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We explore the application of probability generating functions (PGFs) to invasive processes,
focusing on infectious disease introduced into large populations. Our goal is to acquaint the
reader with applications of PGFs, moreso than to derive new results. PGFs help predict a
number of properties about early outbreak behavior while the population is still effectively
infinite, including the probability of an epidemic, the size distribution after some number of
generations, and the cumulative size distribution of non-epidemic outbreaks. We show how
PGFs can be used in both discrete-time and continuous-time settings, and discuss how to use
these results to infer disease parameters from observed outbreaks. In the large population
limit for susceptible-infected-recovered (SIR) epidemics PGFs lead to survival-function based
models that are equivalent to the usual mass-action SIR models but with fewer ODEs. We
use these to explore properties such as the final size of epidemics or even the dynamics once
stochastic effects are negligible. We target this primer at biologists and public health re-
searchers with mathematical modeling experience who want to learn how to apply PGFs to
invasive diseases, but it could also be used in an applications-based mathematics course on
PGFs. We include many exercises to help demonstrate concepts and to give practice applying
the results. We summarize our main results in a few tables. Additionally we provide a small
python package which performs many of the relevant calculations.

© 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The spread of infectious diseases remains a public health challenge. Increased interaction between humans and wild
animals leads to increased zoonotic introductions, and modern travel networks allows these diseases to spread quickly. Many
mathematical approaches have been developed to give us insight into the early behavior of disease outbreaks. An important
tool for understanding the stochastic behavior of an outbreak soon after introduction is the probability generating function
(PGF) (Allen, 2010; Wilf, 2005; Yan, 2008).

Specifically, PGFs frequently give insight about the statistical behavior of outbreaks before they are large enough to be
affected by the finite-size of the population. In these cases, both susceptible-infected-recovered (SIR) disease (for which
nodes recover with immunity) and susceptible-infected-susceptible (SIS) disease (for which nodes recover and can be
reinfected immediately) are equivalent. In the case of SIR disease PGFs can also be used to study the dynamics of disease once
an epidemic is established in a large population.

We can investigate properties such as the early growth rate of the disease, the probability the disease becomes established,
or the distribution of final sizes of outbreaks that fail to become established. Similar questions also arise in other settings
.
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where some introduced agent can reproduce or die, such as invasive species in ecological settings (Lewis, Petrovskii, & Potts,
2016), early within-host pathogen dynamics (Conway & Coombs, 2011), and the accumulation of mutations in precancerous
and cancerous cells (Antal & Krapivsky, 2011; Durrett, 2015) or in pathogen evolution (Volz, Romero-Severson, & Leitner,
2017). These are all examples of branching processes, and PGFs are a central tool for the analysis of branching processes
(Bartlett, 1949; Kendall, 1949; Kimmel & Axelrod, 2002). Except for Section 4 where we develop deterministic equations for
later-time SIR epidemics, based on (Miller, 2011; Miller, Slim,& Volz, 2012; Volz, 2008), the approaches we describe here have
direct application in these other branching processes as well.

Before proceeding, we define what a PGF is. Let ri denote the probability of drawing the value i from a given distribution of
non-negative integers. Then f ðxÞ ¼P

i
rixi is the PGF of this distribution. We should address a potential confusion caused by

the name. A “generating function” is a functionwhich is defined from (or “generated by”) a sequence of numbers ai and takes
the form

P
iaix

i. So a “probability generating function” is a generating function defined from a probability distribution on
integers. It is not a function that generates probabilities when values are plugged in for x. There are other generating functions,
including the “moment generating function”, defined to be

P
m〈i

m〉xm where 〈im〉 ¼Pirii
m (the moment and probability

generating functions turn out to be closely related).
PGFs have a number of useful properties which we derive in Appendix A. We have structured this paper so that a reader

can skip ahead now and read Appendix A in its entirety to get a self-contained introduction to PGFs, or wait until a particular
property is referenced in the main text and then read that part of the appendix.

As we demonstrate in Table 1, for many important distributions the PGF takes a simple form.We derive this for the Poisson
distribution.

Example 1.1. Consider the Poisson distribution with mean l

ri ¼
e�lli

i!
:

For this we find

f ðxÞ ¼
X
i

e�lli

i!
xi ¼ e�l

X
i

ðlxÞi
i!

¼ e�lelx

¼ elðx�1Þ :
In this primer, we explore the application of PGFs to the study of disease spread. We will use PGFs to answer questions
about the early-time behavior of an outbreak (neglecting depletion of susceptibles):

� What is the probability an outbreak goes extinct within g generations (or by time t) in an arbitrarily large population?
� What is the probability an index case causes an epidemic?
� What is the final size distribution of small outbreaks?
� What is the size distribution of outbreaks at generation g (or time t)?
� How fast is the initial growth for those outbreaks that do not go extinct?

Although we present these early-time results in the context of SIR outbreaks they also apply to SIS outbreaks and many
other invasive processes.
Table 1
A few common probability distributions and their PGFs.

Distribution PGF f ðxÞ ¼P
i
rixi

Poisson, mean l: ri ¼ e�lli

i!
elðx�1Þ

Uniform: rl ¼ 1 xl

Binomial: n trials, with success probability p: ri ¼
�
n
i

�
piqn�i for q ¼ 1� p ½qþ px�n

Geometrica: ri ¼ qip for q ¼ 1� p and i ¼ 0;1;… p=ð1� qxÞ

Negative binomialb: ri ¼
�
iþ br � 1

i

�
qbr pi for q ¼ 1� p

�
q

1� px

�br
a Another definition of the geometric distribution with different indexing, ri ¼ qi�1p for i ¼ 1;2;…, gives a different PGF.
b Typically the negative binomial is expressed in terms of a parameter rwhich is the number of failures at which the experiment

stops, assuming eachwith success probability p. For us ri plays an important role, so to help distinguish these, we use br rather than r.
Then ri is the probability of i successes.
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We can also use PGFs for some questions about the full behavior accounting for depletion of susceptibles. Specifically:

� In a continuous-time Markovian SIR or SIS outbreak spreading in a finite population, what is the distribution of possible
system states at time t?

� In the large-population limit of an SIR epidemic, what fraction of the population is eventually infected?
� In the large-population limit of an SIR epidemic, what fraction of the population is infected or recovered at time t?

We will consider both discrete-time and Markovian continuous-time models of disease. In the discrete-time case each
infected individual transmits to some number of “offspring” before recovering. In the continuous-time case each infected
individual transmits with a rate b and recovers with a rate g.

In Section 2 we begin our study investigating properties of epidemic emergence in a discrete-time, generation-based
framework, focusing on the probability of extinction and the sizes of outbreaks assuming that the disease is invading a
sufficiently large population with enough mixing that we can treat the infections caused by any one infected individual as
independent of the others. We also briefly discuss how we might use our observations to infer disease parameters from
observed small outbreaks. In Section 3, we repeat this analysis for a continuous-time case treating transmission and recovery
as Poisson processes, and then adapt the analysis to a population with finite size N. Next in Section 4 we use PGFs to derive
simple models of the large-time dynamics of SIR disease spread, once the infection has reached enough individuals that we
can treat the dynamics as deterministic. Finally, in Section 5 we explore multitype populations in which there are different
types of infected individuals, which may produce different distributions of infections. We provide three appendices. In
Appendix A, we derive the relevant properties of PGFs, in Appendix B we provide elementary (i.e., not requiring Calculus)
derivations of two important theorems, and in Appendix C we provide details of a Python package Invasion_PGF available at
https://github.com/joelmiller/Invasion_PGF that implements most of the results described in this primer. Python code that
uses this package to implement the figures of Section 2 is provided in the supplement.

Our primary goal here is to provide modelers with a useful PGF-based toolkit, with derivations that focus on developing
intuition and insight into the application rather than on providing fully rigorous proofs. Throughout, there are exercises
designed to increase understanding and help prepare the reader for applications. This primer (and Appendix A in particular)
could serve as a resource for a mathematics course on PGFs. For readers wanting to take a deep dive into the underlying
theory, there are resources that provide a more technical look into PGFs in general (Wilf, 2005) or specifically using PGFs for
infectious disease (Yan, 2008).
1.1. Summary

Before presenting the analysis, we provide a collection of tables that summarize our main results. Table 2 summarizes our
notation. Tables 3 and 4 summarize our main results for the discrete-time and continuous-time models. Table 5 shows
Table 2
Common function and variable names. When we use a PGF for the number of susceptible individuals, active infections, and/or completed infections x and s
correspond to susceptible individuals, y and i to active infections, and z and r to completed infections.

Function/variable name Interpretation

f ðxÞ ¼Pipix
i

gðxÞ ¼Piqix
i

Arbitrary PGFs.

mðyÞ ¼Pipiy
ibmðyÞ ¼�

by2 þ g
��ðbþ gÞbmðy; zÞ ¼�

by2 þ gz
��ðbþ gÞ

Without hats: The PGF for the offspring distribution in discrete time.
With hats: The PGF for the outcome of an unknown event in a continuous-time Markovian outbreak: y accounts for active
infections and z accounts for completed infections.

a, ag , aðtÞ Probability of either eventual extinction, extinction by generation g, or by time t in an infinite population.

FgðyÞ ¼Pi4iðgÞyi
Fðy; tÞ ¼Pi4iðtÞyi

PGF for the number of active infections in generation g or at time t in an infinite population.

U∞ðzÞ ¼Pr<∞urzr þ
u∞z∞

UgðzÞ ¼PrurðgÞzr
Uðz; tÞ ¼PrurðtÞzr

The PGF for the distribution of completed infections at the end of a small outbreak, in generation g, or at time t in an infinite
population. If ℛ0 >1, then one of the terms in the expansion of U∞ðzÞ is u∞z∞ where u∞ is the probability of an epidemic.

Pgðy; zÞ ¼Pi;rpi;rðgÞyizr
Pðy; z; tÞ ¼P

i;rpi;rðtÞyizr

The PGF for the joint distribution of current infections and completed infections either at generation g or time t in an infinite
population.

Xðx;y; tÞ ¼Ps;ixs;iðtÞxsyi The PGF for the joint distribution of susceptibles and current infections at time t in a finite population of size N (used for
continuous time only). In the SIR case we can infer the number recovered from this and the total population size.

cðxÞ ¼Pipix
i PGF for the ‘‘ancestor distribution’’, analogous to the offspring distribution.

jðxÞ ¼PkPðkÞxk PGF for the distribution of susceptibility for the continuous timemodel where rate of receiving transmission is proportional to k.

b, g The individual transmission and recovery rates for the Markovian continuous time model.

https://github.com/joelmiller/Invasion_PGF


Table 3
A summary of our results for application of PGFs to discrete-time SIS and SIR disease processes in the infinite population limit. The function mðxÞ is the PGF for
the offspring distribution. The notation ½g� in the exponent denotes function composition g times. For example, m½2�ðyÞ ¼ mðmðyÞÞ.
Question Section Solution

Basic Reproductive Numberℛ0 [the average number of transmissions
an infected individual causes early in an outbreak].

Intro
to 2

ℛ0 ¼ m0ð1Þ.

Probability of extinction, a, given a single introduced infection. 2.1 a ¼ limg/∞m½g�ð0Þ or, equivalently, the smallest x in ½0;1� for which x ¼
mðxÞ.

Probability of extinction within g generations 2.1.2 ag ¼ m½g�ð0Þ.
PGF of the distribution of the number of infected individuals in the g-

th generation.
2.2 FgðyÞ where Fg solves FgðyÞ ¼ m½g�ðyÞ.

Average number of active infections in generation g and average
number if the outbreak has not yet gone extinct.

2.2
ℛg

0, and
ℛg

0
1� ag

.

PGF of the number of completed cases at generation g in an infinite
population.

2.3.1 UgðzÞ where Ug solves UgðzÞ ¼ zmðUg�1ðzÞÞ with U0ðzÞ ¼ 1.

PGF of the joint distribution of the number of current and completed
cases at generation g in an infinite population.

2.3.2 Pgðy; zÞ where Pg solves Pgðy; zÞ ¼ zmðPg�1ðy; zÞÞ with P0ðy;zÞ ¼ y.

PGF of the final size distribution. 2.4 U∞ðzÞ where U∞ solves U∞ðzÞ ¼ limg/∞UgðzÞ. It also solves U∞ðzÞ ¼
zmðU∞ðzÞÞ. This has a discontinuity at jzj ¼ 1 if epidemics are possible.

Probability an outbreak infects exactly j individuals 2.4 pðjÞj�1

j
where pðjÞi is the coefficient of yi in the expansion of ½mðyÞ�j .

Probability a disease has a particular set of parametersQ given a set of
observed independent outbreak sizes X ¼ ðj1;…; j[Þ and a prior
belief PðQÞ.

2.4.1
PðQjXÞ ¼ Pðj1jQÞ/Pðj[jQÞPðQÞP

Q0Pðj1
��Q0Þ/Pðj[

��Q0Þ, which can be solved numerically using

our prior knowledge PðQÞ and our knowledge of the probability of each ji
given Q.

Table 4
A summary of our results for application of PGFs to the continuous-time disease process.We assume individuals transmit with rate b and recover with rate g.
The functions bmðyÞ ¼ ðby2 þ gÞ=ðbþ gÞ and bmðy; zÞ ¼ ðby2 þ gzÞ=ðbþ gÞ are given in System (14).

Question Section Solution

Probability of eventual extinction a given a single introduced infection. 3.1 a ¼ minð1;g=bÞ
Probability of extinction by time t, aðtÞ. 3.1.1 aðtÞ where _a ¼ ðbþ gÞ½bmðaÞ � a� and að0Þ ¼ 0.

PGF of the distribution of number of infected individuals at time t
(assuming one infection at time 0).

3.2 Fðy; tÞ where Fðy;0Þ ¼ y and F solves either
v

vt
F ¼ ðbþ gÞ½bmðyÞ � y� v

vy
4 or

v

vt
F ¼ ðbþ gÞ½bmðFÞ� F� :

PGF of the number of completed cases at time t. 3.4
Uðz; tÞ where Uðz;0Þ ¼ 1 and U solves

v

vt
U ¼ ðbþ gÞ½bmðU;zÞ� U�

PGF of the joint distribution of the number of current and completed
cases at time t (assuming one infection at time 0).

3.3 Pðy; z; tÞ where Pðy; z;0Þ ¼ y and P solves either
v

vt
P ¼ ðbþ gÞ½bmðy; zÞ � y� v

vy
P or

v

vt
P ¼ ðbþ gÞ½bmðP;zÞ� P� :

PGF of the final size distribution. 3.4 U∞ðzÞ ¼ limt/∞Uðz; tÞ. This also solves U∞ðzÞ ¼ bmðU∞ðzÞ;zÞ. If
epidemics are possible this has a discontinuity at jzj ¼ 1.

Probability an outbreak infects exactly j individuals 3.4 1
j

bj�1gj

ðbþ gÞ2j�1

�
2j� 2
j� 1

�
.

PGF for the joint distribution of the number susceptible and infected at
time t for SIS dynamics in a population of size N.

3.5.1
Xðx; y; tÞ where X solves

v

vt
X ¼ b

N
ðy2 � xyÞ v

vx
v

vy
Xþ gðx� yÞ v

vy
X

PGF for the joint distribution of the number susceptible and infected at
time t for SIR dynamics in a population of size N.

3.5.2
Xðx; y; tÞ where X solves

v

vt
X ¼ b

N
ðy2 � xyÞ v

vx
v

vy
Xþ gð1� yÞ v

vy
X
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applications of PGFs to the continuous-time dynamics of SIR epidemics once the disease has infected a non-negligible pro-
portion of a large population, effectively showing how PGFs can be used to replacemost commonmass-actionmodels. Finally,
Table 6 provides the probability of each finite final outbreak size assuming a sufficiently large population that susceptible
depletion never plays a role.
1.2. Exercises

We end each section with a collection of exercises. We have designed these exercises to give the reader more experience
applying PGFs and to help clarify some of the more subtle points.



Table 5
A summary of our results for application of PGFs to the final size and large-time dynamics of SIR disease. The PGFs c and j encode the heterogeneity in
susceptibility. The PGF c is the PGF of the ancestor distribution (an ancestor of u is any individual who, if infected, would infect u). The PGF jðxÞ ¼PkpðkÞxk
encodes the distribution of the contact rates.

Question Section Solution

Final size relation for an SIR epidemic assuming a vanishingly small fraction r
randomly infected initially with rN[1.

4.2 rð∞Þ ¼ 1� cð1� rð∞ÞÞ. [For standard assumptions, including
the usual continuous-time assumptions, cðxÞ ¼ e�ℛ0ð1�xÞ .]

Discrete-time number susceptible, infected, or recovered in a population with
homogeneous susceptibility and given ℛ0, assuming an initial fraction r is
randomly infected with rN[1.

4.3 For g>0:SðgÞ ¼ Nð1� rÞe�R 0ð1�Sðg�1Þ=N Þ

IðgÞ ¼ N � SðgÞ � RðgÞ
RðgÞ ¼ Rðg � 1Þ þ Iðg � 1Þwith the initial condition Sð0Þ ¼ ð1�
rÞN, Ið0Þ ¼ rN, and Rð0Þ ¼ 0.

Discrete-time number susceptible, infected, or recovered in a population with
heterogeneous susceptibility for SIR disease after g generations with an initial
fraction r randomly infected where rN[1.

4.3 For g>0:SðgÞ ¼ Nð1� rÞcðSðg � 1Þ=N Þ
IðgÞ ¼ N � SðgÞ � RðgÞ
RðgÞ ¼ Rðg � 1Þ þ Iðg � 1Þwith the initial condition Sð0Þ ¼ ð1�
rÞN, Ið0Þ ¼ rN, and Rð0Þ ¼ 0.

Continuous time number susceptible, infected, or recovered for SIR disease as a
function of time with an initial fraction r randomly infected where rN[1.
Assumes u receives infection at rate bIku=N〈K〉

4.4

For t >0:

SðtÞ ¼ ð1� rÞNjðqðtÞ Þ
IðtÞ ¼ N � SðtÞ � RðtÞ

RðtÞ ¼ gN〈K〉
b

ln qðtÞ

_qðtÞ ¼ � b

N〈K〉
IqðtÞ

with the initial condition

qð0Þ ¼ 1.

Table 6
The probability of j total infections in an infinite population for different offspring distributions, derived using Theorem 2.7 and the corresponding log-
likelihoods. For any one of these, if we sum the probability of j over (finite) j, we get the probability that the outbreak remains finite in an infinite popu-
lation. This is particularly useful when inferring disease parameters from observed outbreak sizes (Section 2.4.1). The parameters' interpretations are given in
Table 1.

Distribution PGF Probability of j infections Log-Likelihood of Parameters given j

Poisson elðy�1Þ ðjlÞj�1

j!
e�jl

� jlþ ðj� 1ÞlogðjlÞ� logðj!Þ

Uniform yl
�
1 j ¼ 1; l ¼ 0
0 otherwise

�
0 j ¼ 1; �l ¼ 0

�∞ otherwise

Binomial ðqþ pyÞn 1
j

�
nj

j� 1

�
pj�1qnj�jþ1 logððnjÞ! Þ� logððnj� jþ 1Þ! Þ

� logðj!Þþ ðj� 1Þlogp
þ ðnj� jþ 1Þlogq

Geometric p=ð1� qyÞ 1
j

�
2j� 2
j� 1

�
pjqj�1 logðð2j� 2Þ! Þ� logððj� 1Þ! Þ

� logðj!Þþ jlogpþ ðj� 1Þlogq
Negative Binomial �

q
1� py

�br 1
j

�brjþ j� 2
j� 1

�
qbrjpj�1 logððbrjþ j� 1Þ! Þ� logððbrj� 1Þ! Þ

� logðj!Þþ brjlogqþ ðj� 1Þlogp
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Exercise 1.1. Except for the Poisson distribution handled in Example 1.1, derive the PGFs shown in Table 1 directly from the
definition f ðxÞ ¼Pirix

i.
For the negative binomial, it may be useful to use the binomial series:

ð1þ dÞh ¼ 1þ hdþ hðh� 1Þ
2!

d2 þ/þ hðh� 1Þ/ðh� iþ 1Þ
i!

di þ/

using h ¼ �br and d ¼ � px.

Exercise 1.2. Consider the binomial distributionwith n trials, each having success probability p ¼ l=n Using Table 1, show that the
PGF for the binomial distribution converges to the PGF for the Poisson distribution in the limit n/∞ , if l is fixed.
2. Discrete-time spread of a simple disease: early time

We begin with a simple model of disease transmission using a discrete-time setting. In the time step after becoming
infected, an infected individual causes some number of additional cases and then recovers. We let pi denote the probability of
causing exactly i infections (referred to as “offspring”) before recovering. It will be useful to define the PGF for the offspring
distribution

mðyÞ ¼
X∞
i¼0

piy
i : (1)
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For results related to early extinction or early-time dynamics, we will assume that the population is large enough and suf-
ficiently well-mixed that the transmissions in successive generations are all independent events and unaffected by depletion
of susceptible individuals. Before deriving our results for the early-time behavior of our discrete-time model, we offer a
summary in Table 3.

Often in disease spread we are interested in the expected number of infections caused by an infected individual early in an
outbreak, which we define to be ℛ0.

ℛ0 ¼
X
i

ipi ¼ m0ð1Þ (2)

where m0ðxÞ ¼ d
dxmðxÞ. The value of ℛ0 is related to disease dynamics, but it is not the only important property of m.
Example 2.1. We demonstrate a few sample outbreaks in Fig.1. Here we take a bimodal case withℛ0 ¼ 0:9 such that a proportion
0.3 of the population cause 3 infections and the remaining 0.7 cause none. Most of the outbreaks die out immediately, but some
persist, surviving multiple generations before extinction.

Example 2.2. Throughout Section 2 we compare simulated SIR outbreaks with the theoretical predictions which we calculate
using the Python package Invasion_PGF described in Appendix C. We assume that all individuals are equally likely to be infected by
any transmission, and we focus on ℛ0 ¼ 0:75 and ℛ0 ¼ 2. For each ℛ0, we consider two distributions for the number of new
infections an infected individual causes:

� a Poisson-distributed number of infections with mean ℛ0, or
� a bimodal distribution with either 0 or 3 infections, with the proportion chosen to give a mean ofℛ0. The probabilities are p0 ¼
1�ℛ0=3 and p3 ¼ ℛ0=3 (ℛ0 >3 is impossible).

The bimodal distribution is similar to that of Fig. 1, but with different probabilities of 0 or 3. After an individual chooses the number
of infections to cause, the recipients are selected uniformly at random (with replacement) from the population. If they are sus-
ceptible, an infection occurs at the next time step, otherwise nothing happens. We use 5� 105 simulations for N ¼ 100 and N ¼
1000.

Fig. 2 looks at the final size distribution. The distribution of the number infected in small outbreaks (insets) is not significantly
affected by the total population size. This is because they do not grow large enough to “see” the system size. They would die out even
in an infinite population. Large outbreaks, or epidemics, on the other hand would growwithout bound in an infinite population, and
their growth is limited by the finiteness of the population. We will see that (assuming homogeneous susceptibility and the large
population limit), the proportion infected in an SIR epidemic depends only on ℛ0.
2.1. Early extinction probability

A common misconception is that if ℛ0 >1 an epidemic is inevitable. In fact, if we are lucky an outbreak can die out
stochastically before the number infected is large. Conversely, if we are not lucky it may initially grow faster than our
deterministic models predict.
Fig. 1. A sample of 10 outbreaks starting with a bimodal distribution having ℛ0 ¼ 0:9 in which 3=10 of the population causes 3 infections and the rest cause
none. The top row denotes the initial states, showing each of the 10 initial infections. An edge from one row to the next denotes an infection from the higher node
to the lower node. Most outbreaks die out immediately.



Fig. 2. Simulated outcomes of SIR outbreaks in populations as described in Example 2.2. Outbreaks tend to be either small or large. The typical number infected in
small outbreaks (insets) is affected by the details of the offspring distribution, but not the population size. The typical proportion infected in large outbreaks
(epidemics) appears to depend on the average number of transmissions an individual causes, but not the population size or the offspring distribution. These
observations will be explained later. These simulations are reused throughout this section to show how PGFs capture different properties of the distributions.
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In any finite population a disease will eventually go extinct because the disease interferes with its own spread. Our ob-
servations show that the typical final outcomes of an outbreak are either an “epidemic” which grows until the number
infected is limited by the finiteness of the population or a small outbreak which dies out before it can see the system size. One
of our first questions about a possible disease emergence is “what is the probability that an outbreak will grow into an
epidemic?” We focus on the equivalent question, “what is the probability the outbreak goes extinct before causing an
epidemic?”. We aim to calculate the probability that the disease would go extinct if it never interferes with its own spread, or
in other words, if it were spreading through an unlimited population. Throughout we assume that disease is introduced with
a single randomly chosen index case.

The theory for the extinction probability in an unbounded population has been developed extensively in the context of
GaltoneWatson processes (Watson & Galton, 1875). It has been applied to infectious disease many times, e.g. (Easley &
Kleinberg, 2010, section 21.8), and (Getz & Lloyd-Smith, 2006; Lloyd-Smith, Schreiber, Kopp, & Getz, 2005).

2.1.1. Derivation as a fixed point equation
We present two derivations of the extinction probability. Our first is quicker, but gives less insight. We start with the a

priori observation that the extinction probability takes some value between 0 and 1 inclusive. Our goal is to filter out the vast
majority of these options by finding a property of the extinction probability that most values between 0 and 1 do not have.

Let a be the probability of extinction if the spread starts from a single infected individual. Then from Property A.1 of

Appendix A we have a ¼Pipibai ¼ mðbaÞ where ba is the probability that, in isolation, an offspring of the initial infected in-
dividual would not cause an epidemic. Because we assume that the offspring distribution of later cases is the same as for the
index case, we must have ba ¼ a and so the extinction probability solves a ¼ mðaÞ.

We have established:

Theorem 2.1. Assuming that each infected individual produces an independent number of offspring i chosen from a distribution
having PGF mðyÞ, then a, the probability an outbreak starting from a single infected individual goes extinct, satisfies

a ¼ mðaÞ : (3)

Not all solutions to x ¼ mðxÞ must give the extinction probability.
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There can be more than one x solving x ¼ mðxÞ. In fact 1 ¼ mð1Þ is always a solution, and from Property A.9 it follows that
there is another solution if and only ifℛ0 ¼ m0ð1Þ>1. In this case, our derivation of Theorem 2.1 does not tell us which of the
solutions is correct. However, Section 2.1.2 shows that the correct solution is the smaller solution when it exists. More
specifically the extinction probability is a ¼ limg/∞ag where ag ¼ mðag�1Þ starting with a0 ¼ 0. This gives a condition for a
nonzero epidemic probability. Namely ℛ0 ¼ m0ð1Þ ¼Piipi >1.

Example 2.3. We now consider the Poisson and bimodal offspring distributions described in Example 2.2. We saw that typically
an outbreak either affects a small proportion of the population (a vanishing fraction in the infinite population limit) or a large
number (a nonzero fraction in the infinite population limit).

By plotting the cumulative density function (cdf) of proportion infected in Fig. 3, we extend our earlier observations. The cdf is
steep near zero (becoming vertical in the infinite population limit). Then it is effectively flat for a while. Finally if ℛ0 >1 it again
grows steeply at some proportion infected well above 0 (the size of epidemic outbreaks).

The plateau’s height is the probability that an outbreak dies out while small. Fig. 3 shows that this is well-predicted by choosing
the smaller of the solutions to x ¼ mðxÞ.

For a fixed ℛ0 >1, the the plateau’s height (i.e., the early extinction probability) depends on the details of the offspring dis-
tribution and not simply ℛ0. However, the critical value at which the cdf increases for the second time depends only on ℛ0. This
suggests that even though the probability of an epidemic depends on the details of the offspring distribution, the proportion infected
in an SIR epidemic depends only on ℛ0, the reproductive number. We explore this in more detail in Section 4.2.
2.1.2. Derivation from an iterative process
In our second derivation, we calculate the probability that the outbreak dies out within g “generations”. Then the prob-

ability the outbreak would die out after a finite number of steps in an infinite population is simply the limit of this as g/∞. In
our counting of “generations”, we consider the index case to be generation 0. An individual's generation is equal to the
number of transmissions occurring in the chain from the index case to that individual.

We define ag to be the probability that the longest chain an index case will initiate has fewer than g transmissions. So
because there are always at least 0 transmissions, a0 ¼ 0. The probability that there is no transmission is by definition a1.
Recalling that the probability the index case causes zero infections is p0, we have
Fig. 3. Illustration of Theorem 2.1. The cumulative density function (cdf) for the total proportion ever infected (effectively the integral of Fig. 2). For small ℛ0, all
outbreaks die out without affecting a sizable portion of the population. For larger ℛ0, there are many small outbreaks and many large outbreaks, but very few
outbreaks in between, so the cdf is flat in this range. The height of this plateau is the probability the outbreak dies out while small. This is approximately the
predicted extinction probability for an infinite population (dashed). The probability of a small outbreak is different for the different offspring distributions, but the
proportion infected corresponding to epidemics is the same (for given ℛ0).
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a1 ¼ p0 ¼ mð0Þ ¼ mða0Þ

is the probability that the index case does not cause a chain of 1 or more transmissions. The probability that all chains die out

after at most 1 transmission (that is, there are no second generation cases) is the probability that the index case causes i
infections, pi, times the probability none of those i individuals causes further infections, ai1, summed over all i. We introduce

the notation m½g�ðxÞ to be the result of iterative applications of m to x g times, so m½1�ðxÞ ¼ mðxÞ and for g>1, m½g�ðxÞ ¼ mðm½g�1�ðxÞÞ.
Then following Property A.1 we have

a2 ¼ p0 þ p1a1 þ p2a
2
1 þ/ ¼ mða1Þ ¼ m½2�ð0Þ
We generalize this by stating that the probability an initial infection fails to initiate any length g chains is equal to the
probability that all of its i offspring fail to initiate a chain of length g� 1.

ag ¼
X
i

pia
i
g�1 ¼ m

�
ag�1

� ¼ m½g�ð0Þ :
So the probability of not starting a chain of length at least g is found by iteratively applying the function m g times to x ¼ 0.
Taking g/∞ gives the extinction probability (Getz & Lloyd-Smith, 2006):

a ¼ lim
g/∞

m½g�ð0Þ : (4)
The fact that there is a biological interpretation of ag starting with a0 ¼ 0 is important. It effectively guarantees that the
iterative process converges and that the speed of convergence reflects the typical speed of extinction. Iteration appears to be
an efficient way to solve x ¼ mðxÞ numerically and because of the biological interpretation, we can avoid questions that might
arise about whether there are multiple solutions of x ¼ mðxÞ and, if so, which of them corresponds to the biological problem.
Instead we simply iterate starting from 0 and the result must converge to the probability that in an infinite population the
outbreak would go extinct in finite time, regardless of what other solutions x ¼ mðxÞ might have.

Exercise 2.1 shows that if mð0Þs0 then the limit of the sequence ag is 1 if ℛ0 � 1 and some a<1 satisfying a ¼ mðaÞ if
ℛ0 >1. This proves:

Theorem 2.2. Assume that each infected individual produces an independent number of offspring i chosen from a distribution
having PGF mðyÞ. Then

� The probability an outbreak goes extinct within g generations is

ag ¼ m½g�ð0Þ : (5)
� The probability of extinction in an infinite population is

a ¼ lim
g/∞

ag :
� If ℛ0 ¼ m0ð1Þ � 1 and mð0Þs0 then a ¼ 1. If ℛ0 >1 extinction occurs with probability a<1.
Example 2.4. We now consider the Poisson and bimodal offspring distributions described in Example 2.2
Fig. 4 shows that starting with a0 ¼ 0 and defining ag ¼ mðag�1Þ, the values of ag emerging from the iterative process corre-

spond to the observed probability that outbreaks have gone extinct by generation g for early values of g.
In the infinite population limit, this provides a match for all g. So this gives the probability the outbreak goes extinct by gen-

eration g assuming it has not grown large enough to see the finite-size of the population (i.e., assuming it has not become an
epidemic). For SIR epidemics in the finite populations we use for simulations, the plateaus eventually give way to extinction because
eventually there are not enough remaining susceptibles.



Fig. 4. Illustration of Theorem 2.2. Left: Cobweb diagrams showing convergence of iterations to the predicted outbreak extinction probability (see Fig. A.10).
Right: Observed probabilities of no infections remaining after each generation for simulations of Fig. 2 showing the probability of extinction by generation g. Thin
lines show the relation between the cobweb diagram and the extinction probabilities. The simulated probability initially rises quickly, representing outbreaks that
die out early on, then it remains steady at a level representing the probability of outbreaks dying out while small. For ℛ0 >1 it increases again because the
epidemics burn through the finite population (and so the infinite population theory breaks down). The values match the corresponding iteration of the cobweb
diagrams.
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2.2. Early-time outbreak dynamics

We now explore the number of active infections present in generation g. Wewill need to use i ¼
ffiffiffiffiffiffiffi
�1

p
in this subsection, so

to avoid confusionwe use [ as our indexing variable rather than i. Setting 4[ðgÞ to be the probability [ active infections exist at
generation g, we define the PGF FgðyÞ ¼P[4[ðgÞy[. Assuming at generation 0 there is a single infection (41ð0Þ ¼ 1) then the
initial condition is F0ðyÞ ¼ y. From inductive application of Property A.8 for composition of PGFs (exercise 2.7) it is
straightforward to conclude that for g>0, FgðyÞ ¼ m½g�ðyÞ where mðyÞ is the PGF for the offspring distribution.
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Theorem 2.3. Assuming that each infected individual produces an independent number of offspring chosen from a distribution
with PGF mðyÞ, the number infected in the g-th generation has PGF

FgðyÞ ¼
X
[

4[ðgÞy[ ¼ m½g�ðyÞ (6)

where 4[ðgÞ is the probability there are [ active infections in generation g. This does not provide information about the cumulative
number infected.

It is worth highlighting that for general distributions, the calculation of coefficients of FgðyÞ may seem quite challenging.

Luckily, it is not so difficult. Property A.3 states (taking i ¼
ffiffiffiffiffiffiffi
�1

p
)

4[ðgÞz
1
M

XM
m¼1

Fg
�
Re2pim=M

�
R[e2[pim=M

for largeM and any R � 1. For each ym ¼ Re2pim=M we can calculate FgðymÞ ¼ m½g�ðymÞ by numerically iterating m g times. Then
for large enough M, this gives a remarkably accurate and efficient approximation to the individual coefficients.

Example 2.5. We demonstrate Theorem 2.3 in Fig. 5, using the simulations from Example 2.2. Simulations and predictions are in
excellent agreement.

There is a mismatch noticeable for the bimodal distribution withℛ0 ¼ 2 particularly with N ¼ 100, which is a consequence of
the fact that the population is finite. In stochastic simulations, occasionally an individual receives multiple transmissions even early
in the outbreak, but in the PGF theory this does not happen.We are often interested in the expected number of active infections
in generation g,

P
[[4[ðgÞ (however, as seen below this is not the most relevant measure to use ifℛ0 >1). Property A.5 shows

that this is given by v
vyFgðyÞjy¼1. To calculate this we use Fgð1Þ ¼ 1 for all g (Property A.4) and m0ð1Þ ¼ ℛ0. Then through

induction and the chain rule we show that v
vyFgðyÞjy¼1 ¼ ℛg

0:
Fig. 5. Illustration of Theorem 2.3. Comparison of predictions and the simulations from Fig. 2 for the number of active infections in the third generation. The
bimodal case with N ¼ 100 shows a clear impact of population size as a sizable number of transmissions fail because the population is finite. The predictions were
made numerically using the summation in Property A.3.
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v

vy
FgðyÞjy¼1 ¼ v

vy
m
�
Fg�1ðyÞ

�jy¼1

¼
�
m0
�
Fg�1ðyÞ

�� v

vy
Fg�1ðyÞ

�
jy¼1

¼ m0ð1Þ �ℛg�1
0

¼ ℛg
0 :

we initialized the induction with the case g ¼ 1 which is the definition of ℛ0. If ℛ0 <1, this shows that we expect decay.
If ℛ0 >1, there is a more relevant measure. On average we see growth, but a sizable fraction of outbreaks may go extinct,

and these zeros are included in the average, which alters our prediction. This is closely related to the “push of the past” effect
observed in phylodynamics (Nee, Holmes, May, & Harvey, 1994). For policy purposes, we are more interested in the expected
size if the outbreak is not yet extinct because a response that is scaled to deal with the average size (where the average includes
those that are extinct) is either too big (if the disease has gone extinct) or too small (if the disease has become established)
(Miller, Davoudi, Meza, Slim, & Pourbohloul, 2010). It is very unlikely to be just right. The expected number infected in gen-
eration g conditional on the outbreaks not dying out by generation g is ℛg

0=ð1� agÞ. This has an important consequence. We
can have different extinction probabilities for different offspring distributions with the same ℛ0. The disease with a higher
extinction probability tends to have considerably more infections in those outbreaks that do not go extinct.

We have

Corollary 2.1. In the infinite population limit, the expected number infected in generation g starting from a single infection is

½I�g ¼ ℛg
0 (7)

and the expected number starting from a single infection conditional on the disease persisting to generation g is
〈I〉g ¼ ℛg
0

1� ag
(8)
We can explore higher moments of the distribution of the number infected by taking more derivatives of FgðyÞ and
evaluating at y ¼ 1.

2.3. Cumulative size distribution

We now look at the total number infected while the outbreak is small. There are multiple ways to calculate how the
cumulative size of small outbreaks is distributed. We look at two of these. The first focuses just on the number of completed
infections by generation g. The second calculates the joint distribution of the number of completed infections and the number
of active infections at generation g. Later we address the distribution of final sizes of small outbreaks.

2.3.1. Focused approach to find the cumulative size distribution
We begin by calculating just the number of completed infections at generation g. We define ujðgÞ to be the probability that

there are j completed infections at generation g (by “completed” we only include individuals who are no longer infectious in
generation g). We will use PGFs of the variable z when focusing on completed infections.

We define

UgðzÞ ¼
X
j

ujðgÞzj

to be the PGF for the number of completed infections j at generation g. Althoughwe use j to represent recoveries, this model is
still appropriate for SIS disease becausewe are interested in small outbreak sizes in awell-mixed infinite population for which
we can assume no previously infected individuals have been reexposed. If the outbreak begins with a single infection, then

U0ðzÞ ¼ 1 and U1ðzÞ ¼ z

showing that the first individual (infectious during generation 0) completes his infection at the start of generation 1. For
generation 2 we have the initial individual and his direct offspring, so U2ðzÞ ¼ zmðzÞ.

More generally, to calculate for g>1, the completed infections consist of

� the initial infection
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� the active infections in generation 1.
� any descendants of those active infections in generation 1 that will have recovered by generation g.

The distribution of the number of descendants of a generation 1 individual (including that individual) who have recovered
by generation g is given by Ug�1ðzÞ. That is each generation 1 individual and its descendants for the following g � 1 infections
have the same distribution as an initial infection and its descendants after g � 1 generations.

From Property A.8 the number of descendants by generation g (not counting the initial infection) that have recovered is
distributed like mðUg�1ðzÞÞ. Accounting for the initial individual requires that we increment the count by 1 which requires
increasing the exponent of z by 1. So we multiply by z. This yields

UgðzÞ ¼ zm
�
Ug�1ðzÞ

�

To sustain an outbreak up to generation g there must be at least one infection in each generation from 0 to g� 1. So any
outbreak with fewer than g completed infections at generation gmust be extinct. So the coefficient of zj does not change once
g> j. Thus we have shown

Theorem 2.4. Assuming a single initial infection in an infinite population, the PGF UgðzÞ ¼
P
j
ujðgÞzj for the distribution of the

number of completed infections at generation g>1 is given by

UgðzÞ ¼ zm
�
Ug�1ðzÞ

�
(9)

with U1ðzÞ ¼ z. Once g> j, the coefficient ujðgÞ is constant.
Example 2.6. We test Theorem 2.4 in Fig. 6, using the simulations from Example 2.2. Simulations and predictions are in excellent
agreement.

Example 2.7. Expected cumulative size It is instructive to calculate the expected number of completed infections at generation g.
Note that UgðzÞjz¼1 ¼ 1, mð1Þ ¼ 1, and m0ð1Þ ¼ ℛ0. We use induction to show that for g � 1 the expected number of completed

infections is
Pg�1

j¼0 ℛ
j
0:
Fig. 6. Illustration of Theorem 2.4 Comparison of predictions with the simulations from Fig. 2 for the number of completed infections at the start of the third
generation. The predictions were calculated using Property A.3.
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v

vz
UgðzÞjz¼1 ¼ v

vz
zm
�
Ug�1ðzÞ

�jz¼1

¼ m
�
Ug�1ðzÞ

�þ zm0
�
Ug�1ðzÞ

� v

vz
Ug�1ðzÞjz¼1

¼ mð1Þ þ m0ð1Þ
X
j¼0

g�2

ℛj
0

¼ 1þℛ0

X
j¼0

g�2

ℛj
0

¼
X
j¼0

g�1

ℛj
0

This is in agreement with our earlier result that the expected number that are infected in generation j is ℛj
0.

This is

v

vz
U0
gðzÞjz¼1 ¼

8><>:
1�ℛg

0
1�ℛ0

ℛ0s1

g ℛ0 ¼ 1

As with our previous results, the sum shows a threshold behavior at ℛ0 ¼ 1. If ℛ0 <1, then in the limit g/∞, the expected cu-
mulative outbreak size converges to the finite value 1=ð1�ℛ0Þ. If ℛ0 � 1, it diverges.

This example shows

Corollary 2.2. In the infinite population limit the expected number of completed infections at the start of generation g assuming a
single randomly chosen initial infection is

v

vz
U0
gðzÞjz¼1 ¼

8><>:
1�ℛg

0
1�ℛ0

ℛ0s1

g ℛ0 ¼ 1

(10a)

For ℛ0 � 1 this diverges as g/∞. Otherwise it converges to 1=ð1� ℛ0Þ.
2.3.2. Broader approach
An alternate approach calculates both the current and cumulative size at generation g. We let pi;rðgÞ be the probability that

there are i actively infected individuals and r completed infections in generation g. We define Pgðy;zÞ ¼Pi;rpi;rðgÞyizr , so y
represents the active infections and z the completed infections.

Assumewe know the values ig�1 and rg�1 for generation g� 1. Then rg is simply ig�1 þ rg�1 and ig is distributed according

to mðyÞig�1 . So given those known ig�1 and rg�1, the distribution for the next generationwould be ½zmðyÞ�ig�1zrg�1 . Summing over
all possible ig�1 and rg�1 yields

Pgðy; zÞ ¼
X
i;r

pi;rðg � 1Þ½zmðyÞ�izr

¼ Pg�1ðzmðyÞ; zÞ

with the initial condition

P0ðy; zÞ ¼ y

The first few iterations are

P1ðy; zÞ ¼ zmðyÞ
P2ðy; zÞ ¼ zmðzmðyÞÞ

and we can use induction on this to show that in general
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Pgðy; zÞ ¼ zm
�
Pg�1ðy; zÞ

�

Theorem 2.5. Given a single initial infection in an infinite population, the PGFPgðy; zÞ ¼
P

i;rpi;rðgÞyizr for the joint distribution
of the number of active i and completed infections r in generation g is given by

Pgðy; zÞ ¼ zm
�
Pg�1ðy; zÞ

�
(11)

with P0ðy;zÞ ¼ y.

Example 2.8. We demonstrate Theorem 2.5 in Fig. 7, using the same simulations as in Example 2.2. Simulations and predictions
are in excellent agreement.
2.4. Small outbreak final size distribution

There are many diseases for which there have been multiple small outbreaks in recent years but no large-scale epidemics
(such as Nipah, H5N1 avian influenza, Pneumonic Plague, Monkey pox, and d prior to 2013 d Ebola). A natural question
emerges: what can we infer about the epidemic potential of these diseases? The size distribution may help us to infer
properties of the disease and in particular to estimate the probability that ℛ0 >1 (Blumberg & Lloyd-Smith, 2013; Kucharski
& Edmunds, 2015; Nishiura, Yan, Sleeman, & Mode, 2012).

We have found that UgðzÞ gives the PGF for the number of completed infections by generation g. We noted earlier that for a
given r, once g> r, the coefficient of zr in UgðzÞ is fixed and equal to the probability that the outbreak goes extinct after exactly
r infections. Motivated by this, we look for the limit as g/∞. We define

U∞ðzÞ ¼ lim
g/∞

UgðzÞ

We expect this to be the PGF for the final size of the outbreaks.
We can express the pointwise limit1 as

U∞ðzÞ ¼
X
r
urzr þ u∞z∞

where for r<∞ the coefficient ur is the probability an outbreak causes exactly r infections in an infinite population. We use
u∞ to denote the probability that the outbreak is infinite in an infinite population (i.e., that it is an epidemic), andwe interpret
z∞ as 1 when z ¼ 1 and 0 for 0 � z<1. So if epidemics are possible, U∞ðzÞ has a discontinuity at z ¼ 1, and the limit as z/1
from below gives

P
r<∞

ur ¼ 1� u∞ which is the extinction probability a.

We now look for a recurrence relation for U∞ðzÞ in the infinite population limit. Each offspring of the initial infection
independently causes a set of infections. The distribution of these new infections (including the original offspring) also has
PGF UðzÞ. So the distribution of the number of descendants of the initial infection (but not including the initial infection) has
PGF mðU∞ðzÞÞ. To include the initial infection, wemust increase the exponent of z by one, which we do bymultiplying by z. We
conclude thatU∞ðzÞ ¼ zmðU∞ðzÞÞ. Althoughwe have shown that U∞ðzÞ solves f ðzÞ ¼ zmðf ðzÞÞ, we have not shown that there is
only one function that solves this.

Wemay be interested in the outbreak size distribution conditional on the outbreak going extinct. For this we are looking at
U∞ðzÞ=a for any z<1, and at z ¼ 1, this is simply 1. Note that if ℛ0 <1 then a ¼ 1.

Summarizing this we have

Theorem 2.6. Given a single initial infection in an infinite population, consider U∞ðzÞ, the PGF for the final size distribution:
U∞ðzÞ ¼ ðPr<∞urzrÞ þ u∞z∞ where z∞ ¼ 0 if jzj<1 and 1 if jzj ¼ 1.

� Then
1 Although this converges for any given z in ½0; 1�, it does not do so “uniformly” if ℛ0 >1. That is, for ℛ0 >1 no matter how large g is, there are always
some values of z<1, but sufficiently close to 1, which are far from converged.



Fig. 7. Illustration of Theorem 2.5. Comparison of predictions and simulations for the joint distribution of the number of current and completed infections at
generation g ¼ 3. The predictions were calculated using Property A.3. Left: simulations from Fig. 2 for N ¼ 1000 and Right: predictions (note vertical scales on
left and right are the same). Top to Bottom: Poisson ℛ0 ¼ 0:75, Bimodal ℛ0 ¼ 0:75, Poisson ℛ0 ¼ 2, and Bimodal ℛ0 ¼ 2. The predictions match our ob-
servations, with some difference for two reasons: 1) because 5� 105 simulations cannot resolve events with probabilities as small as 10�12, but the PGF approach
can, and 2) due to finite-size effects as occasionally an individual receives multiple transmissions even early on. The plots also show the marginal distributions,
matching Figs. 5 and 6.
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U∞ðzÞ ¼
�
zmðU∞ðzÞÞ zs1

1 z ¼ 1 : (12)
� We have limz/1�U∞ðzÞ ¼ a ¼ 1� u∞. If ℛ0 >1 then U∞ðzÞ is discontinuous at z ¼ 1, with a jump discontinuity of u∞, the
probability of an epidemic.

� The PGF for outbreak size distribution conditional on the outbreak being finite is

�
U∞ðzÞ=a 0< z<1

1 z ¼ 1
Perhaps surprisingly we can often find the coefficients of U∞ðzÞ analytically if mðyÞ is known. We use a remarkable result
showing that the probability of infecting exactly n individuals is equal to the coefficient of zn�1 in ½mðzÞ�n (Blumberg & Lloyd-
Smith, 2013; Dwass, 1969; van der Hofstad & Keane, 2008; Wendel, 1975). The theorem is

Theorem 2.7. Given an offspring distribution with PGF mðyÞ, for j<∞ the coefficient of zj in U∞ðzÞ is 1
jp

ðjÞ
j�1 where pðjÞi is defined by

½mðyÞ�j ¼Pip
ðjÞ
i yi.

That is, for j < ∞ the probability of having exactly j infections in an outbreak starting from a single infection is 1
j times the

coefficient of yj�1 in ½mðyÞ�j.
We prove this theorem in Appendix B. The proof is based on observing that if we draw a sequence of j numbers from the

offspring distribution, the probability they sum to j� 1 (corresponding to j� 1 transmissions and hence j infected individuals

including the index case) is the coefficient of zj�1 in ½mðzÞ�j. A fraction 1=j of these satisfy additional constraints needed to
correspond to a valid transmission tree2 and thus the probability of a valid transmission tree with exactly j� 1 transmissions

is 1=j times pðjÞj�1.

Because the coefficient of yj�1 in ½mðyÞ�j is 1
ðj�1Þ!

�
d
dy

�j�1

½mðyÞ�jjy¼0 (by Property A.2), we have that the probability of an

outbreak of size j is

1
j!

�
d
dy

�j�1

½mðyÞ�jjy¼0
It is enticing to think there may be a similar theorem for coefficients of Pðy;zÞ, but we are not aware of one. The theorem
has been generalized to models having multiple types of individuals (Kucharski & Edmunds, 2015).

Example 2.9. We demonstrate Theorems 2.6 and 2.7 in Fig. 8, using the same simulations as in Example 2.2.

Example 2.10. The PGF for the negative binomial distribution with parameters p and br (with q ¼ 1� p) is

mðyÞ ¼
�

q
1� py

�br
We can rewrite this as

mðyÞ ¼ qbr ð1� pyÞ�br
We will use this to find the final size distribution. We expand ½mðyÞ�j ¼ qbrjð1� pyÞ�brj using the binomial series

ð1þ dÞh ¼ 1þ hdþ hðh� 1Þ
2!

d2 þ/þ hðh� 1Þ/ðh� iþ 1Þ
i!

di þ/

which holds for integer or non-integer h. Then with �py, �brj, and j� 1 playing the role of d, h, and i:
2 If the index case causes 0 infections and its first offspring causes 1 infection, we have a sequence of two numbers that sum to 1, but it is biologically
meaningless because it does not make sense to talk about the first offspring of an individual who causes no infections.



Fig. 8. Illustration of Theorems 2.6 and 2.7. The final size of small outbreaks predicted by Theorem 2.6 and by Theorem 2.7 as calculated using Property A.3
matches observations from the simulations in Fig. 2 (see also insets of Fig. 2).
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½mðyÞ�j ¼ qbrjð1� pyÞ�brj
¼ qbrj�1þ brjpyþ brjðbrjþ 1Þ

2!
p2y2 þ/þ brjðbrjþ 1Þ/ðbrjþ j� 2Þ

ðj� 1Þ! pj�1yj�1 þ/

�

[the negatives all cancel]. So the coefficient of yj�1 is qbrjpj�1 ðbrjþj�2Þ!
ðbrj�1Þ!ðj�1Þ! ¼

�brjþ j� 2
j� 1

�
qbrjpj�1 (assuming br is an integer). Looking at

1=j times this, we conclude that the probability an outbreak infects exactly j individuals is

1
j

�brjþ j� 2
j� 1

�
qbrjpj�1

A variation of this result for non-integer br is commonly used in work estimating disease parameters (Blumberg & Lloyd-Smith,
2013; Nishiura et al., 2012). Exercise 2.12 generalizes the formula for this.

Applying Theorem 2.7 to several different families of distributions yields Table 6 for the probability of a final size j.

2.4.1. Inference based on outbreak sizes
A major challenge in infectious disease modeling is inferring the parameters of an infectious disease. In Section 2.4 we

alluded to the use of PGFs to infer disease properties from observations of the size distribution of small outbreaks. In this
section we describe how to do this using a Bayesian approach, using the probabilities given in Table 6. A number of re-
searchers have used this approach to estimate disease parameters (Blumberg & Lloyd-Smith, 2013; Kucharski & Edmunds,
2015; Nishiura et al., 2012).

We assume that we know what type of distribution the offspring distribution, but that there are some unknown pa-
rameters (often it is assumed to be a negative binomial distribution). We also assume that we have some prior belief about the
probability of various parameters. For practical purposes, we will assume that we have some finite number of possible
parameter values, each with a probability.

We use Bayes' Theorem (Hoff, 2009):
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PðQjXÞ ¼ PðQ;XÞ
PðXÞ ¼ PðXjQÞPðQÞ

PðXÞ (13)

Here we think ofQ as the specific parameter values and X as the observed data (typically the observed size of an outbreak or
sizes of multiple independent outbreaks, inwhich case PðXjQÞ comes from Theorem 2.7 or Table 6). In our calculations we can
simply use the fact that PðQjXÞfPðXjQÞPðQÞ with a normalization constant which can be dealt with at the end.

The prior forQ is the probability distributionwe assume for the parameter values before observing the data, given by PðQÞ.
We often simply assume that all parameter values are equally probable initially.

The likelihood of the parametersQ is defined to be PðXjQÞ, the probability that wewould observe X for the given parameter
values. If we are choosing between two sets of parameter values Q1 and Q2 and the observations have consistently higher
likelihood for Q2, then we intuitively expect that Q2 is the more probable parameter value.

In practice the likelihood may be very small which can lead to numerical error. It is often useful to instead look at log-
likelihood,3 log PðXjQÞ. For example, if we have many observed outbreak sizes, the likelihood PðXjQÞ under independence is
the product of the probabilities of each individual outbreak size. The likelihood is thus quite small (perhaps less thanmachine
precision), while the log-likelihood is simply the sum of the log-likelihoods of each individual observation.

We know that

log PðQjXÞ � C ¼ log PðXjQÞ þ log PðQÞ

where C is the logarithm of the proportionality constant 1=PðXÞ in Equation (13). If we have a prior and the likelihood, the
right hand side can be calculated. It is often possible (and advisable) to calculate the log likelihood logPðXjQÞ directly rather
than calculating PðXjQÞ and then taking the logarithm.

Exponentiating the right hand side and then finding the appropriate normalization constant will yield PðQjXÞ. Numerically
the numbers may be very small whenwe exponentiate, so to prior to exponentiating it is advisable to add a constant value to
all of the expressions. This constant is corrected for in the final normalization step.

We now provide the steps for a numerical calculation of PðQjXÞ given the prior PðQÞ, the observations X, and the log
likelihood log PðXjQÞ.

1. For each Q, calculate f ðQÞ ¼ log PðXjQÞþ log PðQÞ.
2. Find the maximum Xmax over all Q and subtract it to yield bf ðQÞ ¼ log PðXjQÞþ log PðQÞ� Xmax. Note that Xmax � 0, and

this brings all of our numbers closer to zero.
3. Calculate gðQÞ ¼ e

bf ðQÞ. This will be proportional to PðQjXÞ. Note that by using e
bf ðQÞ rather than ef ðQÞ we have reduced the

impact of roundoff error.
4. Find the normalization constant

P
Q0gðQ0Þ. Then

PðQjXÞ ¼ gðQÞP
Q0g
�
Q0�

Note that ifQ comes from a continuous distribution rather than a discrete distribution, then the same approach works, except
that P is a probability density and the summation in the final step becomes an integral.

Example 2.11. A frequent assumption is that the offspring distribution is negative binomial. Let us make this assumption with
unknown p and br .

To artificially simplify the problem, we assume that we know that there are only two possible pairs of Q ¼ ðp;brÞ, namelyQ1 ¼
ðp1;br1Þ ¼ ð0:02;40Þ or Q2 ¼ ðp2;br2Þ ¼ ð0:03;20Þ, and that our a priori belief is that they are equally probable.

After observing 2 independent outbreaks, with total sizes j1 ¼ 8 and j2 ¼ 7, we want to use our observations to update PðQÞ.
From Table 6, the likelihood of a given Q given the two independent observations is
3 Throughout this section, we assume that log is taken with base e.
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f ðQÞ ¼
0@log

Y
j¼7;8

1
j

 brjþ j� 2

j� 1

!
qbrjpj�1

1Aþ log 0:5

¼
0@X

j¼7;8

log
1
j

 brjþ j� 2

j� 1

!
qbrjpj�1

1Aþ log 0:5

¼
0@X

j¼7;8

logððbrjþ j� 2Þ!Þ � logðj!Þ � logððbrj� 1Þ!Þ þ brj log qþ ðj� 1Þlog p

1Aþ log 0:5

In problems like this, we will often encounter logarithms of factorials. Many programming languages provide this, typically using
Stirling's approximation. For example, Python, R, and Cþþ all have a special function lgamma which calculates the natural log of
the absolute value of the gamma function.4 We find

f ðQ1Þz� 8:495
f ðQ2Þz� 9:135

So bf ðQ1Þ ¼ 0 and bf ðQ2Þz� 0:640. Exponentiating, we have

gðQ1Þ ¼ 1
gðQ2Þz0:5277

So now

pðQ1jXÞz
1

1:5277
z0:6546

pðQ2jXÞz
0:5277
1:5277

z0:3454

So rather than the two parameter sets being equally probable, Q2 is now about half as likely as Q1 given the observed data.
2.5. Generality of discrete-time results

Thus far we have measured time in generations. However, many models measure time differently and different genera-
tions may overlap. For both SIS and SIR disease, our results above about final size distribution or extinction probability still
apply. To see this, we note first that our results have been derived assuming that the population is infinite and well-mixed so
no individuals receivemultiple transmissions. Regardless of the clock time associatedwith transmission and recovery, there is
still a clear definition of the length of the transmission chain to an infected individual. Once we group individuals by length of
the transmission chain, we get the generation-based model used above. This equivalence is studied more in (Ludwig, 1975;
Yan, 2008).
2.6. Exercises

Exercise 2.1. Monotonicity of ag

a. By considering the biological interpretation of ag, explain why the sequence of inequalities 0 ¼ a0 � a1 � / � 1 should hold.
That is, explain why a0 ¼ 0, why the ai form a monotonically increasing sequence, and why all of them are at most 1.

b. Show that ag therefore converges to some non-negative limit a that is at most 1 and that a ¼ mðaÞ.
c. Use Property A.9 to show that if mð0Þs0 there exists a unique a<1 solving a ¼ mðaÞ if and only if ℛ0 ¼ m0ð1Þ>1.
d. Assuming mð0Þs0, use Property A.9 to show that if ℛ0 >1 then ag converges to the unique a<1 solving a ¼ mðaÞ, and

otherwise ag converges to 1.
Exercise 2.2. Use Theorem 2.2 to prove Theorem 2.1.
4 The Gamma function is an analytic function that satisfies GðnÞ ¼ ðnþ 1Þ! for positive integer values so to calculate logðn!Þ we use lgammaðnþ 1Þ.
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Exercise 2.3. Show that if mð0Þ ¼ 0, then limg/∞ag ¼ 0. By referring to the biological interpretation of mð0Þ ¼ 0, explain this
result.

Exercise 2.4. Find all PGFs mðyÞ with ℛ0 � 1 and mð0Þ ¼ 0. Why were these excluded from Theorem 2.2?

Exercise 2.5. Larger initial conditions
Assume that disease is introduced with m infections rather than just 1, or that it is not observed by surveillance until m infections

are present. Assume that the offspring distribution PGF is mðyÞ.

a. If m is known, find the extinction probability.
b. If m is unknown but its distribution has PGF hðyÞ, find the extinction probability.
Exercise 2.6. Extinction probability
Consider a disease in which p0 ¼ 0:1, p1 ¼ 0:2, p2 ¼ 0:65, and p3 ¼ 0:05 with a single introduced infection.

a. Numerically approximate the probability of extinction within 0, 1, 2, 3, 4, or 5 generations up to five significant digits (assuming
an infinite population).

b. Numerically approximate the probability of eventual extinction up to five significant digits (assuming an infinite population).
c. A surveillance program is being introduced, and detection will lead to a response. But it will not be soon enough to affect the

transmissions from generations 0 and 1. From then on p0 ¼ 0:3, p1 ¼ 0:4, p2 ¼ 0:3, and p3 ¼ 0. Numerically approximate the
new probability of eventual extinction after an introduction in an unbounded population [be careful that you do the function
composition in the right order e review Properties A.1 and A.8].
Exercise 2.7. We look at two inductive derivations of FgðyÞ ¼ m½g�ðyÞ. They are similar, but when adapted to the continuous-time
dynamics we study later, they lead to two different models. We take as given that Fg�1ðyÞ gives the distribution of the number of
infections caused after g � 1 generations starting from a single case. One argument is based on discussing the results of outcomes
attributable to the infectious individuals of generation g � 1 in the next generation. The other is based on the outcomes indirectly
attributable to the infectious individuals of generation 1 through their descendants after another g � 1 generations.

a. Explain why Property A.8 shows that FgðyÞ ¼ Fg�1ðmðyÞÞ.
b. (without reference to a) Explain why Property A.8 shows that FgðyÞ ¼ mðFg�1ðyÞÞ.
Exercise 2.8. Use Theorem 2.3 to prove the first part of Theorem 2.2.

Exercise 2.9. How does Corollary 2.1 change if we start with k infections?

Exercise 2.10. Assume the PGF of the offspring size distribution is mðyÞ ¼ ð1þ yþ y2Þ=3.

a. What offspring size distribution yields this PGF?
b. Find the PGF UgðzÞ for the number of completed infections at 0, 1, 2, 3, and 4 generations [it may be helpful to use a symbolic

math program once g>2.].
c. Check that for these cases, once g> r, the coefficient of zr does not change.
Exercise 2.11. By setting y ¼ 1, use Theorem 2.5 to prove Theorem 2.4.

Exercise 2.12. Redo Example 2.10 if br is a real number, rather than an integer. It may be useful to use the Gefunction, which
satisfies Gðxþ 1Þ ¼ xGðxÞ for any x and Gðnþ 1Þ ¼ n! for integer n.

Exercise 2.13. Except for the negative binomial case done in Example 2.10, derive the probabilities in Table 6.

a. For the Poisson distribution, use Property A.2.
b. For the Uniform distribution, use Property A.2.
c. For the Binomial distribution, use the binomial theorem: ðaþ bÞc ¼Pc

i¼0

�
c
i

�
aibc�i.

d. For the Geometric distribution, follow Example 2.10 (noting that p and q interchange roles).
Exercise 2.14. To help model continuous-time epidemics, Section 3will use a modified version of m, which in some contexts will be
written as bmðy; zÞ. To help motivate the use of two variables, we reconsider the discrete case. We think of a recovery as an infected
individual disappearing and giving birth to a recovered individual and a collection of infected individuals. Look back at the discrete-
time calculation of Ug and Pg. Define a two-variable version of m as mðy;zÞ ¼ z

P
iriy

i ¼ zmðyÞ.
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a. What is the biological interpretation of mðy;zÞ ¼ zmðyÞ?
b. Rewrite the recursive relations for Ug using mðy; zÞ rather than mðyÞ.
c. Rewrite the recursive relations for Pg using mðy; zÞ rather than mðyÞ.

The choice to use mðy; zÞ versus mðyÞ is purely a matter of convenience.

Exercise 2.15. Consider Example 2.11. Assume that a third outbreak is observed with 4 infections. Calculate the probability of Q1

and Q2 given the data starting

a. with the assumption that PðQ1Þ ¼ PðQ2Þ ¼ 0:5 and X consists of the three observations j ¼ 7, j ¼ 8, and j ¼ 4.
b. with the assumption that PðQ1Þ ¼ 0:6546 and PðQ2Þ ¼ 0:3454 and X consists only of the single observation j ¼ 4.
c. Compare the results and explain why they should have the relation they do.
Exercise 2.16. Assume that we know a priori that the offspring distribution for a disease has a negative binomial distribution with
p ¼ 0:02. Assume that our a priori knowledge of br is that it is an integer uniformly distributed between 1 and 80 inclusive. Given
observed outbreaks of sizes 1, 4, 5, 6, and 10:

a. For each br, calculate Pðbr jXÞ where X is the observed outbreak sizes. Plot the result.
b. Find the probability that ℛ0 ¼ m0ð1Þ is greater than 1.
3. Continuous-time spread of a simple disease

We now develop PGF-based approaches adapting the results above to continuous-time processes. In the continuous-time
framework, generations will overlap, so we need a new approach if we want to answer questions about the probability of
being in a particular state at time t rather than at generation g. Questions about the final state of the population can be
answered using the same techniques as for the discrete case, but the techniques introduced here also apply and yield the
same predictions. Unlike Section 2, we do not do a detailed comparison with simulation.

In the continuous-timemodel, infected individuals have a constant rate of recovery g and a constant rate of transmission b.
Then g=ðbþ gÞ is the probability that the first event is a recovery, while b=ðbþ gÞ is the probability it is a transmission. If the
event is a recovery, then the individual is removed from the infectious population. If the event is a transmission, then the
individual is still available to transmit again, with the same rate. If the recipient of a transmission is susceptible, it becomes
infectious.

Unlike the discrete-time case, we do not focus on the offspring distribution. Rather, we focus on the resulting number of
infected individuals after an event. Early onwe treat the process as if as if each infected individual were removed and replaced
by either 2 or 0 new infections. Although this is not the true process (she either recovers or she creates one additional
infection and remains present), it is equivalent as far as the number of infections at any early time is concerned. We focus on a
PGF for the outcome of the next event.

We define bmðyÞ ¼Pibpiy
i and so

bmðyÞ ¼ b

bþ g
y2 þ g

bþ g
(14a)

When we are calculating the number of completed cases, it will be useful to have a two-variable version of bm:

bmðy; zÞ ¼ b

bþ g
y2 þ g

bþ g
z : (14b)
Most of the results in this section are the continuous-time analog of the discrete-time results above for the infinite
population limit. In the discrete-time approach we did not attempt to address outbreaks in finite populations. However, we
end this section by deriving the equations for Xðx;y; tÞ, the PGF for the joint distribution of the number of susceptibles and
active infections in a population of finite size N.

3.1. Extinction probability

For the extinction probability, we can apply the same methods derived in the discrete case to bmðyÞ. Thus we can find the
extinction probability iteratively starting from the initial guess a0 ¼ 0 and setting ag ¼ bmðag�1Þ.

Exercises 3.1 and 3.2 each show that

Theorem 3.1. For the continuous-time Markovian model of disease spread in an infinite population, the probability of extinction
given a single initial infection is
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a ¼ minð1;g=bÞ (15)
3.1.1. Extinction probability as a function of time
In the discrete-time case, we were interested in the probability of extinction after some number of generations. Whenwe

are using a continuous-time model, we are generally interested in “what is the probability of extinction by time t?”
To answer this, we set aðtÞ to be the probability of extinctionwithin time t. Wewill calculate the derivative of a at time t by

using some mathematical sleight of hand to find aðtþ DtÞ� aðtÞ. Then dividing this by Dt and taking Dt/0 will give the
result. Our approach is closely related to backward Kolmogorov equations (described later below).

We choose the time stepDt to be small enough that we can assume that atmost one event happens between time 0 andDt.
The probabilities of having 0, 1, or 2 infections are PðIðDtÞ ¼ 0Þ ¼ gDtþ O ðDtÞ, PðIðDtÞ ¼ 1Þ ¼ 1� ðbþ gÞDt þ O ðDtÞ and
PðIðDtÞ ¼ 2Þ ¼ bDt þ O ðDtÞ where the O notation means that the error goes to zero fast enough that O ðDtÞ=Dt/0 as Dt/0.
The probability of having 3 or more infections (that is, multiple transmission events in the interval) is O ðDtÞ as well.

If there are two infected individuals at time Dt, then the probability of extinction by time t þ Dt is aðtÞ2. Similarly, if there is
one infected at time Dt, the probability of extinction by time t þ Dt is aðtÞ; and if there are no infections at time Dt, then the

probability of extinction by time t þ Dt is 1 ¼ aðtÞ0. So up to O ðDtÞ we have

aðt þ DtÞ ¼
X
i¼0

∞
PðIðDtÞ ¼ iÞ aðtÞi

¼ ½gDt�aðtÞ0 þ ½1� ðbþ gÞDt�aðtÞ þ ½bDt�aðtÞ2 þ O ðDtÞ
¼ aðtÞ þ Dtðbþ gÞ½bmðaðtÞÞ � aðtÞ� þ O ðDtÞ

(16)

Thus

_a ¼ lim
Dt/0

½aðt þ DtÞ � aðtÞ�=Dt ¼ ðbþ gÞ½bmðaÞ � a�

and so

Theorem 3.2. Given an infinite population with constant transmission rate b and recovery rate g, then aðtÞ, the probability of
extinction by time t assuming a single initial infection at time 0 solves

_a ¼ ðbþ gÞ½bmðaÞ � a� (17)

with bmðyÞ ¼ ðby2 þ gÞ=ðbþ gÞ and the initial condition að0Þ ¼ 0.

We could solve this analytically (Exercise 3.4), but most results are easier to derive directly from the ODE formulation.

3.2. Early-time outbreak dynamics

We now explore the number of infections at time t. We define the PGF

Fðy; tÞ ¼
X
i

4iðtÞyi

where 4iðtÞ is the probability of i actively infected individuals at time t. We will derive equations for the evolution of Fðy; tÞ.
We assume that Fðy;0Þ ¼ y so a single infected individual exists at time 0.

Our goal is to derive equations telling us how F changes in time. We will use two approaches which were hinted at in
Exercise 2.7, yielding two different partial differential equations. Although their appearance is different, for the appropriate
initial condition, their solutions are the same. These equations are called the forward and backward Kolmogorov equations.

We briefly describe the analogy between the forward and backward Kolmogorov equations and Exercise 2.7:

� Our first approach finds the forward Kolmogorov equations. This is akin to Exercise 2.7 where we found FgðyÞ by knowing
the PGF Fg�1ðyÞ for the number infected in generation g � 1 and recognizing that since the PGF for the number of in-
fections each of them causes is mðyÞ, we must have FgðyÞ ¼ Fg�1ðmðyÞÞ.

� Our second approach finds the backward Kolmogorov equationswhich are more subtle and can be derived similarly to how
we derived the ODE for extinction probability in Theorem 3.2. This is akin to Exercise 2.7 where we found FgðyÞ by
knowing that the PGF for the number infected in generation 1 is mðyÞ, and recognizing that after another g � 1 generations
each of those creates a number of infections whose PGF is Fg�1ðyÞ and so FgðyÞ ¼ mðFg�1ðyÞÞ.
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For both approaches, we make use of the observation that for Dt≪1, we can write the PGF for the number of infections
resulting from a single infected individual at time t ¼ 0 to be

Fðy;DtÞ ¼ yþ


y2 � y

�
bDt þ ð1� yÞgDt þ O ðDtÞ :

This says that with probability approximately bDt a transmission happens and we replace y by y2, and with probability
approximately gDt a recovery happens and we replace y by 1.With probability O ðDtÞmultiple events happen. We can rewrite
this as

Fðy;DtÞ ¼ yþ ðbþ gÞ½bmðyÞ � y�Dt þ O ðDtÞ :

Note that Fðy;0Þ ¼ y and v
vtFðy;0Þ ¼ ðbþ gÞ½bmðyÞ� y�.

Both of our approaches rely on the observation thatFðy; t1 þ t2Þ ¼ FðFðy; t2Þ; t1Þ by Property A.8. This states that if we take
the PGF at time t1, and then substitute for each y the PGF for the number of descendants of a single individual after t2 units of
time, the result is the PGF for the total number at time t1 þ t2.

Forward equations. For this we use Fðy; t1 þ t2Þ ¼ FðFðy; t2Þ; t1Þ with t2 playing the role of Dt and t1 playing the role of t.
SoFðy;tþ DtÞ ¼FðFðy;DtÞ;tÞ. For small Dt (and takingFyðFðy;0Þ; tÞ to be the partial derivative ofFwith respect to its first

argument), we have

Fðy; t þ DtÞ ¼ FðFðy;DtÞ; tÞ

¼ FðFðy;0Þ; tÞ þ ðDtÞFyðFðy;0Þ; tÞ v
vt

Fðy;0Þ þ O ðDtÞ

¼ Fðy; tÞ þ ðDtÞðbþ gÞ½bmðyÞ � y� v
vy

Fðy; tÞ þ O ðDtÞ :
Then

_Fðy; tÞ ¼ lim
Dt/0

Fðy; t þ DtÞ � Fðy; tÞ
Dt

¼ lim
Dt/0

Fðy; tÞ þ ðDtÞðbþ gÞ½bmðyÞ � y� v
vy

Fðy; tÞ þ O ðDtÞ � Fðy; tÞ
Dt

¼ ðbþ gÞ½bmðyÞ � y� v
vy

Fðy; tÞ :

More generally, we can directly apply Property A.10 to get this result. Exercise 3.6 provides an alternate direct derivation of
these equations.

Backward equations. In the backward direction we have Fðy; t1 þ t2Þ ¼ FðFðy; t2Þ; t1Þ with t2 playing the role of t and t1
playing the role of Dt.

So Fðy;tþ DtÞ ¼ Fðy;Dtþ tÞ ¼ FðFðy;tÞ;DtÞ. Note that because Fðy;0Þ ¼ y, we have FðFðy;tÞ;0Þ ¼ Fðy;tÞ. Thus for small
Dt, we expand F as a Taylor Series in its second argument t

Fðy; t þ DtÞ ¼ FðFðy; tÞ;DtÞ
¼ FðFðy; tÞ;0Þ þ ðDtÞFtðFðy; tÞ;0Þ þ O ðDtÞ

¼ Fðy; tÞ þ ðDtÞFtðFðy; tÞ; 0Þ þ O ðDtÞ
¼ Fðy; tÞ þ ðDtÞðbþ gÞ½bmðFðy; tÞÞ �Fðy; tÞ� þ O ðDtÞ :

To avoid ambiguity, we use Ft above to denote the partial derivative of F with respect to its second argument t. So

_Fðy; tÞ ¼ lim
Dt/0

Fðy; t þ DtÞ � Fðy; tÞ
Dt

¼ lim
Dt/0

Fðy; tÞ þ ðDtÞðbþ gÞ½bmðFðy; tÞÞ � Fðy; tÞ� þ O ðDtÞ � Fðy; tÞ
Dt

¼ ðbþ gÞ½bmðFðy; tÞÞ � Fðy; tÞ� :

This result also follows directly from Property A.12.
So we have
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Theorem 3.3. The PGF Fðy; tÞ for the distribution of the number of current infections at time t assuming a single introduced
infection at time 0 solves

v

vt
Fðy; tÞ ¼ ðbþ gÞ½bmðyÞ � y� v

vy
Fðy; tÞ (18)

as well as

v

vt
Fðy; tÞ ¼ ðbþ gÞ½bmðFðy; tÞÞ � Fðy; tÞ� : (19)

both with the initial condition Fðy;0Þ ¼ y.

It is perhaps remarkable that such seemingly different equations yield the same solution for the given initial condition.

Example 3.1. The expected number of infections in the infinite population limit is given by ½I� ¼P
i
ipiðtÞ ¼ v

vyFð1; tÞ. From this we
have

d
dt

½I� ¼ v

vt
v

vy
Fðy; tÞjy¼1

¼ v

vy

�
ðbþ gÞ½bmðyÞ � y� v

vy
Fðy; tÞ



jy¼1

¼ ðbþ gÞ
"bm0ðyÞ � 1

#
v

vy
Fðy; tÞ þ ðbþ gÞ

"bmðyÞ � y

#
v2

vy2
Fðy; tÞ

#
jy¼1

¼ ðbþ gÞ½bm0ð1Þ � 1�½I� þ ðbþ gÞ½bmð1Þ � 1�
"
v2

vy2
Fðy; tÞ

#
jy¼1

¼ ðbþ gÞ½ð2bÞ=ðbþ gÞ � 1�½I�
¼ ðb� gÞ½I�

v2 0
We used bmð1Þ ¼ 1 to eliminate the
vy2 Fðy; tÞ term and replaced bm ð1Þ with 2b=ðbþ gÞ. Using this and ½I�ð0Þ ¼ 1, we have

½I� ¼ eðb�gÞt :
This example proves

Corollary 3.1. In the infinite population limit, if a disease starts with a single infection, then the expected number of active in-
fections at time t solves

½I� ¼ eðb�gÞt (20)
3.3. Cumulative and current outbreak size distribution

Let pi;rðtÞ be the probability of having i currently infected individuals and r completed infections at time t. We define

Pðy; z; tÞ ¼Pirpi;rðtÞyizr to be the PGF at time t. We have Pðy;z;0Þ ¼ y. As before we assume the population is large enough
that the spread of the disease is not limited by the size of the population.

We give an abbreviated derivation of the Kolmogorov equations for P. A full derivation is requested as an exercise.
Forward Kolmogorov formulation. To derive the forward Kolmogorov equations for the PGF Pðy;z; tÞ, we use Property A.11,

noting that all transition rates are proportional to i. The rate of transmission is bi and the rate of recovery is gi. There are no
interactions to consider. So

v

vt
Pðy; z; tÞ ¼ ðbþ gÞ

�
by2

bþ g
þ gz
bþ g

� y
�

v

vy
Pðy; z; tÞ

¼ ðbþ gÞ½bmðy; zÞ � y� v
vy

Pðy; z; tÞ
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Backward Kolmogorov formulation. To derive the backward Kolmogorov equations for the PGFP, we use a modified version of
Property A.12 to account for two types of individuals (Exercise A.14, with events proportional only to the infected individuals).
We find

_Pðy; z; tÞ ¼ ðbþ gÞ½bmðPðy; z; tÞ; zÞ �Pðy; z; tÞ� :
Combining our backward and forward Kolmogorov equation results, we get

Theorem3.4. Assuming a single initial infection in an infinite population, the PGFPðy; z; tÞ for the joint distribution of the number
of current and completed infections at time t solves

v

vt
Pðy; z; tÞ ¼ ðbþ gÞ½bmðy; zÞ � y� v

vy
Pðy; z; tÞ (21)

as well as

v

vt
Pðy; z; tÞ ¼ ðbþ gÞ½bmðPðy; z; tÞ; zÞ �Pðy; z; tÞ� (22)

both with the initial condition Pðy;z;0Þ ¼ y.

It is again remarkable that these seemingly very different equations have the same solution.

Example 3.2. The expected number of completed infections at time t is

½R� ¼
X
j;k

kpjk ¼
v

vz
Pðy; z; tÞjy¼z¼1

(although we use R, this approach is equally relevant for counting completed infections in the SIS model because of the infinite
population assumption). Its evolution is given by

d
dt

½R� ¼ v

vt
v

vz
Pðy; z; tÞjy¼z¼1

¼ v

vz

�
ðbþ gÞ½bmðy; zÞ � y� v

vy
Pðy; z; tÞ



jy;z¼1

¼ ðbþ gÞ
�
v

vz
bmðy; zÞ v

vy
Pðy; z; tÞ þ ½bmðy; zÞ � y� v

vz
v

vy
Pðy; z; tÞ



jy¼z¼1

¼ ðbþ gÞ
�

g

bþ g

v

vy
Pðy; z; tÞ þ 0

v

vz
v

vy
Pðy; z; tÞ



jy¼z¼1

¼ g½I�

where we use the fact that bmð1; 1Þ ¼ 1, v
vz bmðy; zÞ ¼ g=ðbþ gÞ, and ½I� ¼ v

vyPðy;z;tÞjy¼z¼1. Our result says that the rate of change of

the expected number of completed infections is g times the expected number of current infections.

This example proves

Corollary 3.2. In the infinite population limit the expected number of recovered individuals as a function of time solves

d
dt

½R� ¼ g½I� (23)
We will see that this holds even in finite populations.

3.4. Small outbreak final size distribution

We define

U∞ðzÞ ¼
0@X

j<∞
ujz

j

1Aþ u∞z∞
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to be the PGF of the distribution of outbreak final sizes in an infinite population, with u∞z∞ representing epidemics and for
j<∞ uj representing the probability that an outbreak infects exactly j individuals. We use the convention that z∞ ¼ 0 for z<1
and 1 for z ¼ 1. To calculate U∞, we make observations that the outbreak size coming from a single infected individual is 1 if
the first thing that individual does is a recovery or it is the sum of the outbreak sizes of two infected individuals if the first
thing the individual does is to transmit (yielding herself and her offspring).

Thus we have

U∞ðzÞ ¼ b

bþ g
½U∞ðzÞ�2 þ g

bþ g
z

¼ bmðU∞ðzÞ; zÞ
As for the discrete-time case wemay solve this iteratively, starting with the guess U∞ðzÞ ¼ z. Once n iterations have occurred,

the first n coefficients of U∞ðzÞ remain constant. Note that unlike the discrete case, here U∞ðzÞszbmðU∞ðzÞÞ. This yields
Theorem 3.5. The PGF U∞ðzÞ ¼Pjujzj þ u∞z∞ for the final size distribution assuming a single initial infection in an infinite
population solves

U∞ðzÞ ¼ bmðU∞ðzÞ; zÞ (24)

with U∞ð1Þ ¼ 1. This function is discontinuous at z ¼ 1. For the final size distribution conditional on the outbreak being finite, the

PGF is continuous and equals�

U∞ðzÞ=a 0 � z<1
1 z ¼ 1
As in the discrete-time case, we can find the coefficients of U∞ðzÞ analytically.
Theorem 3.6. Consider continuous-time outbreaks with transmission rate b and recovery rate g in an infinite population with a
single initial infection. The probability the outbreak causes exactly j infections for j<∞ [that is, the coefficient of zj in U∞ðzÞ] is

uj ¼
1
j

bj�1gj

ðbþ gÞ2j�1

�
2j� 2
j� 1

�

We prove this theorem in Appendix B. The proof is based on observing that if there are j total infected individuals, this
requires j� 1 transmissions and j recoveries. Of the sequences of 2j� 1 events that have the right number of recoveries and
transmissions, a fraction 1=ð2j� 1Þ of these satisfy additional constraints required to be a valid sequence leading to j in-
fections (the sequence cannot lead to 0 infections prior to the last step). Alternately, we can note that the offspring distri-
bution is geometric and use Table 6.

3.5. Full dynamics in finite populations

We now derive the PGFs for continuous time SIS and SIR outbreaks in a finite population.
PGF-based techniques are easiest whenwe can treat events as independent. In the continuous-time model, whenwe look

at the system in a given state, each event is independent of the others. Once the next event happens the possible events
change, but conditional on the new state, they are still independent. Thus we can use the forward Kolmogorov approach.

The backward Kolmogorov approach will not work because in a finite population descendants of any individual are not
independent. We do not look at the discrete-time version because in a single time step, multiple events can occur, some of
which affect one another. So wewould lose independence as we go from one time step to another. For these reasons we focus
on the forward Kolmogorov formulations for the continuous-timemodels. Much of our approach herewas derived previously
in (Bailey, 1953; Bartlett, 1949). See also (Allen, 2008).

For a given population size N, we let s, i, and r be the number of susceptible, infected and immune (removed) individuals.
For the SIS model r ¼ 0 and we have sþ i ¼ N while for the SIR model we have sþ iþ r ¼ N.

3.5.1. SIS
We start with the SIS model. We set xs;iðtÞ to be the probability of s susceptible and i actively infected individuals at time t.

We define the PGF for the joint distribution of susceptible and infected individuals

Xðx; y; tÞ ¼
X
i

xs;iðtÞxsyi
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At rate b
N si, successful transmissions occur, moving the system from the state ðs; iÞ to ðs� 1; iþ 1Þ, which is equivalent to

removing one susceptible individual and one infected individual, and replacing themwith two infected individuals. Following
Property A.11, this is represented by

b

N



y2 � xy

� v

vx
v

vy
X :

At rate gi, recoveries occur, moving the system from the state ðs; iÞ to ðsþ 1; i� 1Þ, which is equivalent to removing one

infected individual and replacing it with a susceptible individual. This is represented by

gðx� yÞ v

vy
X :

So the PGF solves
_X ¼ b

N



y2 � xy

� v

vx
v

vy
Xþ gðx� yÞ v

vy
X

It is sometimes useful to rewrite this as
_X ¼ ðy� xÞ
�
b

N
y
v

vx
� g



v

vy
X

We have
Theorem 3.7. For SIS dynamics in a finite population we have

v

vt
X ¼ b

N



y2 � xy

� v

vx
v

vy
Xþ gðx� yÞ v

vy
X (25)
We can use this to derive equations for the expected number of susceptible and infected individuals.

Example 3.3. We use ½S� and ½I� to denote the expected number of susceptible and infected individuals at time t. We have

½S� ¼
X
s;i

sxsiðtÞ ¼
X
s;i

sxsi1
s�11i ¼ v

vx
Xð1;1; tÞ

½I� ¼
X
s;i

ixsiðtÞ ¼
X
s;i

ixsi1
s1i�1 ¼ v

vy
Xð1; 1; tÞ

We also define the expected value of the product si,

½SI� ¼
X
s;i

sixsiðtÞ ¼
v

vx
v

vy
Xð1;1; tÞ :

Then we have h
_S
i
¼ v

vt
v

vx
Xð1;1; tÞ

¼ v

vx
v

vt
Xðx; y; tÞjx¼y¼1

¼ v

vx

�
ðy� xÞ

�
b

N
y
v

vx
� g



v

vy
X
�
jx¼y¼1

¼ ðy� xÞ v

vx

��
b

N
y
v

vx
� g

�
v

vy
X


�
�
b

N
y
v

vx
� g



v

vy
Xjx¼y¼1

¼ �b

N
½SI� þ g½I�

In the final line, we eliminated the first term because y� x is zero at x ¼ y ¼ 1. Similar steps show that
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h
_I
i
¼ b

N
½SI� � g½I�

but the derivation is faster if we simply note ½S� þ ½I� ¼ N is constant. This proves

Corollary 3.3. For SIS disease, the expected number infected and susceptible solves

d
dt

½S� ¼ �b

N
½SI� þ g½I� (26)

d
dt

½I� ¼ b

N
½SI� � g½I� (27)

where ½SI� is the expected value of the product si.
3.5.2. SIR
Now we consider the SIR model. A review of various techniques (including PGF-based methods) to find the final size

distribution of outbreaks in finite-size populations can be found in (House, Ross, & Sirl, 2013). Here we focus on the appli-
cation of PGFs to find the full dynamics. To reduce the number of variables we track, we focus just on s and i and use r ¼ N �
s� i to find the number recovered. So Xðx; y; tÞ does not have any dependence on z. For a given s and i, infection occurs at rate
bsi=N. It appears as a departure from the state ðs; iÞ and entry into ðs� 1; iþ 1Þ. Following Property A.11, this is captured by

b

N



y2 � xy

� v

vx
v

vy
X :

Recovery is captured by
gð1� yÞ v

vy
X

[note the difference from the SIS case in the recovery term]. So we have
Theorem 3.8. For SIR dynamics in a finite population we have

v

vt
X ¼ b

�
y2 � xy

�
N

v

vx
v

vy
Xþ gð1� yÞ v

vy
X (28)
We follow similar steps to Example 3.3 to derive equations for ½S� and ½I� in Exercise 3.16. The result of this exercise should
show

Corollary 3.4. For SIR disease, the expected number of susceptible, infected, and recovered individuals solves

d
dt

½S� ¼ �b

N
½SI� (29)

d
dt

½I� ¼ b

N
½SI� � g½I� (30)

d
dt

½R� ¼ g½I� (31)

where ½SI� is the expected value of the product si.
3.6. Exercises

Exercise 3.1. Extinction Probability. Let b and g be given with bmðyÞ ¼ ðby2 þ gÞ=ðbþ gÞ.

a. Analytically find solutions to y ¼ bmðyÞ.
b. Assume b<g. Find all solutions in ½0;1�.
c. Assume b>g. Find all solutions in ½0;1�.
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Exercise 3.2. Consistency with discrete-time formulation. Although we have argued that a transmission in the continuous-
time disease transmission case can be treated as if a single infected individual has two infected offspring and then disappears,
this is not what actually happens. In this exercise we look at the true offspring distribution of an infected individual before recovery,
and we show that the ultimate predictions of the two versions are equivalent. Consider a disease in which individuals transmit at
rate b and recover at rate g. Let pi be the probability an infected individual will cause exactly i new infections before recovering.

a. Explain why p0 ¼ g=ðbþ gÞ.
b. Explain why pi ¼ big=ðbþ gÞiþ1. So pi form a geometric distribution.
c. Show that mðyÞ ¼Pipiy

i can be expressed as mðyÞ ¼ g=ðbþ g� byÞ. [This definition of m without the hat corresponds to the
discrete-time definition]

d. Show that the solutions to y ¼ mðyÞ are the same as the solutions to y ¼ bmðyÞ ¼ ðby2 þ gÞ=ðbþ gÞ. So the extinction probability
can be calculated either way. (You do not have to find the solutions to do this, you can simply show that the two equations are
equivalent).
Exercise 3.3. Relation with ℛ0. Take mðyÞ ¼ g=ðbþ g� byÞ as given in Exercise 3.2 and bm ¼ ðby2 þ gÞ=ðbþ gÞ.

a. Show that m0ð1Þsbm0ð1Þ in general.
b. Show that when ℛ0 ¼ m0ð1Þ ¼ 1, then m0ð1Þ ¼ bm0ð1Þ ¼ 1. So both are still threshold parameters.
Exercise 3.4. Revisiting eventual extinction probability. We revisit the results of Exercise 3.1 using Eq. (17) (without solving it).

a. By substituting for bmðaÞ, show that _a ¼ ð1� aÞðg� baÞ.

We have að0Þ ¼ 0. Taking this initial condition and expression for _a, show that

b. a/1 as t/∞ if b<g (i.e., ℛ0 <1) and
c. a/g=b as t/∞ if b>g (i.e., ℛ0 >1).
d. Set up (but do not solve) a partial fraction integration that would give aðtÞ analytically.
Exercise 3.5. Understanding the backward Kolmogorov equations. Let 4iðtÞ denote the probability of having i active infections
at time t given that at time 0 there was a single infection [41ð0Þ ¼ 1]. We have 40ðtÞ ¼ aðtÞ. We extend the derivation of Eq. (16) to
41. Assume 40ðt0Þ and 41ðt0Þ are known.

a. Following the derivation of Eq. (16), approximate 40ðDtÞ, 41ðDtÞ, and 42ðDtÞ for small Dt.
b. From biological grounds explain why if there are 0 infections at time Dt then there are also 0 infections at time t0 þ Dt.
c. If there is 1 infection at time Dt, what is the probability of 1 infection at time t0 þ Dt?
d. If there are 2 infections at time Dt, what is the probability of 1 infection at time t0 þ Dt?
e. Write 41ðt0 þ DtÞ in terms of 40ðt0Þ, 41ðt0Þ, 41ðDtÞ, and 42ðDtÞ.
f. Using the definition of the derivative, find an expression for _41 in terms of 41ðtÞ and 42ðtÞ.
Exercise 3.6. Derivation of the forward Kolmogorov equations. In this exercise we derive the PGF version of the forward
Kolmogorov equations by directly calculating the rate of change of the probabilities of the states. Define 4jðtÞ to be the probability
that there are j active infections at time t.

We have the forward Kolmogorov equations:

_4j ¼ bðj� 1Þ4j�1 þ gðjþ 1Þ4jþ1 � ðbþ gÞj4j :
a. Explain each term on the right hand side of the equation for _4j.
b. By expanding _Fðy; tÞ ¼ v

vt
P

j4jyj, arrive at Equation (18).
Exercise 3.7. Derivation of the backward Kolmogorov equations. In this exercise we follow (Allen, 2017; Bailey, 1964) and
derive the PGF version of the backward Kolmogorov equations by directly calculating the rate of change of the probabilities of the
states. Define 4kiðtÞ to be the probability of i infections at time t given that there were k infections at time 0. Although we assume
that at time 0 there is a single infection, we will need to derive the equations for arbitrary k.
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a. Explain why

4kiðt þ DtÞ ¼ 4kiðtÞ � kðbþ gÞ4kiðtÞDt þ k


b4ðkþ1ÞiðtÞ þ g4ðk�1ÞiðtÞ

�
þ O ðDtÞ

for small Dt.

b. By using the definition of the derivative _4ki ¼ limDt/0
4kiðtþDtÞ�4kiðtÞ

Dt , find _4ki

Define Fðy; tjkÞ ¼Pi4kiyi to be the PGF for the number of active infections assuming that there are k initial infections.

c. Show that

_Fðy; tj1Þ ¼ �ðbþ gÞFðy; tj1Þ þ bFðy; tj2Þ þ gFðy; tj0Þ
d. Explain why Fðy; tjkÞ ¼ Fðy; tj1Þk.
e. Complete the derivation of Equation (19).
Exercise 3.8. Define Fðy; tjkÞ to be the PGF for the probability of having i infections at time t given k infections at time 0.

a. Explain why Fðy; tjkÞ ¼ ½Fðy; tÞ�k.
b. Show that if we substituteFðy; tjkÞ ¼ ½Fðy; tÞ�k in place ofFðy; tÞ in Eq. (18) the equation remains true with the initial condition

yk.
c. Show that if we substitute Fðy; tjkÞ ¼ ½Fðy; tÞ�k in place of Fðy; tÞ in equation (19) we do not get a true equation.

So Eq. (18) applies regardless of the initial condition, but Eq. (19) is only true for the specific initial condition of one infection.

Exercise 3.9. Let Fðy; tjkÞ be the PGF for the number of infections assuming there are initially k infections. Derive the backward
Kolmogorov equation forFðy; tjkÞ. Note that some of theFs in the derivation above would correspond toFðy; tj1Þ and some of them
to Fðy; tjkÞ.
Exercise 3.10. Comparison of the formulations.

a. Using Eq. (18) derive an equation for _a where aðtÞ ¼ Fð0;tÞ. What, if any, additional information would you need to solve this
numerically?

b. Using Eq. (19), derive Equation (17) for _awhere aðtÞ ¼Fð0;tÞ. What, if any, additional information would you need to solve this
numerically?
Exercise 3.11. Full solution.

a. Show that Eq. (19) can be written

v

vt
Fðy; tÞ ¼ ðg� bFðy; tÞÞð1� Fðy; tÞÞ
b. Using partial fractions, set up an integral which you could use to solve for Fðy; tÞ analytically (you do not need to do all the
algebra to solve it).
Exercise 3.12. Argue from their definitions that Fðy; tÞ ¼ Pðy; z; tÞjz¼1.

Exercise 3.13. Derive Theorem 3.3 from Theorem 3.4.
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Exercise 3.14. Derive Theorem 3.5 from Theorem 3.4.

Exercise 3.15. Equivalence of continuous and discrete final size distributions.
Show by direct substitution that ifU∞ðzÞ ¼ bmðU∞ðzÞ; zÞ thenU∞ðzÞ ¼ zmðU∞ðzÞÞwhere mðyÞ ¼ g=ðbþ g� byÞ is the PGF for the

offspring distribution found in Exercise 3.2.

Exercise 3.16. We revisit the derivations of the usual mass action SIR ODEs. Following Example 3.3,

a. Derive ½ _S� in terms of ½SI�.
b. Derive ½ _I� in terms of ½SI� and ½I�.
c. Using ½S� þ ½I� þ ½R� ¼ N, derive ½ _R�.
4. Large-time dynamics

We now look at how PGFs can be used to develop simple models of SIR disease spread in the large population limit when
the disease infects a nonzero fraction of the population. In this limit, the early-time approaches derived before break down
because depletion of the susceptible population is important. The later-time models of Section 3.5 are impractical because of
the N/∞ limit and are more restricted due to the continuous-time assumption.
4.1. SIR disease and directed graphs

In Section 2.5 we argued that for early times the continuous-time predictions can be framed in terms of the discrete-time
predictions because we can classify infections by the length of the transmission chain to them from the index case. For SIR
disease this argument extends beyond early times.

To see this, we assume that prior to the disease introduction, we know for each individual what would happen if he ever
becomes infected as in Fig. 9. In particular, we know how long his infectionwould last, to whom he would transmit, and how
long the delays from his infection to onwards transmission would be. The process of choosing these in advance, selecting the
initial infection(s), and tracing infection from there is equivalent to choosing the initial infection(s) and then choosing the
transmissions while the infection process is traced out.

By assigning who transmits to whom (and how long the delays are), we have defined a weighted directed graph whose
edges represent the potential transmissions and weights represent the delays (Kenah &Miller, 2011; Kiss, Miller,& Simon). A
node vwill become infected if and only if there is at least one directed path from an initially infected node u to v. The time of
v's infection is given by the least sum of all paths from initially infected nodes to v. We note that the transmission process
could be quite complex: the duration of a node's infection and the delays from time of infection to time of onwards trans-
missions can have effectively arbitrary distributions, and we could still build a similar directed graph.

This directed graph is a useful structure to study because it encodes the outbreak in a single static object, as opposed to a
dynamic process. There is significant study of the structure of such directed graphs (Broder et al., 2000; Dorogovtsev, Mendes,
& Samukhin, 2001). Much of it focuses on the size of out-components of a node (that is, for a given node, what fraction of the
population can be reached following the edges forwards) or the in-components (that is, fromwhat fraction of the population
is it possible to reach a given node by following edges forwards).
Fig. 9. (Left) A twelve-individual population, after the a priori assignment of who would transmit to whom if ever infected by the SIR disease (the delay until
transmission is not shown). Half of the nodes have zero potential infectors and half have 3. Half of the nodes have 1 potential offspring and half have 2. So the
offspring distribution has PGF ðxþ x2Þ=2 while the ancestor distribution has PGF cðxÞ ¼ ð1þ x3Þ=2. (Middle) If node 6 is initially infected, the infection will reach
node 4 who will transmit to 5 and 7, and eventually infection will also reach 8 and 2 before further transmissions fail because nodes are already infected. If
however, it were to start at 9, then it would reach 2, from which it would spread only to 10. (Right) By tracing backwards from an individual, we can determine
which initial infections would lead to infection of that individual. For example individual 4 will become infected if and only if it is initially infected or any of 0, 3, 5,
6, 7, 8, or 11 is an initial infection.
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4.2. Final size relations for SIR epidemics

We now derive final size relations for SIR epidemics in the large population limit. We begin with the assumption that a
single node is initially infected and that an epidemic happens.

We use the mapping of the SIR epidemic to a directed graph G. Assume that a single node u is chosen to be infected.
Consider a node v. The probability v is infected is the probability that u is in her in-component, and so it equals the proportion
of G that is in the in-component of v. In the limit as G becomes infinite, there are a few possibilities. We are interested inwhat
happens when an epidemic occurs, so we can assume that u has a large out-component (in the sense that the out-component
takes up a non-zero fraction of G in the N/∞ limit) (Broder et al., 2000):

� If v has a small in-component, then almost surely u is not in the in-component and so almost-surely v is not infected.
� If v has a large in-component, then almost surely it contains a nodew that lies in the out-component of u. The existence of
w then implies the existence of a path from u to w to v, so v is in u's out-component and v becomes infected.

Thus, if u causes an epidemic in the large N limit, then the probability that v becomes infected equals the probability that v
has a large in-component. So the size of an epidemic (if it happens) is simply the probability a random individual has a large
in-component.

We approach the question of whether v has a large in-component in the samewaywe approached the question of whether
u causes a large chain of infections (i.e., whether u has a large out-component). We define the PGF of the ancestor distribution
to be the function cðxÞ defined by

cðxÞ ¼
X
i

pix
i

where pi is the probability that a random node in the directed graph has in-degree i. That is, there are exactly i nodes that
would directly transmit to the randomly chosen node if they were ever infected. So the probability an individual is not
infected Sð∞Þ=N solves x ¼ cðxÞ, choosing the smaller solution when two solutions exist. Since the proportion infected is
rð∞Þ ¼ Rð∞Þ=N ¼ 1� Sð∞Þ=N, we can conclude

Theorem 4.1. Assume that an outbreak begins with a single infected individual and an epidemic results. In the large N limit, the
expected cumulative proportion infected rð∞Þ ¼ Rð∞Þ=N solves

rð∞Þ ¼ 1� cð1� rð∞ÞÞ

where cðxÞ is the PGF of the ancestor distribution. If there are multiple solutions we choose the larger solution for rð∞Þ in ½0;1�.
Under common assumptions, the population is large, the average number of transmissions an individual causes isℛ0, and

the recipient is selected uniformly at random. Under these assumptions the ancestor distribution is Poissonwithmeanℛ0. So
cðxÞ ¼ e�ℛ0ð1�xÞ. xThen

rð∞Þ ¼ 1� e�ℛ0rð∞Þ : (32)
Deriving this result does not depend on the duration of infections, or even on the distribution of factors affecting infec-
tiousness. The assumptions required are that an epidemic starts from a single infected individual, that each transmission
reaches a randomly chosen member of the population, that all individuals have equal susceptibility, and the average indi-
vidual will transmit to ℛ0 others. This result is general across a wide range of assumptions about the infectious process.

Restating this we have:

Corollary 4.1. Assume that an SIR disease is spreading in a well-mixed population with homogeneous susceptibility. Assuming
that the initial fraction infected is infinitesimal and an epidemic occurs, the final size satisfies

rð∞Þ ¼ 1� e�ℛ0rð∞Þ (33)

where ℛ0 is the reproductive number of the disease.

This explains many of the results of (Ma& Earn, 2006; Miller, 2012), and our observation in Example 2.3 that the epidemic
size depended on ℛ0 and not on any other property of the offspring distribution. A closely-related derivation is provided by
(Diekmann & Heesterbeek, 2000, Section 1.3).

4.3. Discrete-time SIR dynamics

Wenow take a discrete-time approach, similar to (Miller et al., 2012; Valdez, Macri,& Braunstein, 2012) and (Kiss, Miller,&
Simon, chapter 6). We will assume that at generation g ¼ 0 the disease is introduced by infecting a proportion r uniformly at
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random leaving the remainder susceptible. We assume that the population is very large and that the number of infections is
large enough that the dynamics can be treated as deterministic. Our results can be adapted to other initial conditions (for
example, to account for nonzero R in the initial condition).

We assume that cðxÞ is known and that there is no correlation between how susceptible an individual is and how in-
fectious that individual is. Thus at generation g, the expected number of transmissions occurring is ℛ0IðgÞ, and how the
recipients are chosen depends on c.

Let v be a randomly chosen member of the population. The probability that v's randomly chosen ancestor has not yet been
infected by generation g � 1 is Sðg� 1Þ=N. The probability v is susceptible at generation g is the probability v was initially
susceptible, 1� r, times the probability v has not received any transmissions, cðSðg � 1Þ=NÞ (see Exercise 4.2).

So for g>0 we arrive at

SðgÞ ¼ ð1� rÞNcðSðg � 1Þ=NÞ
IðgÞ ¼ N � RðgÞ � SðgÞ
RðgÞ ¼ Rðg � 1Þ þ Iðg � 1Þ

with
Sð0Þ ¼ 1� r; Ið0Þ ¼ r; Rð0Þ ¼ 0 :

So we have
Theorem 4.2. Assume that cðxÞ is the PGF of the ancestor distribution and assume there is no correlation between infectiousness
and susceptibility of a given individual. Further assume that at generation 0 a fraction r is randomly infected in the generation-
based discrete-time model. Then in the large population limit

SðgÞ ¼ ð1� rÞNcðSðg � 1Þ=NÞ (34a)

IðgÞ ¼ N � RðgÞ � SðgÞ (34b)
RðgÞ ¼ Rðg � 1Þ þ Iðg � 1Þ : (34c)
With initial conditions
Sð0Þ ¼ ð1� rÞN; Ið0Þ ¼ rN; Rð0Þ ¼ 0 : (34d)
We can interpret this in the context of survival functions. The function ð1� rÞcðSðg � 1Þ=NÞ gives the probability that a
node has lasted g generations without being infected.

4.4. Continuous-time SIR epidemic dynamics

We nowmove to continuous-time SIR epidemics. We allow for heterogeneity, assuming that each susceptible individual u
receives transmissions at some rate kubIðtÞ=N〈K〉, and that the PGF of k is jðxÞ ¼ P

kPðkÞxk. We assume k takes only non-
negative integer values.

For an initially susceptible individual uwith a given ku, the probability of not yet receiving a transmission by time t solves
_su ¼ � kubIðtÞsu=N〈K〉, which has solution

su ¼ e�kub

Z t

0
IðtÞdt
N〈K〉 :

So we can write
su ¼ qku

Z t
where q ¼ e�b 0
IðtÞdt
N〈K〉 and

_q ¼ �bqI=N〈K〉 :
Considering a random individual of unknown k, the probability shewas initially susceptible is 1� r and the probability she
has not received any transmissions is jðqÞ. So
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SðtÞ ¼ ð1� rÞNjðqÞ
Taking _R ¼ gI, we have

_R ¼ gI

¼ �gN〈K〉
b

_q

q
:

Integrating both sides, taking qð0Þ ¼ 1 and Rð0Þ ¼ 0, we have
R ¼ �gN〈K〉
b

lnq

Taking I ¼ N � S� R we get
I ¼ N
�
1� ð1� rÞjðqÞ þ g〈K〉

b
lnq
�

and so _q becomes
_q ¼ �bq

�
1� ð1� rÞjðqÞ þ g〈K〉

b
lnq
��

〈K〉
Theorem 4.3. Assuming that at time t ¼ 0 a fraction r of the population is randomly infected and that the susceptible individuals
each have a k such that they become infected as a Poisson process with rate kbI=N〈K〉, in the large population limit we have

S ¼ Nð1� rÞjðqÞ (35a)�
g〈K〉

�

I ¼ N 1� ð1� rÞjðqÞ þ

b
lnq (35b)

gN〈K〉

R ¼ �

b
lnq (35c)

where jðxÞ ¼PPðkÞxk and the system is governed by a single ODE

k

_q ¼
�bq



1� ð1� rÞjðqÞ þ g〈K〉

b
lnq
�

〈K〉
(35d)

with initial condition
qð0Þ ¼ 1 : (35e)
As in the discrete-time case, this can be interpreted as a survival function formulation of the SIR model. Most, if not all,
mass-action formulations of the SIR model can be re-expressed in a survival function formulation. Some examples are shown
in the Exercises.

Some very similar systems of equations are developed in (Kiss, Miller, & Simon, chapter 6) and (Miller, 2011; Miller et al.,
2012; Valdez et al., 2012; Volz, 2008) where the focus is on networks for which the value of k not only affects the probability of
becoming infected, but also of transmitting further. These references focus on the assumption that an individual's infector
remains a contact after transmission, but they contain techniques for studying partnerships with varying duration.

4.5. Exercises

Exercise 4.1. Ancestor distribution for homogeneous well-mixed population.
Consider an SIR disease in a well-mixed population having N individuals and a givenℛ0. Let v be a randomly chosen individual

from the directed graph created by placing edges from each node to all those nodes they would transmit to if infected.

a Show that if the average number of offspring is ℛ0, then so is the average number of infectors.
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b If there are exactly ℛ0N edges in the directed graph and each recipient is chosen uniformly at random from the population
(independent of any previous choice), argue that the number of transmissions v receives has a binomial distribution with ℛ0N
trials and probability ℛ0=N. (technically we must allow edges from v to v)

c Argue that if ℛ0 remains fixed as N/∞, then the number of transmissions v receives is Poisson distributed with mean ℛ0.
Exercise 4.2. Explain why for large N the probability v is still susceptible at generation g if she was initially susceptible is cðSðg�
1Þ=NÞ.
Exercise 4.3. Use Theorem 4.2 to derive a result like Theorem 4.1, but with nonzero r.

Exercise 4.4. Final size relations
Consider the continuous time SIR dynamics as given in System (35)

a Assume k ¼ 1 for all individuals, and write down the corresponding equations for S, I, R, and q.
b At large time I/0, so Sð∞Þ ¼ N � Rð∞Þ. But also Sð∞Þ ¼ Sð0Þjðqð∞ÞÞ. By writing qð∞Þ in terms of Rð∞Þ, derive a recurrence

relation for rð∞Þ ¼ Rð∞Þ=N in terms of rð∞Þ and ℛ0 ¼ b=g.
c Comment on the relation between your result and Theorem 4.1
Exercise 4.5. Other relations

a Using the equations from Exercise 4.4, derive the peak prevalence relation, an expression for the maximum value of I. [at the

maximum _I ¼ 0, so we start by finding q so that _Sþ _R ¼ 0.]
b Similarly, find the peak incidence relation, an expression for the maximum rate at which infections occur, � _S.
Exercise 4.6. Alternate derivation of su.

If the rate of transmissions to u is bIku=N〈K〉, then the expected number of transmissions u has received is bku

Z t

0
IðtÞ dt=N〈K〉

and this is Poisson distributed.

a Let fuðxÞ be the PGF for the number of transmissions u has received. Find an expression for fuðxÞ in terms of the integralZ t

0
IðtÞdt.

b Explain why fuð0Þ is the probability u is still susceptible.
c Find fuð0Þ.
Exercise 4.7. Alternate derivation of Theorem 4.3 in the homogeneous case.
The usual homogeneous SIR equations are

_S ¼ �bIS=N
_I ¼ bIS=N � gI
_R ¼ gI

We will derive system (35) for fixed k ¼ 1 from this system through the use of an integrating factor. Set q ¼ e
�b

Z t

0
IðtÞdt=N

.

a Show that _q ¼ �bIq=N and so _q=q ¼ � b _R=Ng.
b Using the equation for _S add bIS=N to both sides and then divide by q(the factor 1=q is an integrating factor). Show that the

expression on the left hand side is d
dt S=q and so

d
dt

S=q ¼ 0 :

c Solve for R in terms of q.
d Solve for S in terms of q.



J.C. Miller / Infectious Disease Modelling 3 (2018) 192e248228
e Solve for I in terms of q using Sþ Iþ R ¼ N.

This equivalence was found in (Miller, 2012) and (Harko, Lobo, & Mak, 2014).

Exercise 4.8. Alternate derivation of Theorem 4.3.
Consider now a population havingmany subgroups of susceptibles denoted by kwith the group k receiving transmissions at rate

bkI=N per individual. Once infected, each individual transmits with rate b〈K〉 and recovers with rate g. These assumptions lead to

_Sk ¼ �bk
I

N〈K〉
Sk

_I ¼ �gI þ b
I

N〈K〉

X
k

kSk

_R ¼ gI

Following Exercise 4.7, set q ¼ e
�b

Z t

0
IðtÞ dt=N

and derive system (35) from these equations by use of an integrating factor.
5. Multitype populations

We now briefly discuss how PGFs can be applied to multitype populations. This section is intended primarily as a pointer
to the reader to show that it is possible to apply these methods to such populations. We do not perform a detailed analysis.

Many populations can be divided into subgroups. These may be patches in a metapopulation model, genders in a het-
erosexual sexually transmitted infection model, age groups in an age-structured population, or any of a number of other
groupings. Applications of PGFs to such models have been studied in multiple contexts (Kucharski & Edmunds, 2015; Reluga,
Meza, Walton, & Galvani, 2007).
5.1. Discrete-time epidemic probability

We begin by considering the probability of an epidemic in a discrete-time model. To set the stage, assume there are M
groups and let pi1 ;i2 ;/;iM jk be the probability that an individual of group kwill cause i[ infections in group [. Define agjk to be the
probability that a chain of infections starting from an individual of group k becomes extinct within g generations.

It is straightforward to show that if we define

jkðx1; x2;…; xMÞ ¼
X

i1 ;i2;…;iM

pi1 ;i2 ;…;iM jkx
i1
1 x

i2
2/xiMM

then

agjk ¼
X

i1 ;i2 ;…;iM

pi1;i2;/;iM jka
i1
g�1j1a

i2
g�1j2/aiMg�1jM

¼ jk



ag�1j1;ag�1j2;/;ag�1jM

�
After converting this into vectors we get a!1 ¼ j

!ð 0!Þ. Iterating g times we have

a!g ¼ j
!½g�


0
!�

(36)

Setting a! to be the limit as g goes to infinity, we find the extinction probabilities. Specifically, the k-th component of a! is the
probability of extinction given that the first individual is of type k. Thus we have:

Theorem 5.1. Let

� a!g ¼ ðagj0;agj1;…;agjMÞ where agjk is the probability a chain of infections starting with a type k individual will end within g
generations

� and j
!¼ ðj1;j2;…;jMÞ where jkð x!Þ ¼ P

i1;i2;…;iM
pi1 ;i2 ;…;iM jkx

i1
1 x

i2
2/xiMM .

Then a!g ¼ j
!½g�

ð 0!Þ.
The vector of eventual extinction probabilities in the infinite population limit is given by a!∞ ¼ limg/∞ a!g and is a solution to
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a!∞ ¼ j
!ð a!∞Þ.

We could have derived this directly by showing that the extinction probabilities solve a! ¼ j
!ð a!Þ. In this case it might not

be obvious how to solve this multidimensional system of nonlinear equations or how to be certain that the solution found is
the appropriate one. However, by interpreting the iteration in Eqn. (36) in terms of the extinction probability after g gen-

erations, it is clear that simply iterating starting from a!0 ¼ 0
!

will converge to the appropriate values. Additionally the values
calculated in each iteration have a meaningful interpretation.

Example 5.1. Consider a population made up of many large communities. We assume an unfamiliar disease is spreading through
the population. When the disease begins to spread in a community, the community learns to recognize the disease symptoms and
infectiousness declines. We assume that we can divide the population into 3 types: primary cases T0, secondary cases T1, and
tertiary cases T2. The infectiousness of primary cases is higher than that of secondary cases which is higher than that of tertiary
cases. Within a community a primary case can cause secondary cases, while secondary and tertiary cases can cause tertiary cases.
All cases can cause new primary cases in other communities. We ignore multiple introductions to the same community.

We define nij to be the number of infections of type Ti caused by a type Tj individual, and we assume that we know the joint
distribution pn00n10 , pn01n21 , and pn02n22 . We define

j1ðx; y; zÞ ¼
X

n00;n10

pn00n10x
n00yn10

j2ðx; y; zÞ ¼
X

n01;n21

pn01n21x
n01zn21

j3ðx; y; zÞ ¼
X

n02;n22

pn02n22x
n02zn22

Note that j1 does not depend on z while j2 and j3 do not depend on y.
We define a!0 ¼ ð0;0;0Þ and set a!g ¼ ðj1ð a!g�1Þ;j2ð a!g�1Þ;j3ð a!g�1ÞÞ. Then taking a! to be the limit as g/∞, the first entry

of a! is the probability that the disease goes extinct starting from a single primary case.
5.2. Continuous-time SIR dynamics

Now we consider a continuous-time version of SIR dynamics in a heterogeneous population.
Assume again that there areM groups and let bij be the rate at which an individual in group j causes transmissions that go

to group i. Let xi be the expected number of transmissions that an individual in group i has received since time 0. Finally
assume that individuals in group i recover at rate gi. Then the expected number of transmissions an individual in group i has
received by time t is Poisson distributed with mean xi. The PGF for the number of transmissions received is thus e�xið1�xÞ.
Setting x ¼ 0, the probability of having received zero transmissions is e�xiðtÞ. Thus Si ¼ Sið0Þe�xiðtÞ. We have Ii ¼ Ni � Si � Ri
and _Ri ¼ giIi. To find xi, we simply note that the total rate that group i is receiving infection is

P
jIjbij, and so

_xi ¼
P

jIjbij
Ni

:

Thus:

Theorem 5.2. If the rate of transmission from an infected individual in group j to group i is bij, then

Si ¼ Sið0Þe�xiðtÞ (37a)

Ii ¼ Ni � Si � Ri (37b)

_Ri ¼ giIi (37c)

_xi ¼
P

jIjbij
Ni

(37d)

with xð0Þ ¼ 0.
5.3. Exercises
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Exercise 5.1. Consider a vector-borne disease for which each infected individual infects a Poisson-distributed number of vectors,
with mean l. Each infected vector causes i infections with probability pi ¼ pið1� pÞ for some p2½0;1�. This scenario corresponds to
human infection lasting for a fixed time with some constant transmission rate to vectors, and each vector having probability p of
living to bite again after each bite and transmitting with probability 1 if biting.

a. Let agj1 and agj2 be the probability that an outbreak would go extinct in g generations starting with an infected human or vector

respectively. Find the vector-valued function j
!ð x!Þ ¼ ðj1ð x!Þ;j2ð x!ÞÞ. That is, what are the PGFs j1ðx1; x2Þ and j2ðx1;x2Þ?

b. Set l ¼ 3 and p ¼ 0:5. Find the probability of an epidemic if one infected human is introduced or if one infected vector is
introduced.

c. For the same values, find the probability of an epidemic if one infected vector is introduced.
d. Find j2ðj1ð0;xÞ;0Þ. How should we interpret the terms of its Taylor Series expansion?
Exercise 5.2. Starting from the equations

_Si ¼ �Si
Ni

X
j

bijIj

_Ii ¼ �giIi þ
Si
Ni

X
j

bijIj

_Ri ¼ giIi

use integrating factors to derive System (37).

Exercise 5.3. Assume the population is grouped into subgroups of size Ni with N ¼PiNi and the i-th subgroup has a parameter ki
representing their rate of contact with others. Take

bji ¼ kj
kiNiP
[N[k[

b

to be the transmission rate from type i individuals to a single type j individual, and assume all infected individuals recover with the
same rate g.

Define q ¼ e

�bð
P

j
kj

Z t

0
IjðtÞ dtÞ=

X
j

kjNj

and define the PGF jðxÞ ¼Pi
Ni
Nx

i. Let S ¼PiSi, I ¼
P

iIi, and R ¼P Ri.

S ¼ NjðqÞ
I ¼ N � S� R

_R ¼ gI

_q ¼ �bq

X
j

kjIjX
j

kjNj

with qð0Þ ¼ 1.
_q ¼ �bqþ b
q2j0ðqÞ
j0ð1Þ � qg ln q
a. Explain what assumptions this model makes about interactions between individuals in group i and j.
b. Show that
c. Explain why

P
j
kj IjP

j
kjNj

¼ 1�
P

j
kjSjP

j
kjNj

�
P

j
kjRjP
j
kjNj

.

d. Show that
P

j
kjSjP

j
kjNj

¼ qj0ðqÞ
j0ð1Þ .

e. Show that d
dt

P
j
kjRjP
j
kjNj

¼ �ðg=bÞ _q
q
, and solve for

P
j
kjRjP
j
kjNj

in terms of q assuming Rj ¼ 0 for all j.

f. Thus conclude that
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6. Discussion

There are many contexts where we are interested in how a newly introduced infectious disease would spread. We
encounter situations like this in the spread of zoonotic infections such as Monkey Pox or Ebola as well as the importation of
novel diseases such as the Zika in the Americas or the reintroduction of locally eliminated diseases such as Malaria.

PGFs are an important tool for the analysis of epidemics, particularly at early stages. They allow us to relate the individual-
level transmission process to the distribution of outcomes. This allows us to take data about the transmission process and
make predictions about the possible outcomes, but it also allows us to take observed outbreaks and use them to infer the
individual-level transmission properties.

For SIR disease PGFs also provide a useful alternative formulation to the usual mass-action equations. This formulation
leads to a simple derivation of final-size relations and helps explain why previous studies have shown that a wide range of
disease assumptions give the same final size relation.

Our goal with this primer has been to introduce researchers to the many applications of PGFs to disease spread. We have
used the appendices to derive some of the more technical properties of PGFs. Additionally we have developed a Python
package Invasion_PGF which allows for quick calculation of the results in the first three sections of this primer. A detailed
description of the package is in Appendix C. The software can be downloaded at https://github.com/joelmiller/Invasion_PGF.
Documentation is available within the repository, starting with the file docs/_build/html/index.html. The supplementary
information includes code that uses Invasion_PGF to generate the figures of Section 2.
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The python code and output in Appendix C was incorporated using Pythontex (Poore, 2015). I relied heavily on https://tex.
stackexchange.com/a/355343/70067 by “touhami” in setting up the solutions to the exercises.

Appendix A. Important properties of PGFs

In this appendix, we give some theoretical background behind the important properties of PGFs which we use in the main
part of the primer. We attempt to make each subsection self-contained so that the reader has a choice of reading through the
appendix in its entirety, or waiting until a property is used before reading that section. Because we expect the appendix is
more likely to be read piecemeal, the exercises are interspersed through the text where the relevant material appears.

A PGF has been described as “a clothesline onwhich we hang up a sequence of numbers for display” (Wilf, 2005). Similarly
(P�olya, 1990) says “A generating function is a device somewhat similar to a bag. Instead of carrying many little objects
detachedly, which could be embarrassing, we put them all in a bag, and then we have only one object to carry, the bag.”
Indeed for many purposes mathematicians use PGFs primarily because once we have the distribution put into this “bag”,
many more mathematical tools are available, allowing us to derive interesting and sometimes surprising identities (Wilf,
2005).

However, for our purposes there is a meaningful direct interpretation of a PGF. Assume that we are interested in the
probability that an event does not happen given some unknown number i of independent identical Bernoulli trials with
probability a the event does not happen in any one trial. Let ri represent the probability that there are i trials. Then the
probability that the event does not occur in any trial isX

i

ria
i ¼ f ðaÞ ;

and so PGFs emerge naturally in this context.
In infectious disease, this context occurs frequently and many results in this primer can be expressed in this framework.

For reference, we make this property more formal:
Property A.1. Assumewe have a process consisting of a random number i independent identical Bernoulli trials. Let ri denote the

probability of a given i and f ðxÞ ¼Pirix
i be its PGF. If a is the probability that a random trial fails, then f ðaÞ is the probability all

trials fail.

Appendix A.1. Properties related to individual coefficients

We start by investigating how to find the coefficients of a PGF if we can calculate the numeric value of the PGF at any point.

https://github.com/joelmiller/Invasion_PGF
https://tex.stackexchange.com/a/355343/70067
https://tex.stackexchange.com/a/355343/70067
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This section makes use of the imaginary number i ¼
ffiffiffiffiffiffiffi
�1

p
, and so in this sectionwe avoid using i as an index in the sum of

f ðxÞ.
Property A.2. Given a PGF f ðxÞ ¼Pnrnx

n, the coefficient of xn in its expansion for a particular n can be calculated by taking n
derivatives, evaluating the result at x ¼ 0, and dividing by ðn!Þ. That is

rn ¼ 1
n!

�
d
dx

�n

f ðxÞjx¼0

This result holds for any function with a Taylor Series (it does not use any special properties of PGFs).
Exercise A.1. Prove Property A.2 [write out the sum and show that the derivatives eliminate any rm for m<n, the leading

coefficient of the result is n!rn, and the later terms are all zero].
There are many contexts in which we can only calculate a function numerically. In this case the calculation of these de-

rivatives is likely to be difficult and inaccurate. An improved way to calculate it is given by a Cauchy integral (Moore &
Newman, 2000). This is a standard result of Complex Analysis, and initially we simply take it as given.

rn ¼ 1
2pi

I
f ðzÞ
znþ1 dz

This integral can be done on a closed circle around the origin z ¼ Reiq, in which case dz ¼ izdq. Then rn can be rewritten as

rn ¼ 1
2p

Z2p
0

f


Reiq

�
�
Reiq

�n dq

Using another substitution, q ¼ 2pu, we find dq ¼ 2pdu with u varying from 0 to 1. This integral becomes

rn ¼
Z1
0

f
�
Re2piu

�
Rne2npiu

du

The integral on the right hand side can be approximated by a simple summation and we find

rnz
1
M

XM
m¼1

f
�
Re2pim=M

�
Rne2npim=M

for large M.
A few technical steps show that the PGF f ðzÞ converges for any zwith jzj � 1 (any PGF is analytic within the unit circle R ¼ 1

and that the PGF converges everywhere on the unit circle [the coefficients are all positive or zero and the sum converges for
z ¼ 1, so it converges absolutely on the unit circle]). Thus this integral can be performed for any positive R � 1 (and in many
cases it can be done for larger R). We have found that the unit circle (R ¼ 1) yields remarkably good accuracy, so we
recommend using it unless there is a good reason not to. Some discussion of identifying the optimal radius appears in
(Bornemann, 2011).

Thus we have
Property A.3. Given a PGF f ðxÞ, the coefficient of xn in its expansion can be calculated by the integral

rn ¼
Z1
0

f
�
Re2piu

�
Rne2npiu

du (A.1)

This is well-approximated by the summation

rnz
1
M

XM
m¼1

f
�
Re2pim=M

�
Rne2npim=M

(A.2)

with R ¼ 1 and M[1.
It turns out that this approach is closely related to the approach to get a particular coefficient of a Fourier Series. Once the

variable is changed from z to q, our function is effectively a (complex) Fourier Series in q, and the integral corresponds to the
standard approach to finding the nth coefficient of a Fourier Series.

Exercise A.2. Verification of Equation (A.1):
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In this exercise we show that the formula in Equation (A.1) yields rn. Assume that the integral is performed on a circle of radius
R � 1 about the origin.

a. Write f ðzÞ ¼Pmrmz
m and rewrite

Z 1

0

f ðRe2piuÞ
Rne2npiu

du as a sum

Z1
0

f
�
Re2piu

�
Rne2npiu

du ¼
X
m

rm

Z1
0

Rm�ne2ðm�nÞpiu du
b. Show that for m ¼ n the integral in the summation on the right hand side is 1.
c. Show that for msn, the integral in the summation on the right hand side is 0.
d. Thus conclude that the integral on the left hand side must yield rn.

Exercise A.3. Let f ðzÞ ¼ ez ¼ 1þ zþ z2=2þ z3=6þ z4=24þ z5=120þ/. Write a program that estimates r0, r1, …, r5 using
Equation (A.2) with R ¼ 1. Report the values to four significant figures for

a. M ¼ 2
b. M ¼ 4
c. M ¼ 5
d. M ¼ 10
e. M ¼ 20.
f. How fast is convergence for different rn?
Appendix A.2. Properties related to distribution moments

We next look at two straightforward properties about the moments of the distribution ri having PGF f ðxÞ. We return to
using i ¼ 0;1;… as an indexing variable, so i is no longer

ffiffiffiffiffiffiffi
�1

p
. We have

f ð1Þ ¼
X
i

ri1
i

¼
X
i

ri

¼ 1

where the final equality is because the ri determine a probability distribution.
With mildly more effort, we have

f 0ð1Þ ¼
X
i

rii1
i�1

¼
X
i

iri

¼ EðiÞ

where EðiÞ denotes the expected value of i. These arguments show
Property A.4. Any PGF f ðxÞ must satisfy f ð1Þ ¼ 1.
Property A.5. The expected value of a random variable i whose distribution has PGF f ðxÞ is given by EðiÞ ¼ f 0ð1Þ.
It is straightforward to derive relationships for Eði2Þ and higher order moments by repeated differentiation of f and

evaluating the result at 1.

Appendix A.3. Properties related to function composition

To motivate function composition, we start with an example.
Example A.1. Consider aweighted coinwhich comes up ‘Success’with probability p and ‘Failure’with probability 1� p. We

play a game in which we stop at the first failure, and otherwise flip it again. Define f ðxÞ ¼ pxþ 1� p
Let ag be the probability of failure within the first g flips. Then a0 ¼ 0 and a1 ¼ 1� p ¼ f ð0Þ are easily calculated.
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More generally the probability of starting the game and failing immediately is a0 ¼ 1� p ¼ f ð0Þwhile the probability of having
a success and flipping again is p, at which point the probability of failure within g � 1 flips is ag�1. So we have

ag ¼ ð1� pÞ þ pag�1 ¼ f ðag�1Þ. So using induction we can show that the probability of failure within g generations is f ½g�ð0Þ.
Exercise A.4. The derivation in Example A.1 was based on looking at what happened after a single flip and then looking g � 1

flips into the future in the inductive step. Derive ag ¼ f ðag�1Þ by instead looking g � 1 flips into the future and then considering one
additional step. [the distinction between this argument and the previous one becomes useful in the continuous-time case where we
use the ‘backward’ or ‘forward’ Kolmogorov equations.]

Exercise A.5. Consider a fair six-sided die with numbers 0, 1, …, 5, rather than the usual 1, …, 6. We roll the die once. Then we
look at the result, and roll that many copies (if zero, we stop), then we look at the sum of the result and repeat.

f ðxÞ ¼ 1þ xþ/þ x5

6
¼

8><>:
x6 � 1
6ðx� 1Þ xs1

1 x ¼ 1

Define ag to be the probability the process stops after g iterations (with a0 ¼ 0 and a1 ¼ 1=6).

a. Find an expression for ag, the probability that by the g'th iteration the process has stopped, in terms of f ðxÞ.
b. Rephrase this question in terms of the extinction probability for an infectious disease.

Processes like that in Exercise A.1 can be thought of as “birth-death” processes where each event generates a discrete
number of new events. Our examples above show that function composition arises naturally in calculating the probability of
extinction in a birth-death process. We show below that it also arises naturally when we want to know the distribution of
population sizes after some number of generations rather than just the probability of 0.

Specifically, we often assume an initially infected individual causes some random number of new infections i from some
distribution. Then we assume that each of those new infections independently causes an additional random number of in-
fections from the same distribution. We will be interested in how to get from the one-generation PGF to the PGF for the
distribution after g generations.

We derive this in a few stages.

� We first show that if we take two numbers from different distributions with PGFs f ðxÞ and hðxÞ, then their sum has
distribution f ðxÞhðxÞ [Property A.6]. Then inductively applying this we conclude that the distribution of the sum of n
numbers from a distribution with PGF f ðxÞ has PGF ½f ðxÞ�n.

� We also show that if the probability we take a number from the distributionwith PGF f ðxÞ is p1 and the probability we take
it from the distribution with PGF hðxÞ is p2, then the PGF of the resulting distribution is p1f ðxÞ þ p2hðxÞ [Property A.7].

� Putting these two properties together, we can show that if we choose i from a distributionwith PGF f ðxÞ and then choose i
different values from a distribution with PGF hðxÞ, then the sum of the i values has PGF f ðhðxÞÞ [Property A.8].

Our main use of Properties A.6 and A.7 is as stepping stones towards Property A.8.
Consider two probability distributions, let ri be the probability of i for the first distribution and qj be the probability of j for

the second distribution. Assume they have PGFs f ðxÞ ¼Pirix
i and hðxÞ ¼Pjqjx

j respectively.
We are first interested in the process of choosing i from the first distribution, j from the second, and adding them. In the

disease context this arises where the two distributions give the probability that one individual infects i and another infects j
and we want to know the probability of a particular sum.

The probability of obtaining a particular sum k isX
i

riqk�i

So the PGF of the sum is
P

k
Pk

i¼0riqk�ixk. By inspection, this is equal to the product f ðxÞhðxÞ. This means that the PGF of the
process where we choose i from the first and j from the second and look at the sum is the product f ðxÞhðxÞ.

We have shown
Property A.6. Consider two probability distributions, r0, r1,… and q0, q1,…with PGFs f ðxÞ ¼Pirix

i and hðxÞ ¼Pjqjx
j. Then if

we choose i from the distribution ri and j from the distribution qj, the PGF of their sum is f ðxÞhðxÞ.
Usually we want the special case where we choose two numbers from the same distribution having PGF f ðxÞ. The PGF for

the sum is ½f ðxÞ�2. The PGF for the sum of three numbers from the same distribution can be thought of as the result of ½f ðxÞ�2
and f ðxÞ, yielding ½f ðxÞ�3. By induction, it follows that the PGF for the sum of i numbers sum is ½f ðxÞ�i.

Nowwewant to knowwhat happens if we are not sure what the current system state is. For example, wemight not know
if we have 1 or 2 infected individuals, and the outcome at the next generation is different based on which it is.
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We use the distributions ri and qj. We assume that with probability p1 we choose a random number k from the ri dis-
tribution, while with probability p2 ¼ 1� p it is chosen from the qj distribution. Then the probability of a particular value k

occurring is p1rk þ p2qk, and the resulting PGF is
P
k
ðp1rk þ p2qkÞxk ¼ p1f ðxÞþ p2hðxÞ. This becomes:

Property A.7. Consider two probability distributions, r0, r1, … and q0, q1, … with PGFs f ðxÞ ¼Pirix
i and hðxÞ ¼Pjqjx

j. We

consider a new process where with probability p1 we choose k from the ri distribution and with probability p2 ¼ 1� p1 we choose
k from the qj distribution. Then the PGF of the resulting distribution is p1f ðxÞþ p2gðxÞ.

We finally consider a process inwhichwe have two distributionswith PGFs f ðxÞ ¼Pirix
i and hðxÞ ¼Pjqjx

j. We choose the

number i from the distribution ri and then take the sum of i values chosen from the qj distribution,
Pi

[¼1j[. Both the number of

terms in the sum and their values are random variables. Using the results above, the PGF of the resulting sum is
P

iri½hðxÞ�i ¼
f ðhðxÞ Þ. Thus we have

Property A.8. Consider two probability distributions, r0, r1,… and q0, q1,…with PGFs f ðxÞ ¼Pirix
i and hðxÞ ¼Pjqjx

j. Then if

we choose i from the distribution ri and then take the sum of i values chosen from the distribution qj, the PGF of the sum of those i
values is f ðhðxÞÞ.

This property is closely related to the spread of infectious disease. An individual may infect i others, and then each of them

causes additional infections. The number of these second generation cases is the sum of i random numbers
Pi

[¼1j[ where j[ is
the number of additional infections caused by the [-th infection caused by the initial individual. So if f ðxÞ is the PGF for the
distribution of the number of infections caused by the first infection and hðxÞ is the PGF for the distribution of the number of
infections caused by the offspring, then f ðhðxÞÞ is the PGF for the number infected in the second generation [and if the two
distributions are the same this is f ½2�ðxÞ]. Repeated iteration gives us the distribution after g generations.

Exercise A.6. Note that if we interchange p and q in the PGF of the negative binomial distribution in Table 1, it is simply the PGF
of the geometric distribution raised to the power br. A number chosen from the negative binomial can be defined as the number of
successful trials (each with success probability p) before the brth failure.

Using this and Property A.8, derive the PGF of the negative binomial.
Exercise A.7. Sicherman dice (Gallian & Rusin, 1979; Gardner, 1978).
To motivate this exercise consider two tetrahedral dice, numbered 1;2;3;4. When we roll them we get sums from 2 to 8, each

with its own probability, which we can infer from this table:

However another pair of tetrahedral dice, labelled 1;2;2;3 and 1;3;3;5 yields the same sums with the same probabilities:
We now try to find a similar pair for 6-sided dice. First consisder a pair of standard 6-sided dice.

a. Show that the PGF of each die is f ðxÞ ¼ ðxþ x2 þ x3 þ x4 þ x5 þ x6Þ=6.
b. Fill in the tables showing the possible sums from rolling two dice (fill in each square with the sum of the two entries) and

multiplication for two polynomials (fill in each square with the product of the two entries):



c. Explain the similarity.
d. Show that each step of the following factorization is correct:

f ðxÞ ¼
x
�
1þ xþ x2 þ x3 þ x4 þ x5

�
6

¼ x
�
1þ xþ x2

��
1þ x3

�
6

¼ x
�
1þ xþ x2

�ð1þ xÞ�1� xþ x2
�

6
:

This cannot be factored further with real coefficients, and indeed it can be shown that a property similar to prime numbers holds.
Namely, any factorization of f ðxÞf ðxÞ as h1ðxÞh2ðxÞ with real coefficients has the property that each of h1 and h2 can be factored
into some powers of these “prime” polynomials times a constant.

We seek two new six-sided dice (each different) such that the sum of a roll of the two dice has the same probabilities as the
normal dice. The two dice have positive integer values on them (so no fair adding a constant c to everything on one die and
subtracting c on the other). Let h1ðxÞ and h2ðxÞ be their PGFs.

e. Explain why we must have h1ðxÞh2ðxÞ ¼ ½f ðxÞ�2.
f. If the dice have numbers a1;…; a6 and b1;…; b6, show that their PGFs are of the form h1ðxÞ ¼

P
i
xai=6 and h2ðxÞ ¼

P
i
xbi=6

where all ai and bi are positive integers.
g. Given the properties we want for the dice, find h1ð0Þ and h2ð0Þ.
h. Given the properties we want for the dice, find h1ð1Þ and h2ð1Þ.
i. Using the values at x ¼ 0 and x ¼ 1, explain why h1ðxÞ ¼ xð1þ xþ x2Þð1þ xÞð1� xþ x2Þb=6 and

h2ðxÞ ¼ xð1þ xþ x2Þð1þ xÞð1� xþ x2Þ2�b=6 where b is 0, 1, or 2.
j. The case b ¼ 1 gives the normal dice. Consider b ¼ 0 (b ¼ 2 gives the same final result). Find h1ðxÞ. For reference, h2ðxÞ ¼ 1

6 ðxþ
x3 þ x4 þ x5 þ x6 þ x8Þ

k. Create the table for the two dice corresponding to h1ðxÞ and h2ðxÞ and verify that the sums occur with the same frequency as a
normal pair:
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Fig. A.10. Cobweb diagrams: We take the function f ðxÞ ¼ ð1þ x3Þ=2. A cobweb diagram is built by alternately drawing vertical lines from the diagonal to f ðxÞ and
then horizontal lines from f ðxÞ to the diagonal. The dashed lines show ag ¼ f ðag�1Þ starting with a0 ¼ 0 and highlight the relation to the iterative process.

Exercise A.8. Early-time outbreak dynamics

a Consider normal dice. The PGF is f ðxÞ ¼ ðxþ x2 þ x3 þ x4 þ x5 þ x6Þ=6. Consider the process wherewe roll a die, take the result i,
and then roll i other dice and look at their sum. What is the PGF of the resulting sum in terms of f?

b If an infected individual causes anywhere from 1 to 6 infections, all with equal probability, find the PGF for the number of
infections in generation 2 if there is one infection in generation 0. [you can express the result in terms of f]

c And in generation g (assuming depletion of susceptibles is unimportant)?
Appendix A.4. Properties related to iteration of PGFs

There are various contexts in which we might iterate to calculate f ½n�ðxÞ (the result of applying f n times to x).
In the disease context, this occurs most frequently in calculating the probability of outbreak extinction. If we think of a as

the probability that the outbreak goes extinct from a single individual, then from Property A.1 wewould expect that a ¼ f ðbaÞ
where ba is the probability that an offspring of the individual fails to produce an epidemic. However, under common as-
sumptions, the number of infections from the offspring should be from the same distribution as from the parent. In this case
we would conclude a ¼ ba and so a ¼ f ðaÞ.

It turns out that a good way to solve for a is iteration, starting with the guess a0 ¼ 0. We will show that this converges to
the correct value [x ¼ f ðxÞ can have multiple solutions, only one of which is the correct a].

Fig. A.10 demonstrates how the iterative process can be represented by a “cobweb diagram” (May 1976; Peitgen, Jürgens,&
Saupe, 2006) To use a cobweb diagram to study the behavior of f ½g�ðx0Þ, we draw the line y ¼ x and the curve y ¼ f ðxÞ. Then at
x0 we draw a vertical line to the curve y ¼ f ðxÞ. We draw a horizontal line to the line y ¼ x [which will be at the point ðx1;x1Þ].
We then repeat these steps, drawing a vertical line to y ¼ f ðxÞ and a horizontal line to y ¼ x. Cobweb diagrams are particularly
useful in studying behavior near fixed or periodic points.

Exercise A.9. Understanding cobweb diagrams
From Fig. A.10 the origin of the term “cobweb”may be unclear. Because of properties of PGFs, the more interesting behavior does

not occur for our applications. Here we investigate cobweb diagrams in more detail for non-PGF functions. Since we use f ðxÞ to
denote a PGF, in this exercise we use zðxÞ for an arbitrary function.

a. Consider the line zðxÞ ¼ 2ð1� xÞ=3. Starting with x0 ¼ 0, show how the first few iterations of xi ¼ zðxi�1Þ can be found using a
cobweb diagram (do not explicitly calculate the values).

b. Now consider the line zðxÞ ¼ 2ð1� xÞ. The solution to zðxÞ ¼ x is x ¼ 2=3. Starting from an initial x0 close to (but not quite equal
to) 2=3, do several iterations of the cobweb diagram graphically.

c. Repeat this with the lines zðxÞ ¼ 1=4þ x=2 starting at x0 ¼ 0 and zðxÞ ¼ �1þ 3x starting close to where x ¼ zðxÞ.
d. What is different when the slope is positive or negative?
e. Can you predict what condition on the slope's magnitude leads to convergence to or divergence from the solution to x ¼ zðxÞ

when z is a line?

So far we have considered lines zðxÞ. Now assume zðxÞ is nonlinear and consider the behavior of cobweb diagrams close to a
point where x ¼ zðxÞ.
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f. Use Taylor Series to argue that (except for degenerate cases where z0 is 1 at the intercept) it is only the slope at the intercept that
determines the behavior sufficiently close to the intercept.

Exercise A.10. Structure of fixed points of f ðxÞ.
Consider a PGF f ðxÞ ¼Pirix

i, and assume r0 >0.

a. Show that f ð1Þ ¼ 1 and f ð0Þ>0.
b. Show that f ðxÞ is convex (that is f ’’ðxÞ � 0) for x>0. [hint ri � 0 for all i]
c. Thus argue that if f ’ð1Þ � 1, then x ¼ f ðxÞ has only one solution to x ¼ f ðxÞ in ½0;1�, namely f ð1Þ ¼ 1. It may help to draw

pictures of f ðxÞ and the function y ¼ x for x in ½0;1�.
d. Explain why if there is a point x0s1 where f ðx0Þ ¼ x0 and f ðxÞ> x for x in some region ðx0; x1Þ then 0< f ’ðx0Þ<1.
e. Thus show that if f ’ð1Þ>1 then there are exactly two solutions to x ¼ f ðxÞ in ½0;1�, one of which is x ¼ 1.

These results suggest:
Property A.9. Assume f ðxÞ ¼P

i
rixi is a PGF, and f ð0Þ>0.

� If f ’ð1Þ � 1 then the only intercept of x ¼ f ðxÞ in ½0;1� is at x ¼ 1.
� Otherwise, there is another intercept x�, 0< x� <1, and if x< x� then x< f ðxÞ< x� while if x> x� then x> f ðxÞ> x� and for
0 � x0 <1, f ½g�ðx0Þ converges monotonically to x�.

The assumption r0 >0 was used to rule out f ðxÞ ¼ x. Excluding this degenerate case, these results hold even if r0 ¼ 0, in
which case we can show f ’ð1Þ>1 and x� ¼ 0.

To sketch the proof of this property, we note that clearly f ð1Þ ¼ 1, so if f ð0Þ>0 then either f ðxÞ crosses y ¼ x at some
intermediate 0< x� <1 or it does not cross until x ¼ 1. Then using the fact that for x>0 the slope of f is positive and increasing,
we can inspect the cobweb diagram to see these results.

Appendix A.5. Finding the Kolmogorov Equations

To study continuous-time dynamics, we will want to have partial differential equations (PDEs) where we write the time
derivative of a PGF f ðx; tÞ or f ðx; y; tÞ in terms of f and its spatial derivatives.

We will use two approaches to find the derivative. Both start with the assumption that we know f ðx; tÞ, and calculate the
derivative by finding f ðx; t þ DtÞ and use the definition of the derivative:

v

vt
f ðx; tÞ ¼ lim

Dt/0

f ðx; t þ DtÞ � f ðx; tÞ
Dt
The methods differ in how they find f ðx; tþ DtÞ. The distinction is closely related to the observation in Exercise 2.7 that
m½g�ðxÞ can be written as either m½g�1�ðmðxÞÞ or mðm½g�1�ðxÞÞ.

� The first involves assuming we know f ðx; tÞ and then looking through all of the possible transitions to find how the system
changes going from t to tþ Dt. This will yield the forward Kolmogorov equations.

� The second involves starting from the initial condition f ðx;0Þ and finding f ðx;DtÞ by investigating all of the possible
transitions. Then taking f ðx;DtÞ and f ðx; tÞ we are able to find f ðx; tþ DtÞ. This will yield the backward Kolmogorov
equations.
Appendix A.5.1. Forward Kolmogorov Equations
We start with the forward Kolmogorov equations. We let riðtÞ denote the probability that at time t there are i individuals,

and define the PGF

f ðx; tÞ ¼
X
i

riðtÞxi
We begin by looking at events that can be treated as if they remove one individual and replace it withm individuals. Thus i
is replaced by iþ m� 1:

i1iþm� 1 :
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For example early in an epidemic, wemay assume that an infected individual causes new infections at rate b. The outcome
of an infection event is equivalent to the removal of the infected individual and replacement by two infected individuals.
Similarly, a recovery event occurs with rate g and is equivalent to removal with no replacement. So l2 ¼ b, l0 ¼ g, and all
other lm are 0.

Our events happen at a per-individual rate lm, so the total rate an event occurs across the population of i individuals is lmi.
Events that can be modeled like this include decay of a radioactive particle, recovery of an infected individual, or division of a
cell. We assume that different events may be possible, each having a differentm. If multiple events have the same effect onm
(for example emigration or death), we can combine their rates into a single lm.

It will be useful to define

L ¼
X
m

lm

to be the combined per-capita rate of all possible events and
hðxÞ ¼
X
m

lmxm=L
We can think of hðxÞ as the PGF for the number of new individuals given that a random event happens (since lm=L is the
probability that the random event introduces m individuals).

We start with one derivation of the equation for _f ðx; tÞ based on directly calculating f ðx; t þ DtÞ and using the definition of
the derivative. An alternate way is shown in Exercise A.11. For small Dt the probability that multiple events occur in the same
time internal is O ðDtÞ, andwewill see that this is negligible. Let us assume the system has i individuals at time t, which occurs
with probability riðtÞ. For a givenm, the probability that the event occurs in the time interval given i is lmiDtþ O ðDtÞ, and ð1�P

mlmiDtÞ þ O ðDtÞ measures the probability that none of the events occur in the time interval and the system remains in
state i. If the event occurs, the system leaves the state corresponding to xi and enters the state corresponding to xiþm�1.
Summing over m and i, we have

f ðx; t þ DtÞ ¼
X
i

 
riðtÞ

"X
m

ðlmiDtÞxiþm�1 þ
 
1�

X
m

lmiDt

!
xi
#!

þ O ðDtÞ
The O ðDtÞ corrects for the possibility of multiple events happening in the time interval.
A bit of algebra and separating the i and m summations shows that

f ðx; t þ DtÞ ¼
X
i

riðtÞxi þ
X
m

lmðDtÞðxm � xÞ
X
i

riðtÞixi�1 þ O ðDtÞ

¼ f ðx; tÞ þ
X
m

lmðxm � xÞDt
X
i

riðtÞ
v

vx
xi þ O ðDtÞ

¼ f ðx; tÞ þ ðDtÞ
 X

m
lmxm � x

X
m

lm

!
v

vx

X
i

riðtÞxi þ O ðDtÞ

¼ f ðx; tÞ þLðDtÞ½hðxÞ � x� v
vx

f ðx; tÞ þ O ðDtÞ
So we now have

v

vt
f ðx; tÞ ¼ lim

Dt/0

f ðx; t þ DtÞ � f ðx; tÞ
Dt

¼ lim
Dt/0

f ðx; tÞ þLDt½hðxÞ � x� v
vx

f ðx; tÞ þ O ðDtÞ � f ðx; tÞ
Dt

¼ L½hðxÞ � x� v
vx

f ðx; tÞ
We finally have
Property A.10. Let f ðx; tÞ ¼PiriðtÞxi be the PGF for the probability of having i individuals at time t. Assume several events

indexed bym can occur, each with rate lmi, that remove one individual and replace it with m. LetL ¼Pmlm be the total per-capita
rate and hðxÞ ¼Pmlmx

m=L be the PGF of the outcome of a random event. Then
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v

vt
f ðx; tÞ ¼ L½hðxÞ � x� v

vx
f ðx; tÞ (A.3)
We look at a heuristic way to interpret this. We can rewrite Equation (A.3) as

_f ðx; tÞ ¼
"X

m
ðlmxm � lmxÞ

#
v

vx
f ðx; tÞ
Then if we expand f on the right hand side, we haveX
m

X
i

lmðxm � xÞirixi�1
The derivative serves the purpose of getting the factor i into the coefficient of each termwhich addresses the fact that the
rate events happen is proportional to the total count. The derivative has the additional effect of reducing the exponent by 1,
corresponding to the removal of one individual. The lm in the remaining factor gives the per-capita rate of changing state. The
xm � x captures the fact that when moving to that new state m individuals are added but the system is leaving the current
state (which has an exponent of xi) with the same rate.

Exercise A.11. Alternate derivation of Equation (A.3)
An alternate way to derive Equation (A.3) is through directly calculating _ri.

a. Explain why _ri ¼ �Pmlmiri þ
P

mlmði� mþ 1Þri�mþ1.
b. Taking _f ðx; tÞ ¼Pi _rix

i, derive Equation (A.3).

We can generalize this to the case where there are multiple types of individuals. For the forward Kolmogorov equations, it
is relatively straightforward to allow for interactions between individuals. We may be interested in this generalization when
considering predator-prey interactions or interactions between infected and susceptible individuals if we are interested in
depletion of susceptibles. We assume that there are two types of individuals A and B with counts i and j respectively, and we
let rijðtÞ denote the probability of a given pair i and j. We define the PGF

f ðx; y; tÞ ¼
X
i;j

ri;jðtÞxiyj
We assume that interactions between an A and a B individual occur with some rate proportional to the product ij We
assume that the interaction removes both individuals and replaces them bym of type A and n of type B. We denote the rate as
mm;nij, and the sum

M ¼
X
m;n

mm;n :
We also assume that individuals of type A spontaneously undergo changes as they did above, but they can be replaced by
type A and/or type B individuals. So one individual of type A is removed and replaced bym individuals of type A and n of type B
with rate lm;n, and the combined rate for one specific transition over the entire set of individuals is lm;ni. We define

L ¼
X
m;n

lm;n :
Wewill ignore spontaneous changes by nodes of type B, but the generalization to include these can be found by following
the same method.

Finally, let

hðx; yÞ ¼
X
m;n

lm;nxmyn=L

and

gðx; yÞ ¼
X
m;n

mm;nx
myn=M

be the PGFs for the outcomes of the two types of events.
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Then

f ðx; y; t þ DtÞ ¼
X
i;j

ri;jðtÞ
24X
m;n

24�lm;niDt
�
xiþm�1yj þ



mm;nijDt

�
xiþm�1yjþn�1

þ
 
1�

X
m;n

"
lm;niDt þ mm;nijDt

#!
xiyj
#
þ O ðDtÞ

¼
X
i;j

ri;jðtÞxiyj þ
X
m;n

lm;nðxmyn � xÞDt
X
i;j

ri;jðtÞixi�1yj

þ
X
m;n

mm;nðxmyn � xyÞDt
X
i;j

ri;jðtÞijxi�1yj�1 þ O ðDtÞ

¼ f ðx; y; tÞ þ
X
m;n

lm;nðxmyn � xÞDt v

vx
f ðx; y; tÞ

þ
X
m;n

mm;nðxmyn � xyÞDt v

vx
v

vy
f ðx; y; tÞ þ O ðDtÞ

¼ f ðx; y; tÞ þ ðDtÞ
�
L½hðx; yÞ � x� v

vx
f ðx; y; tÞ þM½gðx; yÞ � xy� v

vx
v

vy
f ðx; y; tÞ

�
þ O ðDtÞ
So

v

vt
f ðx; y; tÞ ¼ lim

Dt/0

f ðx; y; t þ DtÞ � f ðx; y; tÞ
Dt

¼ lim
Dt/0

ðDtÞL½hðx; yÞ � x� v
vx

f ðx; y; tÞ þ ðDtÞM½gðx; yÞ � xy� v
vx

v

vy
f ðx; y; tÞ þ O ðDtÞ

Dt

¼ L½hðx; yÞ � 1�x v

vx
f ðx; y; tÞ þM½gðx; yÞ � 1�xy v

vx
v

vy
f ðx; y; tÞ
We have shown:
Property A.11. Let f ðx; y; tÞ ¼P

i;j
rijðtÞxiyj be the PGF for the probability of having i type A and j type B individuals. Assume that

events occur with rate lm;ni or mm;nij to replace a single type A individual or one of each type with m type A and n type B individuals.
Let L ¼ P

m;n
lm;n and M ¼ P

m;n
mm;j. Then

v

vt
f ðx; y; tÞ ¼ L½hðx; yÞ � x� v

vx
f ðx; y; tÞ þM½gðx; yÞ � xy� v

vx
v

vy
f ðx; y; tÞ (A.4)

where hðx; yÞ ¼ P
m;n

lm;nxmyn=L is the PGF for the outcome of a random event whose rate is proportional to i and

gðx; yÞ ¼ P
m;n

mm;nx
myn=M is the PGF for the outcome of a random event whose rate is proportional to ij.

This can be generalized further if there are events whose rates are proportional only to j or if there are more than two
types. The exercise below shows how to generalize this if the rate of events depend on i in a more complicated manner.

Exercise A.12. In many cases interactions between two individuals of the same type are important. These may occur with rate
iði� 1Þ or i2 depending on the specific details. Assume we have only a single type of individual with PGF f ðx; tÞ ¼P

i
riðtÞxi.

a. If a collection of events to replace two individuals with m individuals occur with rate bmiði� 1Þ, find howwrite a PDE for f. Your

final result should contain v2

vx2 f ðx; tÞ. Use B ¼P
m
bm and gðxÞ ¼P

m
bmxm=B. Follow the derivation of Equation (A.3).

b. If instead the events replace two individuals with m individuals and occur with rate bmi2, find how to incorporate them into a

PDE for f. Your final result should contain v
vx

�
x v
vx f ðx; tÞ

�
or equivalently v

vx f ðx; tÞþ x v2

vx2 f ðx; tÞ.
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Exercise A.13. Consider a chemical system that begins with some initial amount of chemical A. Let i denote the number of
molecules of species A. A molecule of A spontaneously degrades into a molecule of B, with rate x per molecule. Let j denote the
number of molecules of species B. Species B reacts with A at rate hij to produce newmolecules of species B. The reactions are denoted

A1B

Aþ B12B

Let ri;jðtÞ denote the probability of i molecules of A and j molecules of B at time t. Let f ðx; y; tÞ ¼ ri;jðtÞxiyj be the PGF. Find the
forward Kolmogorov equation for f ðx;y; tÞ.

Appendix A.5.2. Backward Kolmogorov Equations
We now look for another derivation of v

vt f ðx; tÞ, and as before we find it by first finding f ðx; t þ DtÞ for small Dt and then
using the definition of the derivative. We will assume that each individual acts independently, and at rate lm an individual
may be removed and replaced bym new individuals. So if there are i total individuals, at rate lmi the count i is replaced by i�
1þ m.

Property A.8 plays an important role in our derivation. We define f1ðx; tÞ ¼
P
i
riðtÞxi where we assume that r1ð0Þ ¼ 1, that

is we start with exactly one individual at time 0. Then Property A.8 shows that f1ðx; t1 þ t2Þ ¼ f1ðf1ðx; t2Þ; t1Þ. Then from our
initial condition f1ðx;0Þ ¼ x, and

f1ðx;Dt þ tÞ ¼ f1ðf1ðx; tÞ;DtÞ (A.5)
We need to find f1ðx;DtÞ. We have

f1ðx;DtÞ ¼
X
i

rið0Þxi
 
1�

X
m

ilmðDtÞ þ
X
m

ilmðDtÞxm�1

!
þ O ðDtÞ

¼ x

 
1�

X
m

lmðDtÞ þ
X
m

lmðDtÞxm�1

!
þ O ðDtÞ

¼ x� xðDtÞ
X
m

lm þ
X
m

lmxm þ O ðDtÞ
¼ xþ ðDtÞL½hðxÞ � x� þ O ðDtÞ

where, as in the forward Kolmogorov case, L ¼Plm and hðxÞ ¼Plmxm=L is the PGF of the number of new individuals

m m

created given that an event occurs. In the first step we used the fact that for f1ðx;tÞ, rið0Þ ¼ 1 if i ¼ 1 and otherwise it is 0. Thus
Equation (A.5) implies

f1ðx; t þ DtÞ ¼ f1ðx; tÞ þ ðDtÞL½hðf1ðx; tÞÞ � f1ðx; tÞ� þ O ðDtÞ :
Now taking the definition of the derivative, we have

v

vt
f1ðx; tÞ ¼ lim

Dt/0

f1ðx; t þ DtÞ � f1ðx; tÞ
Dt

¼ lim
Dt/0

f1ðx; tÞ þ ðDtÞL½hðf1ðx; tÞÞ � f1ðx; tÞ� þ O ðDtÞ � f1ðx; tÞ
Dt

¼ L½hðf1ðx; tÞÞ � f1ðx; tÞ�
Thus we have an ODE for f1ðx; tÞ.
In general, our initial condition may not be a single individual, but some other number (or perhaps a value chosen from a

distribution). Let the initial condition have PGF f ðx;0Þ. Then it follows from Property A.8 that

f ðx; tÞ ¼ f ðf1ðx; tÞ;0Þ
So we have
Property A.12. Consider a process in which the number of individuals change in time such that when an event occurs one

individual is destroyed and replaced with m new individuals. The associated rate associated with an event that changes the
population size by m is lmi where i is the number of individuals. Let f1ðx; tÞ be the PGF for this process beginning from a single
individual and L ¼P

m
lm. Then



J.C. Miller / Infectious Disease Modelling 3 (2018) 192e248 243
_f 1ðx; tÞ ¼ L½hðf1ðx; tÞÞ � f1ðx; tÞ� (A.6)
where hðxÞ is the PGF for the number of new individuals created in a random event. If the initial number of individuals is not 1, let
f ðx;0Þ denote the PGF for the initial condition. Then

f ðx; tÞ ¼ f ðf1ðx; tÞ;0Þ (A.7)
is the PGF at arbitrary positive time.
This is fairly straightforward to generalize to multiple types as long as none of the events involve interactions.
Exercise A.14. In this exercise we generalize Property A.12 for the case where there are two types of individuals A and B with

counts i and j.
Assume events occur spontaneously with rate lm;ni to remove an individual of type A and replace it with m of type A and n of

type B, or they occur spontaneously with rate zm;nj to remove an individual of type B and replace it with m of type A and n of type B.
Set L ¼ P

m;n
lm;n and ℨ ¼ P

m;n
zm;n. Let f1;0ðx; y; tÞ denote the outcome beginning with one individual of type A and f0;1ðx; y; tÞ

denote the outcome beginning with one individual of type B.

a. Write f1;0ðx; y;DtÞ and f0;1ðx; y;DtÞ in terms of hðx; yÞ ¼ P
m;n

lm;nxmyn=L and gðx;yÞ ¼ P
m;n

zm;nxmyn=ℨ.
b. Use Property A.8, write f1;0ðx;Dt þ tÞ and f0;1ðx;Dt þ tÞ in terms of f1;0 and f0;1 evaluated at t and Dt. The answer should

resemble Equation (A.5).
c. Derive expressions for v

vtf1;0ðx; y; tÞ and v
vtf0;1ðx;y; tÞ.

d. Use this to derive Equation (22).

Appendix B. Proof of Theorems 2.7 and 3.6

We now prove Theorems 2.7 and 3.6.

Appendix B.1. Theorem 2.7

We take as given a probability distribution so that pi is the probability of i offspring.
We will first show a way to represent a (finite) transmission tree as a sequence of integers representing the number of

offspring of each node. Additionally we show that the possible sequences coming from a tree can be characterized by a few
specific properties. Then the probability of such a sequence corresponds to the probability of the corresponding tree.

Given a finite transmission tree T , we first order the offspring of any individual (randomly) from “left” to “right”. We then
construct a sequence S by performing a depth-first traversal of the tree and recording the number of offspring as we visit the
nodes of the tree, as shown in Fig. B.11. A sequence constructed in this way is called a Łukasiewicz word (Stanley, 2001).

Fig. B11. Demonstration of the steps mapping the tree T to the sequence S . The nodes are traced in a depth-first traversal and their number of offspring is
recorded. For the labeling given, a depth-first traversal traces the nodes in alphabetical order. At an intermediate stage (left) the traversal has not finished the
sequence. The final sequence (right) is uniquely determined once the order of a node's offspring is (randomly) chosen.

It is straightforward to see that if we are given a Łukasiewicz word S , we can uniquely reconstruct the (ordered) tree T
from which it came. We now demonstrate the relation between the probability of a given tree T and the probability of
observing a given sequence S .
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Fig. B.12. The steps of the construction of a tree with S ¼ ð2;0;0;0;1;0;3; 0;2Þ [a cyclic permutation of the previous S ]. Each frame shows next step in building
a tree on a ring. The resulting tree is not rooted at the top. The names of the nodes in the tree are a cyclic permutation of the original.

We first note that the probability of observing a given length-j sequence S by choosing j numbers from the offspring
distribution is simply pS ¼ Q

si2S
psi .

Similarly, as infection spreads, each infected individual infects some number si with probability psi . The probability of a

given tree is thus
Qj

i¼1psi . Note that the different trees may have different sizes j. However, for a given tree with a given j and
corresponding Łukasiewicz word S , the probability of observing this sequence by choosing j numbers from the offspring

distribution is
Qj

i¼1psi , equal to the a priori probability of observing the tree.
Now we look for the probability that a random length-j sequence created by choosing numbers from the offspring dis-

tribution actually corresponds to a tree, that is it is actually a Łukasiewicz word.5 To be a Łukasiewicz word, the sequence
clearly must satisfy that

P
si2S

si ¼ j� 1 because the sum is the total number of transmissions occurring which is one less than

the total number of infections. Momentarily wewill show that given a length-j sequencewhich sums to j� 1, exactly one of its
j cyclic permutations is a Łukasiewicz word. Since each cyclic permutation has the same probability of being observed as a
sequence, we will conclude that the probability of observing a tree of length j is exactly 1=j times the probability that the
entries in a length-j sequence of values chosen from the offspring distribution sum to j� 1.

We nowprove the final detail. Given a length j sequence S of non-negative integers that sum to j� 1, we place j nodes on a
ring starting at the top and ordered clockwise. We label each ith node with si. If a node v is labelled with 0 and the adjacent
position in the counter-clockwise direction has node uwith a positive label, we place an edge from u to v (with v to the right of
any previous edge from u to another node) and remove v. We decrease u's label by one.

This process reduces both the number of nodes and the sum by one. So the sum remains one less than the number of
nodes. This guarantees at least one zero and at least one nonzero value until only one node remains. Thus we can always find
an appropriate pair u and v until only a single node remains. The process constructs a tree (the final outcome has j nodes and
j� 1 edges and is connected). Fig. B.12 demonstrates the steps.

If the tree is rooted at the node that began at the top of the ring, then S corresponds to a depth-first traversal of that tree. If
the tree is not rooted at the top, then a rotation of the sequence so that the root is at the top will result in a sequence which
corresponds to a tree. All cyclic rotations of any length-j sequence summing to j� 1 are equally probable as sequences, but
5 If the sequence is not a Łukasiewicz word, then either it is the start of a sequence corresponding to a larger (possibly infinite) tree, or some initial
subsequence corresponds to a completed tree.
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only one corresponds to a tree. Thus the probability that a random length-j sequence summing to j� 1 corresponds to a tree is
1=j.

So we finally conclude that the probability of a tree of j nodes is equal to 1=j times the probability that j randomly-chosen
values from the offspring distribution sum to j� 1. By repeated application of Property A.6, this is 1=j times the coefficient of

yj�1 in ½mðyÞ�j as Theorem 2.7 claims.

Appendix B.2. Theorem 3.6

We can prove Theorem 3.6 as a special case of Theorem 2.7 by calculating the offspring distribution (Exercise B.1).
However, a more illuminating proof is by noting that if we treat a transmission event as a node disappearing and being
replaced by two infected nodes and a recovery event as a node disappearing with no offspring, then we have a tree where
each node has 2 or 0 offspring. The total number of actual individuals infected in the outbreak is equal to the number of nodes
with 0 offspring in the tree.

Following the arguments above, we are looking for sequences of length 2j� 1 inwhich 2 appears j� 1 times and 0 appears

j times. There are
�
2j� 1
j� 1

�
such sequences. The probability of each is bj�1gj=ðbþ gÞ2j�1 and a fraction 1=ð2j� 1Þ of these

correspond to trees. Thus, the probability a length 2j� 1 sequence is a Łukasiewicz word is

1
2j� 1

bj�1gj

ðbþ gÞ2j�1

�
2j� 1
j� 1

�
¼ 1

j
bj�1gj

ðbþ gÞ2j�1

�
2j� 2
j� 1

�

Using the same approach as before, we conclude that this is the probability of exactly j infections.
Exercise B.1. If we do not think of an infected individual as disappearing and being replaced by two infected individuals when a

transmission happens, but rather, we count up all of the transmissions the individual causes, we get a geometric distribution with
q ¼ b=ðbþ gÞ. The details are in Exercise 3.2. Use this along with Theorem 2.7 and Table 6 (which was derived in Exercise 2.13) to
give a different proof of Theorem 3.6.

Appendix C. Software

We have produced a python package, Invasion_PGFwhich can be used to solve the equations of Section 2 or Section 3 once
the PGF of the offspring distribution or b and g are determined. Because the numerical method involves solving differential
equations in the complex plane, it requires an integration routine that can handle complex values. For this we use odeintw
(Weckesser).

Table C.7 briefly summarizes the commands available in Invasion_PGF.
We now demonstrate a sample session with these commands.



Table C.7
Commands of Invasion_PGF. Many of these have an optional boolean argument intermediate_values which, if True, will result in returning values from generation 0 to generation gen in the discrete-time case or at
some intermediate times in the continuous-time case. For the discrete-time results, the input m is the offspring distribution PGF. For the continuous-time version, b and g are the transmission and recovery rates
respectively.

Command Output

R0(m) Approximation of ℛ0.
extinction_prob(m, gen) Probability agen of extinction by generation gen given offspring PGF m.
cts_time_extinction_prob(b, g, T) Probability aðTÞ of extinction by time T given transmission and recovery rates b and g.
active_infections(m, gen, M) Array containing probabilities 40;…;4j;…;4M�1 of having j active infections in generation gen given offspring PGF m.
cts_time_active_infections(b, g, T) Array containing probabilities 40;…;4j;…;4M�1 of having j active infections at time T given transmission and recovery rates b and g.
completed_infections(m, gen, M) Array containing probabilities u0;…;uj;…;uM�1 of having j completed infections in generation gen given offspring PGF m.
cts_time_completed_infections (b, g, T) Array containing probabilities u0;…;uj;…;uM�1 of having j completed infections at time T given transmission and recovery rates b and g.
active_and_completed(m, gen, M1, M2) M1 �M2 array containing probabilities pi;r of i active infections and r completed infections in generation gen given offspring PGF m.
cts_time_active_and_completed (b, g, T) M1 �M2 array containing probabilities pi;r of i active infections and r completed infections at time T given transmission and recovery rates b and g.
final_sizes(m, M) Array containing probabilities u0;…;uj;…;uM�1 of having j total infections in an outbreak given offspring PGF m.
cts_time_final_sizes(b, g, T) Array containing probabilities u0;…;uj;…;uM�1 of having j total infections in an outbreak given transmission and recovery rates b and g.
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Appendix D. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.idm.2018.08.001.
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