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Patient DF, who developed visual form agnosia following carbon monoxide poisoning, is
still able to use vision to adjust the configuration of her grasping hand to the geometry of a
goal object. This striking dissociation between perception and action in DF provided a key
piece of evidence for the formulation of Goodale and Milner’sTwo Visual Systems Hypoth-
esis (TVSH). According to the TVSH, the ventral stream plays a critical role in constructing
our visual percepts, whereas the dorsal stream mediates the visual control of action, such
as visually guided grasping. In this review, we discuss recent studies of DF that provide
new insights into the functional organization of the dorsal and ventral streams. We confirm
recent evidence that DF has dorsal as well as ventral brain damage – and that her dorsal-
stream lesions and surrounding atrophy have increased in size since her first published
brain scan. We argue that the damage to DF’s dorsal stream explains her deficits in direct-
ing actions at targets in the periphery.We then focus on DF’s ability to accurately adjust her
in-flight hand aperture to changes in the width of goal objects (grip scaling) whose dimen-
sions she cannot explicitly report. An examination of several studies of DF’s grip scaling
under natural conditions reveals a modest though significant deficit. Importantly, however,
she continues to show a robust dissociation between form vision for perception and form
vision-for-action. We also review recent studies that explore the role of online visual feed-
back and terminal haptic feedback in the programming and control of her grasping. These
studies make it clear that DF is no more reliant on visual or haptic feedback than are neu-
rologically intact individuals. In short, we argue that her ability to grasp objects depends
on visual feedforward processing carried out by visuomotor networks in her dorsal stream
that function in the much the same way as they do in neurologically intact individuals.

Keywords: patient DF, two visual systems hypothesis, grasping, perception and action, dorsal and ventral streams

Just a few days after her 34th birthday in 1988, a young woman
was taking a shower in her newly renovated cottage and was nearly
asphyxiated by carbon monoxide from a poorly vented water
heater. Although she had passed out from hypoxia, her partner
found her before she died and rushed her to hospital. When she
emerged from her coma, it was clear that her brain had been badly
damaged from lack of oxygen. Her vision was particularly affected.
She could no longer recognize common objects by sight or even
her husband and friends. In the days and weeks that followed her
accident, she showed some improvement, but in the end she was
left with a profound visual form agnosia; in other words, she could
no longer identify objects on the basis of their shape. Indeed, in
later testing, it became apparent that DF (as she is now known
in the literature) could not identify even the simplest of geomet-
ric figures, although her ability to see colors and visual textures
remained relatively intact.

DF’s ability to perceive the form of objects is so compro-
mised that she cannot distinguish a rectangular block of wood

from a square one with the same surface area (Figure 1A). Such
blocks are often referred to as “Efron” blocks, after the psychol-
ogist, Robert Efron, who first devised shapes such as these to
test for visual form agnosia (1). DF cannot even manually esti-
mate the widths of the blocks by opening her finger and thumb
a matching amount (2, 3). Nevertheless, one aspect of DF’s visu-
ally guided behavior with respect to object form has remained
remarkably preserved. When she reaches out to pick up one of the
Efron blocks, the aperture between her thumb and finger scales
in flight to the object’s width (2–7). Similarly, even though DF
cannot distinguish perceptually amongst objects on the basis of
their orientation and shape, she orients her wrist correctly when
posting her hand or a wooden card through a slot (2, 8, 9) and
places her fingers on stable grasp points when picking up smooth-
spline, pebble-like shapes [Figure 1B; see Ref. (10)]. In other
words, despite a profound deficit in form perception, DF seems
able to use information about object form to guide her grasping
movements.
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Whitwell et al. Two visual systems hypothesis and DF

FIGURE 1 | (A) Examples from a set of Efron blocks that, by definition, are
matched for surface area, texture, mass, and color, but vary in width and
length (1). In the grasping task, DF reached out to pick these objects up
across their width. In a typical perceptual task, she is asked to indicate
manually the width of the block by adjusting her thumb and index-finger a
matching amount or to provide same/different judgments about pairs of
these objects. (B) Examples of the pebble-like shapes used in Goodale
et al. (10). DF was asked to either (i) reach out to pick up the shapes
presented at one of two possible positions one at a time or (ii) give explicit
same/different judgments about pairs of shapes when they had different
shapes and different orientations (top left), the same shape but different
orientations (top right), different shapes but same orientations (bottom left),
and same shape and orientation (bottom right).

DF’s dissociation was one of the key pieces of evidence for
the original formulation of the Two Visual Systems Hypothe-
sis (TVSH) put forward by Goodale and Milner in 1992 (11).
According to the TVSH, the ventral stream of projections from
early visual areas to the inferotemporal cortex mediates vision for
perception, whereas the dorsal stream of projections to the pos-
terior parietal cortex mediates the visual control of actions. DF
was later shown to have bilateral damage in her ventral stream,
particularly in a region of the lateral occipital cortex (area LOC;
see Figure 1) implicated in object recognition [for review, see Ref.
(12)]. Other patients, who have damage to the dorsal but not the
ventral stream, show clear deficits in visuomotor control but rela-
tively spared visual perception (10, 13, 14). Although this double
dissociation is by itself compelling, the TVSH is also supported
by a broad range of additional evidence extending from monkey
neurophysiology to neuroimaging studies of both patients and
neurologically intact individuals [for review, see Ref. (15–18)].

Nevertheless, it is important to acknowledge that DF’s lesions
are not restricted to her ventral stream. Her brain shows the typ-
ical pattern of diffuse atrophy that is seen in patients who have
experienced hypoxia from carbon monoxide poisoning, but in her
case the cortical thinning is most evident in the posterior regions
of the cerebral cortex (see Figure 2). Moreover, in addition to
the bilateral damage to LOC in her ventral stream, the original
clinical scans also showed evidence of localized damage in the

parieto-occipital cortex (POC) of her left hemisphere (2). Sub-
sequent high-resolution MRI scans confirmed the presence of a
POC lesion in the left hemisphere while noting extensive bilateral
atrophy in the posterior regions of the intraparietal sulcus and
in POC of the right hemisphere (19), and the most recent scans
indicate that the lesion to POC is now evidently bilateral (20), sug-
gesting that the atrophy has increased in size in these and other
areas (see Figure 2). Nevertheless, functional magnetic resonance
imaging (fMRI) makes it clear that, despite the lesions to the POC
and atrophy in the surrounding tissue, there is robust activation
in the anterior intraparietal sulcus of DF’s brain during visually
guided grasping [Ref. (19); see Figure 3]. This dorsal-stream area
has long been associated with the planning and execution of pre-
hensile movements in both monkeys (21–24) and neurologically
intact humans (19, 25–32). Importantly, the activation in DF’s
anterior intraparietal cortex occurs despite the fact that she has
functionally complete bilateral damage of LOC, suggesting that the
computations that mediate her spared visual control of grasping
are not dependent on form processing in the ventral stream.

The bilateral damage to area POC in DF’s brain warrants some
discussion of the role of this brain area, particularly since it forms
part of the dorsal stream. After all, the TVSH would predict that
damage to this area would affect visually guided action. In fact,
a mounting body of evidence implicates POC in the control of
visually guided reaching, particularly to targets presented in the
periphery [for review see Ref. (34–38)]. In an important study,
Karnath and Perenin (38) carried out an analysis of lesion sites in
16 optic ataxic patients with unilateral damage to either the left or
the right posterior parietal cortex. The authors contrasted these
patients with control patients who had sustained damage to their
parietal cortex but who did not exhibit optic ataxia. Their analysis
showed that the greatest degree of lesion overlap that was unique
to the optic ataxic patients occurred in POC and in the precuneus.
Critically, all of the patients with optic ataxia showed misreaching
errors when reaching out to touch targets presented in the periph-
ery of their contralesional field. Although there is clear evidence
that optic ataxia can include visuomotor deficits in central vision
[e.g., Ref. (13, 14, 39, 40)], it is well-known that optic ataxia more
frequently manifests itself as misreaching to targets presented in
the periphery (41, 42). In fact, peripheral and centrally guided
reaches might well rely on separate networks in the posterior pari-
etal cortex (43, 44). Clavagnier et al. (43) have argued that the POC
forms part of a fronto-parietal network of areas that is critical for
visually guided reaches to peripherally presented targets.

Given the damage to DF’s POC, it is perhaps not surprising
that this region shows unusually little, if any, fMRI activation in
this region when she reaches out to touch targets (19) and that
she exhibits a gross deficit when reaching out to point to targets in
the periphery, but not when pointing to targets presented centrally
(33, 45). Thus, DF’s deficit in peripheral reaching is likely due to
the damage in her POC. There is also some indication that the POC
in monkey and in man plays a role in the control of grasps that are
directed at peripheral targets (46–48). For example, patient MH,
who developed optic ataxia following a unilateral POC lesion, not
only shows a deficit in pointing to targets presented in the periph-
ery of his contralesional field, but he also shows a deficit in grip
scaling when grasping these same objects. Critically, however, if the
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FIGURE 2 | A 3D rendering of the cortical gray matter boundary of
DF’s brain. The peripheral surface of her gyri is depicted as lighter and
more reflective, whereas, the sulci are depicted a darker gray. The
areas of cortical thinning are painted in translucent light blue and
encompass much of peri- and extrastriate cortex, especially in the left
hemisphere [see Ref. (20) for a detailed analysis]. There are also
prominent bilateral lesions in the lateral occipital cortex (LOC) and

additional lesions in the parieto-occipital cortex (POC) marked in dark
blue. Importantly, the cortical tissue surrounding most of the calcarine
sulcus, corresponding to primary visual cortex (V1) is intact, as are
most of the frontal, temporal, and parietal cortices. The small lesion in
the anterior part of the upper bank of the calcarine sulcus in her left
hemisphere accounts for the partial quadrantanopia in her lower visual
field [see Ref. (10, 33)].

objects are closer and he does not have to reach out toward them
before picking them up, MH’s grip scaling is normal. This suggests
that his grasping deficit is secondary to his deficit in reaching (49).
Interestingly, DF also shows a deficit in grip scaling when reach-
ing out to pick up targets located in her peripheral visual field
(33). But again, this deficit in grasping targets in the periphery
might be secondary to her demonstrated deficit in reaching into
the periphery, as it is in patient MH.

Nevertheless, DF’s visuomotor performance, even centrally, is
not completely normal in all situations. Himmelbach and col-
leagues (50) revisited DF’s grasping with the aim of testing for a
dissociation using the independent sample t -tests recommended
by Crawford et al. (51). Himmelbach et al. compared her perfor-
mance [as reported in Ref. (2,10)] with that of 20 new age-matched
control participants on three different visuomotor tasks: posting
a hand-held card through a slot, picking up Efron blocks of vary-
ing width, and picking up smooth-spline pebble-like shapes (2,
10). Although DF’s grip scaling (as measured by correlations)
with rectangular objects fell within the range of the new con-
trol participants, the grasp points she selected when picking up
the pebble-like shapes were not as optimal as those of the new
control participants tested by Himmelbach et al. Her performance
on the card-posting task was also slightly, but significantly, poorer
than that of the controls. Nevertheless, as the authors themselves

admit, the tests also revealed that DF’s data set satisfied Craw-
ford et al.’s (52) criterion for a “strong/differential” dissociation.
Unlike the criterion for a “classic” dissociation in which the patient
shows a deficit in one task but not the other, the criterion for
a “strong/differential” dissociation allows for a deficit in both
tasks, but, critically, requires a dramatically greater deficit in one
task than in the other. In other words, despite the presence of
slight impairments, DF’s performance on the action tasks were
consistently better than her performance on the corresponding
perceptual tasks – and this difference was much larger for her than
it was for the controls.

Although DF’s spared visuomotor abilities have been examined
in a number of different settings, it is her ability to scale her grip
aperture to the relevant dimension of a goal object when picking
it up that has been tested most often. No matter how the com-
putations underlying the programming and control of grasping
are conceptualized [e.g., Ref. (53–59)], there is general agreement
that the accurate grasping of a goal object normally requires a
visual analysis of the object’s shape so that the final positions of
the thumb and fingers can be computed correctly with respect to
the relevant dimension of the object, such as its width. Any error in
this computation could lead to the object being knocked away or
fumbled. When assessing DF’s grasping ability, investigators have
typically relied on the known positive linear relationship between
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FIGURE 3 | Horizontal section through DF’s brain illustrating grasp-
and reach-related activation in the anterior intraparietal sulcus (aIPS).
Grasp-specific activation is largely restricted to the right hemisphere. Note
that these regions are activated despite the presence of bilateral damage to
the parieto-occipital cortex (POC). Unlike healthy controls, there was little or
no activation associated with reaching in the POC (19).

the maximum opening of the hand mid-flight and object’s targeted
dimension (see Figure 4). Given the survey of DF’s dorsal-stream
damage discussed above and in light of Himmelbach’s findings,
we examined DF’s grip scaling (as measured by regression slopes)
across a range of studies in which she grasped centrally located tar-
gets under naturalistic viewing conditions which included online
visual feedback (2–7). Critically, the targets in all these studies
were drawn from a set of blocks that varied in width and length
but were matched for surface area, texture, mass, and color, so that
she could not discriminate one from another in perceptual tests.
DF clearly scales her grip aperture to the widths of these targets
when reaching out to pick them up (see Figure 4). Nevertheless,
she does show a modest, though significant, deficit when compared
to the controls. Critically, from study to study, DF’s estimations of
the widths of these targets remain at chance, whereas, not surpris-
ingly, the estimations made by the controls are essentially perfect.
Moreover, a formal test of the difference in performance across the
two conditions indicates a significant strong/differential dissocia-
tion (52). In short, over the course of two decades of testing, DF’s
dissociation between object vision-for-action and object vision for
perception remains as strong as ever.

As remarkable as DF’s visually guided grasping is, however, it
is clearly not without limitations. In fact, there are a number of
seemingly simple task modifications that have a remarkably detri-
mental effect on her grip scaling. For example, if a target object is
shown to DF and then taken away, she is unable to scale her grasp
appropriately when she is asked to show how she would pick the
target up should it have remained there. In healthy participants,
of course, grip aperture still correlates well with the object’s width,
even for delays as long as 30 s. In DF, however, all evidence of grip

scaling disappears after a delay of only 2 s (3). DF’s poor perfor-
mance cannot be due to a general impairment in memory: she has
no difficulty showing how she would pick up an imaginary orange
or a strawberry, objects that she would have encountered before
her accident or would have handled in the past. In other words,
when she pretends to pick up an imaginary orange, her hand opens
wider than it does for an imaginary strawberry (3). Moreover, she
is as accurate as normally sighted controls when asked to open her
finger and thumb a particular amount (e.g., “show me how wide
5 cm is”) with her eyes closed. Indeed, her manual estimations in
this task are much better than they are when she is asked to indi-
cate the width of an Efron block placed directly in front of her.
It is important to note that even though the grasping movements
made by normal participants in the delay condition are scaled to
the width of the remembered objects, they look very different from
those directed at objects that are physically present. This is because
the participants are “pantomiming” their grasps in the delay con-
ditions, and are thus relying on a stored perceptual representation
of the object they have just seen. Presumably, DF’s failure to scale
her grasp after a delay arises from the fact that she cannot use a
stored percept of the object to drive a pantomimed grasping move-
ment because she never “perceived” the target object in the first
place.

DF’s inability to pantomime grasps becomes relevant in the
context of a more recent series of experiments on DF’s grasping
abilities, which prompted the suggestion that her ability to grasp
objects accurately relies critically on haptic feedback rather than on
visual feedforward processing as is the case in normal individuals.
Using an ingenious mirror apparatus, Schenk (60) demonstrated
that DF’s grip scaling is completely abolished in a task in which
the target remains visible (as a virtual image in the mirror) yet is
physically absent (behind the mirror) so that when her hand closes
down on the apparent edges of the virtual target, it closes down on
“thin air.” Schenk argued that DF’s failure to show grip scaling in
this situation is due to the absence of haptic feedback, which would
compensate for her poor visual abilities. According to Schenk, DF’s
grip scaling relies on the integration of visual and haptic feedback
about location of the finger and thumb endpoints that are, pre-
sumably, applied in a predictive manner on subsequent trials [for
a discussion of Schenk’s interpretation and related issues, see Ref.
(61, 62)]. When such haptic feedback is absent, Schenk argues,
DF’s ability to grasp objects falls apart because her degraded form
vision cannot, by itself, support visually guided grasping.

We have offered an alternative, more straightforward explana-
tion. We contend that grasping tasks in which the target is visible
but not available to touch are actually pantomime tasks in which
the participant has to pretend to contact the object. For the visuo-
motor systems in the dorsal stream to remain engaged, we would
argue, there must be some sort of tactile confirmation that the
visible target has been contacted at the end of the movement. In
the absence of such feedback, participants revert to pantomim-
ing and pretend to grasp the object they see in the mirror. This
conclusion is supported by the fact that the slopes of the function
relating grip aperture to object width in the normal participants
in the absent-object task are much steeper than those typically
observed in normal grasping in which the target object is physi-
cally present (63). In fact, the slopes resemble those seen in manual
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FIGURE 4 | (A) Superimposed snapshots of a reach-to-grasp action directed
at an Efron block. Red double-headed arrows indicate “grip aperture”, the
Euclidean distance between the tracked markers placed on the tips of the
thumb and index-finger (B) sample trajectories of the thumb and
index-finger (blue circles) during a precision pincer grasp as the hand
reaches out toward the object. The grip aperture is indicated in red. The light
blue line reflects the peak grip aperture, which is achieved well-before the
fingers contact the object. (C) Grip aperture plotted as a function of time
(e.g., percent movement time). The peak grip aperture is again indicated in
light blue. (D) Peak grip aperture shows a positive linear relationship to the
target size of the object, and so it is thought to reflect the visuomotor
system’s anticipatory estimate of the target’s width. The slopes can be used
as indicators of “grip scaling.” (E) The slopes for grasping and manual

estimation for both the controls (open circles) and DF (X’s) across studies in
which Efron blocks were used, the visual conditions were “ecological” (i.e.,
online visual feedback was available), and the controls were gender-matched
and age-appropriate for DF. Although DF scales her grasp to the width of the
Efron blocks, her slopes are significantly shallower than those of the
controls, using either independent or paired-samples variants of the t -test
(pmax < 0.04). The slopes of DF’s manual estimations are essentially zero and
clearly different from those of the controls (pmax < 6 × 10−3). Critically, the
difference in slopes between the grasping and manual estimation tasks falls
well-outside of the range of the controls (pmax < 5 × 10−3). In other words,
across a number of comparable studies of DF’s grasping and perceptual
estimation ability, her performance when grasping Efron blocks is sharply
dissociated from her performance when perceptually estimating their width.

estimations of object width, suggesting that participants are relying
on a perceptual representation of the target to drive their behavior
rather than engaging more“encapsulated”visuomotor networks in
the dorsal stream that normally mediate visually guided grasping.
In short, in the absence of any tactile feedback, the participants
default to a pantomime grasp. DF, of course, is at an enormous
disadvantage in this situation because she does not perceive the
form of the virtual image in the mirror and thus cannot generate a
pantomimed response. As a consequence, her grip aperture bears
no relationship to the width of the target in this situation.

To test this idea, we recently examined DF’s performance using
the same mirror set-up used by Schenk (60). In our experiment,
however, there was always an object behind the mirror for her to
grasp. Importantly, the width of that object never changed, even
though the width of the object viewed in the mirror varied from
trial to trial (5, 6). With this arrangement, DF always experienced
tactile feedback at the end of the movement, but the feedback
was completely uninformative about whether or not her grasp
was properly tuned to the width of the object in the mirror. Con-
trary to what Schenk’s visuohaptic calibration hypothesis would

predict, we found that DF continued to show excellent grip scaling
in this task. In other words, DF was able to use visual informa-
tion in a feedforward manner to scale her grasp in the complete
absence of reliable haptic feedback. Tactile contact by itself was
evidently enough to keep the visuomotor systems in her dorsal
stream engaged.

It is worth mentioning another prediction that follows from the
visuohaptic calibration hypothesis (60, 64). According to Schenk,
the reason DF is unable to manually estimate the width of an object
is that, unlike in the grasping task, she experiences no haptic feed-
back about the object’s width after she makes each estimate. We
tested this prediction directly by allowing DF to pick up the object
immediately after she had made her estimate (6, 7). Again, con-
trary to the visuohaptic calibration hypothesis, we found that DF
continued to be unable to indicate the width of the object despite
having accurate haptic information about the width of the target
after every estimate. It would appear that an explicit estimate of
size, reflecting what she perceived (or perhaps more correctly, did
not perceive) of the object’s width, could not take advantage of the
haptic feedback.
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As we pointed out earlier, the TVSH does not rest entirely
on the evidence from DF. Support for the central ideas of the
hypothesis comes from a broad range of studies, from monkey
neurophysiology to human neuroimaging. Moreover, there is also
converging evidence from other patients with visual form agnosia.
Patient JS, for example, has bilateral lesions in the ventral stream
that were more medial than DF’s, but showed a similar dissoci-
ation between visual form perception and the visual control of
grasping (65). In fact, there are a number of anecdotal reports in
the long literature on visual form agnosia that such patients are
able to reach out and grasp objects with surprising accuracy [e.g.,
Ref. (66)].

Patient DF’s ability to use object form to guide the configura-
tion of her grasping hand in the absence of conscious awareness
of that form is reminiscent of what Weiskrantz and his colleagues
called “blindsight” in an influential article published in The Lancet
in 1977 (67). Patients with blindsight are able to respond to visual
stimuli presented in their blind field despite a complete absence
of visual phenomenology in that field. In fact, subsequent inves-
tigations of patients with “action” blind sight [for review, see Ref.
(68)] have revealed a dissociation between prehension and percep-
tual size-estimation (69–73). These patients typically have lesions
to the earliest visual cortical areas, including primary visual cor-
tex or even the pathways from the lateral geniculate nucleus that
innervate these areas. In a recent paper, Whitwell, Striemer, and
Goodale (73) found that a young woman with a unilateral lesion of
V1 was nevertheless able to scale her hand to the width of objects
that she could not perceive. This observation coupled with many
others demonstrating spared visuomotor control in patients with
V1 lesions suggests that the posterior parietal cortex enjoys privi-
leged access to visual inputs that bypass the retino-geniculo-striate
route. One possible route for such transmission is the well-known
set of projections from the superior colliculus in the midbrain to
the pulvinar – and from there to the middle temporal area (MT)
and the posterior parietal cortex. There are other candidate path-
ways as well [for review see Ref. (15)]. It seems unlikely that these
extra-geniculo-striate projections evolved to be a“back up”should
V1 happen to be damaged, but rather play a more integral role
in the mediation of visually guided movements in neurologically
intact individuals. It seems likely that these pathways normally
supply the dorsal stream with essential information for the visual
control of movements such as reaching and grasping – and that in
DF’s brain such pathways would also be at work.

In summary, the demonstration that DF has a remarkable abil-
ity to use information about object form and orientation to control
skilled actions despite having a massive deficit in form vision has

stood the test of time. Although a number of critics have tried
to argue otherwise, it appears that she is able to use feedforward
visual information about the shape of objects to guide her hand
and fingers as she reaches out to grasp them – and her spared ability
to do this does not depend on some sort of abnormal recruitment
of haptic information to augment her compromised visual pro-
cessing. Instead, it appears that vision-for-action in DF, at least as
it applies to the control of grasping, depends on the recruitment
of relatively intact visuomotor networks in her dorsal stream, and
that these networks are engaged in much the same manner as they
are in the normal healthy brain.
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