%) No Yes No

Table 2: Questionnaire items, translated from Brazilian Portuguese.

Question topic Range limits
Cap comfort 0 very uncomfortable–10 very comfortable
Visual comfort of the stimulus 0 very uncomfortable–10 very comfortable
Fatigue caused by training/by the game 0 very tiring–10 very invigorating
Motivation for training 0 very boring–10 very exciting
Game challenge with BCI/keyboard 0 very easy–10 very challenging
Background color 0 unpleasant–10 pleasant
Pleasantness of the positioning of the stimuli 0 very uncomfortable–10 very comfortable
Pleasantness of background color 0 very uncomfortable–10 very comfortable
Acoustic feedback helps 0 not at all–10 a lot
Background music disturbs 0 not at all–10 a lot
Background music lacks 0 not at all–10 a lot
Intuitiveness of game controls 0 not intuitive at all–10 very intuitive
Dominion of game controls 0 total control–10 no control
Control by keyboard is 0 boring–10 fun
Pleasantness of game 0 unpleasant–10 pleasant

All the 30 volunteers performed the entire experimental
procedure, that is, training, playing of the five matches, and
answering the questionnaire. None of the volunteers have
asked to interrupt the experiment, indicating that eventual
distresses caused by the electrode cap, visual stimulation, or
fatigue were tolerable.The average duration of an experimen-
tal session was 3438 ± 0451.

Despite equal conditions, the hit rate was different for
each volunteer, as expected, since the BCI system depends on
the neurophysiological response and biological and cognitive
factors of the individuals, as well as on their concentration on
stimulus and abilities. Eight volunteers collected all the coins
in at least one of the versions of the game using BCI. Four
of them collected all coins in all game versions. Although the
game is time-limited to 120 seconds, these four individuals
needed an average time of 76.94 ± 16.36 seconds to collect
all coins. On the other hand, four other volunteers did not
collect any coins in exactly one of the game versions, and
one volunteer did not collect any coins in two game versions.
Figure 7 presents the average number of collected coins,
considering just the game versions controlled by BCI.

Considering the five versions of the game separately, the
number of collected coins is shown inTable 3.Only inVersion
2, controlled by keyboard, all the volunteers collected all
the four coins. A statistically significant difference of the
average of collected coins was detected only between Version
2 and each of the other versions (𝑝 < 0.0001). Furthermore,
considering only the versions controlled by BCI, the average
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Figure 7: Histogram of average number of collected coins.

Table 3: Average number of coins collected in each version of the
game.

Version Collected coins
1 2.13 ± 1.22
2 4.00 ± 0.00
3 2.10 ± 1.30
4 2.00 ± 1.39
5 1.97 ± 1.19

number of coins collected was 2.05 ± 1.26, and it remained
constant throughout the game, indicating that the fatigue
and learning factors did not quantitatively influence the
performance of volunteers.
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training data and the average number of coins collected.

Another important point is that the predicted perfor-
mance using the training data did not always correspond
directly to the performance achieved during the online
application, as shown in Figure 8. Despite a trend in direct
correspondence between the two performances, some users
with high performance in the training session presented
poor performance in the game and vice versa. Some of
the reasons that may explain this behavior are as follows:
in the online version, the volunteer is motivated and has
a well-defined goal; however there is movement of the
eyes for transitions between commands and visual stimuli
and distraction between the stimuli and the game board.
However, these factors act differently for each volunteer.

Regarding the motivation to perform the training stage,
the volunteers indicated that they felt motivated with an
average of 6.98 ± 1.98, regarding a maximum of 10 for
“very motivated.” During the training stage, two volunteers
reported fatigue and one related having experienced invol-
untary spasms in the eyes. In fact, the training stage was
really a “tiring stage,” requiring a concentration of eight
times 12 seconds on each of the four visual stimuli. A
possibility of reducing this fatigue would be to decrease
the number of samples to train the system; however this
could degrade the system performance. To ensure a better
hit rate, and consequently greater controllability of the game,
we had decided to keep the eight repetitions in the training
stage.

About the perception of fatigue caused by the game, there
is a statistically significant difference only between Version 2
of the game and the other versions (𝑝 < 0.0001). The average
values are presented in Table 4 (with 0 being very tiring–10
very invigorating). Thus, we can conclude that the control
via BCI is more tiring than via keyboard, but the fatigue is
acceptable (average of 5.59 ± 1.83). A quantitative analysis
indicates that the users need to execute almost twice as many
commands to complete the goals of the game using the BCI
(average of 49.45 ± 11.29) compared to using the keyboard
(average of 24.60 ± 2.43).

The perceived distress or comfort caused by the visual
stimuli was neutral (an average of 5.84 ± 1.78), that is,
neither very comfortable (10) nor very uncomfortable (0).

Table 4: Average fatigue caused by the game.

Version Fatigue in the game
1 5.58 ± 1.78
2 7.51 ± 2.19
3 5.63 ± 1.83
4 5.46 ± 1.97
5 5.70 ± 1.79

The distress did not change statistically during the sessions,
considering the beginning and the end of the experiment
(𝑝 = 0.6550).

According to the perception of users, the distress/comfort
caused by the cap with electrodes was 6.94 ± 2.01, with 10
being very comfortable and 0 very uncomfortable. Consider-
ing themarkings performed at the beginning and at the end of
the experiment, by each volunteer, this remains constant, and
there is no significant difference (𝑝 = 0.5826). This indicates
that users are likely to accept the regular use of the cap and
electrodes on scalp. However, the EEG acquisition system
would need to be improved for frequent use, since the correct
positioning of the electrodes is not trivial for an ordinary user.
Also, for an actual application, it is unreasonable to require
the user not to move the head. However, this movement
can displace the electrodes or even cause the loss of contact
with the scalp, seriously compromising the BCI performance.
There already exist some solutions like EMOTIV Epoc+
[22] that have prepositioned, fixed electrodes, and the data
transmission of the electrodes is via a wireless channel, which
allows free movement of the head.

The well-defined goal of the game also served as a
motivation, possibly distracting from or reducing the fatigue
and the distress caused by the cap and by visual stimuli.
In fact, some applications may require longer interactions,
so that minimizing visual distress and fatigue should be a
central requirement in designing interfaces for applications
controlled by BCI-SSVEP. Indeed, the fatigue can lead to loss
of concentration, which can compromise the intensity of the
SSVEP response and, consequently, the performance of the
system [23].

Regarding the sense of dominion of game controls, the
players indicated to exercise a medium to low control using
BCI, averaging 5.61 ± 2.73 (0 being total control–10 no
control), against an almost total control with keyboard,
averaging 0.91 ± 2.53 (𝑝 < 0.0001). However, they indicated
a neutral position regarding the fun of the keyboard game
control, compared to an average of 4.99 ± 3.72 (0 being
boring–10 fun) regarding the BCI versions. In the field for
comments and suggestions, nine volunteers had reported
difficulty in moving the ball to the desired direction. The
BCI system sometimes leads to classification errors and ends
up executing a command that does not correspond to the
one desired by the user, leaving the player with a sense of
little control over the game. However, contradictorily, one
among these nine volunteers achieved total success in all the
game versions, collecting all the four coins. In other words, he
presented an excellent control although in his perception he
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felt without control of the game. The keyboard version was
controlled with the directional arrow keys, and the players
indicated this as intuitive, with an average of 8.98 ± 2.05. For
the BCI versions, they also indicated that the placement of the
stimuli on themonitormade the commands intuitive, with an
average of 7.65 ± 2.49 (10 for very intuitive).

In general, the players liked the game in both modes of
control, with an average of 7.09 ± 2.10, for BCI and 7.04 ±
2.01 for keyboard (10 for pleasant). As for the challenge of the
game, the players indicated that the game via the keyboard
is very easy, with an average value 0.88 ± 2.04, and that the
game is more challenging when the control is via BCI, with
an average of 6.01 ± 3.31 (0 very easy–10 very challenging;
𝑝 < 0.0001).

As far as acoustic feedback is concerned, the volunteers
reported that it assists in game control, with a statistically
significant difference (𝑝 = 0.0426) between the versions of
the game with acoustic feedback (1, 3, and 5) and the Version
4 without acoustic feedback. However, the performance in
terms of the number of collected coins was not statistically
different (𝑝 = 0.3810). Although the performance in the
game was not statistically different, acoustic feedback is
important for the player to know what is happening in the
game without losing the focus on the visual stimulus, mainly
for volunteers who had no experience with computer games
(see Figure 9). Also, in the comments/suggestions field of
the questionnaire, two volunteers suggested that different
beeps for each direction of the ball could better assist in
feedback. These observations reiterate the importance of
acoustic feedback.

Still in relation to sound effects, the amount of collected
coins was not significantly different (𝑝 = 0.7188) between
Version 3, with background music, and the other versions of
the game without backgroundmusic. In the perception ques-
tionnaire, the volunteers reported that backgroundmusicwas
almost irrelevant (average of 3.37 ± 2.98, 0 being irrelevant),
but it does not disturb either (average of 6.77 ± 3.33, 10 being
no disturbances).This result is especially interesting, because
it is impossible to control the noise level in a generic envi-
ronment. Results indicate that background sounds tend not
to impact considerably on the performance of individuals,
either quantitatively or qualitatively. However, in the present
study the background music was part of the context of the
application, so further investigation is necessary to check the
impact of random sounds, such as people talking, traffic, and
sudden sounds.

Regarding the background color, we verified that, accord-
ing to the perception of the users, both backgrounds, black
and gray, were pleasant with averages of 6.81 ± 1.94 for black
and 6.26 ± 2.25 for gray (10 for very pleasant), and there was
no statistically significant difference between the perception
of the users in the two cases (𝑝 = 0.3837). Considering
the amount of coins collected, for the black background, the
average number of collected coins was 2.13 ± 1.22, while for
the gray background the average was 1.97 ± 1.19. Although
Version 5 of the game with gray background and a lower
contrast has shown a smaller average of collected coins,
there was no statistically significant difference between the
performances (𝑝 = 0.3629).

1.
80

4.
00

1.
73

1.
53 1.
67

1.
68 2.

152.
47

4.
00

2.
47

2.
47

2.
27 2.
42 2.

73

Ve
rs

io
n 

1

Ve
rs

io
n 

2

Ve
rs

io
n 

3

Ve
rs

io
n 

4

Ve
rs

io
n 

5

Av
er

ag
e

w
ith

ou
t

Ve
rs

io
n 

2

To
ta

l
av

er
ag

e

Non-players
Players

Figure 9: Average number of collected coins in each version of the
game for players and nonplayers volunteers.

The 15 volunteers who affirmed to play computer games
performed slightly better than the other 15 who reported not
to play. This was verified for all the versions of the game
controlled by BCI (Figure 9). However, there is no statistically
significant difference on the average performance between
the two groups at a 95% confidence level (𝑝 = 0.0529).
Possibly, this better performance of the group of players is
because they are accustomed to focus on the screen during
a game and well-acquainted at developing mental strategies
to achieve the goals.

Considering Version 4 of the game (no acoustic feedback
and no background music), which presented the greatest
discrepancy in the average between the two groups, Figure 10
shows the perception of the volunteers regarding the follow-
ing parameters:

(1) Fatigue caused by the game: 0 very tiring–10 very
invigorating

(2) Visual comfort of the stimulus: 0 very uncomforta-
ble–10 very comfortable

(3) Acoustic feedback helps: 0 not at all–10 a lot
(4) Game challenge: 0 very easy–10 very challenging
(5) Intuitiveness of game controls: 0 not intuitive at all–10

very intuitive
(6) Control over the game controls: 0 total control–10 no

control
(7) Fatigue caused by the game: 0 very tiring–10 very

invigorating.

There is no remarkable difference among the average values
between the group of players and nonplayers (𝑝 > 0.05). The
greatest difference between averages is observed at column 6
of Figure 10, about sense of control. Although the volunteers
of the group of players performed better, they paradoxically
reported having a lower perception of control of the game
(4.76 ± 2.07) than the group of nonplayers (6.55 ± 2.85),
but without statistical significance (𝑝 = 0.0529). This is
probably because the volunteers accustomed to play tend to
have a more effective sense of control of game commands
using classic interaction devices, as keyboard, mouse, or
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Figure 10: Comparison between the perception of players and
nonplayers volunteers related in Version 4 of the game.

joystick.This also impacted on the greater sensation of fatigue
reported by the group of players for both training (column 1
of Figure 10) and playing (column 7 of Figure 10).

In relation to gender of volunteers, 8 were women (of
these, 6 were nonplayers) versus 22 men, being 9 nonplayers.
The average of collected coins, considering all versions
controlled by BCI, was 1.81 ± 1.26 for women and 2.14 ±
1.13 for men, without statistically significant difference (𝑝 =
0.4513) between the performances.

Despite the great potentiality of the BCI system, as we
have confirmed here, especially in assistive applications in
which this tool may be the only viable way to control a device,
the information transfer rate is still much smaller than those
provided by conventional input means, such as the keyboard
[9].

In the field for comments and suggestions of the ques-
tionnaire, some volunteers highlighted some contradictory
opinions. For example, a volunteer reported that the interface
with gray backgroundwasmore enjoyable and less tiring than
the black background. Another volunteer reported exactly
the opposite. This indicates that the interface should be, as
far as possible, customizable to suit the preferences of each
user.

4. Conclusions

The possibility of using BCIs to control a device without
need of nerves and muscles makes this technology quite
promising, specially to conceive assistive technologies and
entertainment applications. Despite the potential of this
technology and the encouraging results already achieved
in the scientific community, BCI systems are still at the
developmental stage.

In the present study, 30 volunteers played the “Get Coins”
game. The results have allowed to test several characteristics
of the interface, as well as to analyze the user interaction using
a BCI-SSVEP and to compare system performance and user
interactionwith a classic control device, such as the keyboard.

None of the volunteers had prior experience in control-
ling games by BCI. All volunteers understood the goals of
the game and played five matches, four using the control via
BCI and one using the control via keyboard. All volunteers

collected at least one coin in the matches controlled by BCI,
while four collected all the coins in all game versions. The
total average of the number of collected coins indicates the
feasibility of this technology to control an application. When
the game was controlled by keyboard, all volunteers collected
the four coins. Familiarity with the keyboard, with its high
accuracy and precision, and the simple goals of the game
offered a very low challenge in this mode of control. This
indicates that game concept andmechanismdid not influence
our experimental results.

Regarding the fatigue caused by the game, volunteers
reported that the version of the game controlled by the
keyboardwas less tiring than byBCI,which is understandable
since the matches with keyboard were faster than matches
with control via BCI. Also, the control by keyboard does not
require concentration on stimuli. However, the BCIs may be
the only option for people with reduced mobility, and it is
interesting to note that it is a valid option despite its current
limitations.

About the characteristics of the interface, the volunteers
reported that acoustic feedback helped control, since it
indicates that a command has been executed. However, the
performance in terms of the number of collected coins was
not statistically significant. As for the background music,
users indicated that neither its presence nor its absence
influenced the game play and should therefore be an element
to be optionally offered to each player. This also indicates
that background noise, at reasonable levels, tends to be
irrelevant and does not disturb concentration. The black and
gray background intensity did not result in perceptual visual
fatigue due to higher or lower contrast, nor did it affect the
performance of users. Although three volunteers reported
visual distress at some time during the experiment, they all
decided to continue the experiment to the end. The distress
felt by the volunteers at the beginning and the end of the
experiment were not statistically different, probably because
the matches were only 2 minutes long and possibly due to
the novelty factor. Since none of the volunteers had had
experience in controlling a game by brain signals before, this
could also have minimized the sensation of fatigue caused by
the visual stimuli.

As for the distress caused by the electrode cap, the level
was not significant and remained constant throughout the
experiment, showing that the volunteers did not bother with
this in the experimental context.

Of the 30 volunteers who participated in this experiment,
15 had not played any type of digital game and 15 had
played. Comparing the performance between these two
groups, we observed that there was no significant statistical
difference in performance between them.However, the group
of players performed better than the nonplayers in all game
versions, possible because of the concentration skills acquired
through game playing. Further studies, however, are needed
to understand this relationship.

The results of our study did not consider the impact of the
learning effect on the interaction of users with BCI-SSVEP
systems, as each volunteer took part in a single experimental
session. Moreover, only healthy volunteers participated in
the experiment, assessments with patients with motor, visual,
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mental, and hearing impairment should be better evaluated
in future studies.

This research directs developers to understand users’
difficulties and how the interaction of the user with a
BCI based on SSVEP occurs. Additional research should
aim at understanding more about this, in order to achieve
more complete guidelines on how BCI applications should
be constructed. Different from other interaction devices as
mouse, keyboard, and joystick, BCI systems depend on the
user’s ability to concentrate on visual stimuli, so the interfaces
must be designed to avoid distraction and fatigue. In fact,
the study of BCI systems from the HCI point of the view is
essential to understand the real needs of the individuals and
to overcome the challenges to make BCI systems a reality for
the end user.
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