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Abstract

Segmentation and genome annotation (SAGA) algorithms are widely used to understand

genome activity and gene regulation. These algorithms take as input epigenomic datasets,

such as chromatin immunoprecipitation-sequencing (ChIP-seq) measurements of histone

modifications or transcription factor binding. They partition the genome and assign a label to

each segment such that positions with the same label exhibit similar patterns of input data.

SAGA algorithms discover categories of activity such as promoters, enhancers, or parts of

genes without prior knowledge of known genomic elements. In this sense, they generally act

in an unsupervised fashion like clustering algorithms, but with the additional simultaneous

function of segmenting the genome. Here, we review the common methodological frame-

work that underlies these methods, review variants of and improvements upon this basic

framework, and discuss the outlook for future work. This review is intended for those inter-

ested in applying SAGA methods and for computational researchers interested in improving

upon them.

Background and motivation

High-throughput sequencing technology has enabled numerous techniques for genome-scale

measurement of chemical and physical properties of chromatin and associated molecules in

individual cell types. Using sequencing assays, the Encyclopedia of DNA Elements (ENCODE)

Project, the Roadmap Epigenomics Project, and myriad individual researchers have generated

thousands of such datasets. These datasets quantify various facets of gene regulation such as

genome-wide transcription factor binding, histone modifications, open chromatin, and RNA

transcription. Each dataset measures a particular activity at billions of positions, and the collec-

tion of datasets does so in hundreds of samples across a variety of species and tissues. Trans-

forming these quantifications of diverse properties into a holistic understanding of each part

of the genome requires effective means for summarization. Segmentation and genome annota-

tion (SAGA) algorithms (Box 1) have emerged as the predominant way to summarize activity

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009423 October 14, 2021 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Libbrecht MW, Chan RCW, Hoffman MM

(2021) Segmentation and genome annotation

algorithms for identifying chromatin state and

other genomic patterns. PLoS Comput Biol 17(10):

e1009423. https://doi.org/10.1371/journal.

pcbi.1009423

Editor: Tamar Schlick, New York University,

UNITED STATES

Published: October 14, 2021

Copyright: © 2021 Libbrecht et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Funding: This work was supported by the Natural

Sciences and Engineering Research Council of

Canada (RGPIN-2015-03948 to M.M.H.), https://

www.nserc-crsng.gc.ca/. The funders had no role

in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0003-2502-0262
https://orcid.org/0000-0003-1009-6379
https://orcid.org/0000-0002-4517-1562
https://doi.org/10.1371/journal.pcbi.1009423
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009423&domain=pdf&date_stamp=2021-10-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009423&domain=pdf&date_stamp=2021-10-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009423&domain=pdf&date_stamp=2021-10-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009423&domain=pdf&date_stamp=2021-10-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009423&domain=pdf&date_stamp=2021-10-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009423&domain=pdf&date_stamp=2021-10-14
https://doi.org/10.1371/journal.pcbi.1009423
https://doi.org/10.1371/journal.pcbi.1009423
http://creativecommons.org/licenses/by/4.0/
https://www.nserc-crsng.gc.ca/
https://www.nserc-crsng.gc.ca/


at each position of the genome, distilling complex data into an interpretable précis of genomic

activity.

SAGA algorithms take as input a collection of genomic datasets, such as ChIP-seq measure-

ments of histone modifications or of transcription factor binding (Fig 1). The SAGA task is to

use the input datasets to partition the genome into segments and assign a label to each seg-

ment. SAGA algorithms perform this task in a way that leads to positions with the same label

having similar patterns in the input data.

Most existing SAGA algorithms employ a probabilistic model known as a hidden Markov

model (HMM) or a related model such as a dynamic Bayesian network (DBN) (see “Hidden

Markov model (HMM) formulation”). This model represents a scenario where each genomic

position has an unknown label that corresponds to its activity of interest. In the model, some

process generates observed data as a function of this label, and labels of neighboring positions

Box 1. Terminology

SAGA

We define a segmentation and genome annotation (SAGA) algorithm as a procedure that:

1. assigns to each position of a whole genome a label (“genome annotation”),

2. from a set of multiple (�3) classes,

3. by

(a) integrating multiple independent observations at each position, and

(b) modeling dependence between adjacent positions (“segmentation”).

Previously, researchers have used several other terms to describe this task, including

“segmentation” [1], “chromatin state annotation” [2], and “semi-automated genome

annotation” [3]. We use “segmentation and genome annotation” instead of simply using

“segmentation” because the latter only describes 1 of 2 important parts of the task. We

use this term instead of “chromatin state annotation” because SAGA algorithms general-

ize to data types other than chromatin state, and indeed such uses predate the use for

chromatin state alone [1,4–6].

Assay

An experiment that produces a measurement at each genomic position, such chromatin

immunoprecipitation-sequencing (ChIP-seq) or assay for transposase-accessible chro-

matin-sequencing (ATAC-seq).

Label

One of a finite set of classes assigned to each genomic segment that shares similar activ-

ity. Other terms include “state” or “chromatin state.”

Sample

A population of cells on which one can perform an assay, such as a primary tissue sample

or a cell line. Other terms include “cell type,” “epigenome,” or “biosample.”

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009423 October 14, 2021 2 / 21

https://doi.org/10.1371/journal.pcbi.1009423


influence each other. SAGA algorithms work by finding the model parameters and genome

annotation that maximize the model likelihood.

The first SAGA methods were developed in the 2000s but have increased in usage recently,

thanks to the wide availability of genomic datasets (Table 1). Large-scale genomic profiling

Fig 1. Overview of SAGA. First, preprocessing transforms genomic assay sequencing reads into signal datasets.

Second, with signal datasets as input, a SAGA algorithm partitions the genome and assigns an integer label to each

segment, yielding an annotation. Third, a researcher interprets the labels, assigning a biological interpretation to each.

ChIP-seq, chromatin immunoprecipitation-followed by sequencing; SAGA, segmentation and genome annotation.

https://doi.org/10.1371/journal.pcbi.1009423.g001

Table 1. Timeline of selected SAGA methods.

Year Name or description References

2007 HMMSeg [1]

2010 Chromatin colors [7]

2010 Chromatin states model [8]

2012 ChromHMM [2,9–11]

2012 Segway [9,12–14]

2013 TreeHMM [15]

2015 Spectacle [16]

2015 hiHMM [17]

2015 Ensembl Regulatory Build (with Segway, ChromHMM) [18]

2015 EpiCSeg [19]

2015 Segway+GBR [3,20]

2016 IDEAS [21–24]

2017 GenoSTAN [25]

2017 diHMM [26]

2018 iSeg [27]

2018 StatePaintR [28]

2019 RT States [5]

2019 ConsHMM [4]

2020 modHMM [29]

2020 SPIN [30]

2020 SegRNA [6]

https://doi.org/10.1371/journal.pcbi.1009423.t001
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projects such as ENCODE [31] and Roadmap Epigenomics [10] produced SAGA annotations

as a primary output. Researchers have developed a large variety of SAGA strategies with the

goal of improving upon the basic SAGA framework.

In this review, we summarize the main strategies used by most SAGA methods. Then, we

discuss differences between methods, the challenges they face, and the outlook for future

work.

This review is intended for 2 audiences. First, analysts interested in applying SAGA meth-

ods or using the resulting annotations will find this review useful for understanding how the

methods work and the steps and choices involved in applying existing methods. Second, meth-

ods researchers interested in improving and extending these methods will find this review use-

ful for understanding the diversity of existing methods and where they have room for

improvement.

The structure of this review follows the steps by which a researcher proceeds from raw data

to scientific insight. For each step, we review the variations in each step found in the literature

and discuss considerations one must make in choosing between these variants. We devote a

section to each of the following steps:

1. Selection and processing of input data

2. Formulation and optimization of probabilistic model

3. Selection of resolution parameters

4. Selection of parameters for number of labels

5. Interpreting unsupervised labels

6. Extending to multiple cell types

7. Evaluating annotations

8. Visualizing annotations

A major caveat limits our discussion: As of this writing, researchers have not performed

comprehensive benchmarking of SAGA methods. This caveat likely results from challenges in

evaluating these methods that we discuss. Therefore, the optimal choice for most modeling

choices remains an open scientific question.

Input data

Experimental assays used for input data

SAGA methods typically use as input a number of different experimental datasets, each

describing some local property of the genome [32]. Such properties might include chromatin

accessibility or presence of some DNA-binding protein. Although input data initially came

from microarray methods such as tiling arrays [33], they now usually come from sequence

census assays [34].

A common collection of input datasets might measure histone modifications or DNA-bind-

ing proteins (using assays like ChIP-seq [35] or cleavage under targets and release using nucle-

ase (CUT&RUN) [36]) and chromatin accessibility (using assays like deoxyribonuclease-

sequencing (DNase-seq) [37,38] or ATAC-seq [39]). Supplying a SAGA algorithm with data-

sets that measure chromatin activity yields an output annotation that captures the regulatory

state of chromatin. Creating these chromatin activity annotations has served as the predomi-

nant use of SAGA methods thus far.
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Less frequently, researchers have gone beyond measurements of chromatin and DNA-bind-

ing proteins and have used SAGA methods for other kinds of data. The output annotation

summarizes the input datasets, so the choice of input greatly influences the annotation’s con-

tent and its subsequent interpretation. SAGA methods can work for any sort of dense linear

signal along the genome. Individual studies have applied it DNA replication timing data

[3,5,30], interspecies comparative genomics data [4], and RNA-seq data [6]. Other studies

have even found ways to incorporate nonlinear chromatin 3D genome organization data into

the SAGA framework [3,30].

The choice of input datasets is critically important. Unsupervised SAGA methods identify

the patterns most prominent in their input data. Therefore, providing more input datasets

does not always improve results and may hide patterns prominent only in a subset of the data-

sets. To simplify understanding of the resulting annotations, researchers commonly use input

datasets from just a single type of biological process, such as chromatin or transcription.

Signal representation of genomic assays

Most genomic assay data so far has come from bulk samples of cells. These data depict a noisy

mixture of sampling an assayed property from the many cells within the population. These

cells may represent subpopulations of slightly different types or within different cell cycle

stages. Thus, each subpopulation might have different characteristics in the assayed properties.

In the mixture of cell subpopulations, only frequently sampled properties will rise above back-

ground noise. By comparison, less frequently sampled properties seen in a minority of cells

may remain indistinguishable from background noise.

Often, the property examined by an epigenomic assay is exhibited or not exhibited by some

position of a single chromosome in a single cell, with no gradations between the extremes. For

example, at some nucleotide of 1 chromosome in a single cell, an interrogated histone modifi-

cation is either present or it is not. A single diploid cell has 2 copies of the chromosome. Thus,

at that position, each eudiploid cell can have only 0, 1, or 2 instances of the histone

modification.

Summing or averaging discrete counts over a population of cells leads to a representation of

the assay data called “signal.” Signal appears as a continuous-scale measurement. Signal arises,

however, only from the aggregation of position-specific properties, which, in each cell, may

have only a small number of potential ordinal values at the moment of observation.

Unlike epigenomic assays, transcriptomic assays can measure any number of transcript

copies of 1 position per cell. Despite similar data representations, one must avoid the tempta-

tion to interpret epigenomic signal intensity as one might interpret transcriptomic signal

intensity. For a transcriptomic assay, greater signal intensity might reflect a greater “level” of

some transcriptional property within each cell. For an epigenomic assay, greater signal inten-

sity indicates primarily that a higher number of cells within a sample have the property of

interest.

In both the epigenomic and transcriptomic cases, it remains difficult or impossible to

untangle the contribution to higher signal intensity that arises from frequency of molecular

activity within each cell of a subpopulation from that from the composition of subpopulations

within a whole bulk population. Improvements in single-cell assays, however, may enable

SAGA algorithms on data from single cells in the near future (see “Outlook for future work”).

Preprocessing of input data

SAGA methods generally use a signal representation of the input data. This signal representa-

tion originates from raw experimental data, such as sequencing reads, by way of a

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009423 October 14, 2021 5 / 21

https://doi.org/10.1371/journal.pcbi.1009423


preprocessing procedure. For simplicity, we describe the steps of preprocessing as if a human

analyst conducted them all individually, although some SAGA software packages might per-

form some steps without manual intervention:

Required preprocessing for all SAGA methods:

1. The analyst transforms the experimental data into raw numeric signal data.

• For sequencing data, the analyst:

1. aligns each sequencing read to the reference genome (producing a sequence alignment

map (SAM) or binary alignment map (BAM) [40] file),

2. may choose to extend each read to an estimated length of the DNA fragment it begins,

and

3. computes the number of reads per base or extended reads per base for each genomic

position (producing a Wiggle [41], bigWig [42], or bedGraph [41] file) [12,13].

• For microarray data, the analyst:

1. acquires microarray signal intensity for the experimental sample and for a control sam-

ple, and

2. computes the ratio of experimental intensity to control intensity.

2. The analyst chooses units to represent the strength of activity at each position and may per-

form further transformation of the raw numeric signal data into these units.

• For sequencing data, the analyst commonly uses one of:

• read count (no transformation),

• fold enrichment of observed data relative to a control [9], or

• −log10 Poisson p-values indicating the likelihood of statistically significant peaks rela-

tive to control [22]. The latter 2 units can mitigate experimental artifacts because

they compare to a control experiment such as a ChIP input control.

• For microarray data, the analyst commonly performs log2 transformation of the inten-

sity ratios [7,43,44].

Optional preprocessing or preprocessing required only for specific SAGA methods:

3. The analyst may normalize data to harmonize signal across cell types [45]. Normalization

proves especially important when annotating multiple cell types (see “Annotating multiple

cell types”).

4. To prevent large outlier signal values from dominating the results, the analyst may trans-

form signals using 1 of 3 variance-stabilizing transformations of each signal value x:

• asinh x [12],

• log
2
ðxþ pseudocountÞ [22], or

• an empirical variance-stabilizing transformation [46].

5. The analyst may downsample 1-bp resolution signal into bins (see “Spatial resolution”).

This involves computing one of:

• average read count,
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• reads per million mapped reads fold enrichment [47],

• total count of reads [19,48,49], or

• maximum count of reads of each bin [9,21].

Binning greatly decreases the computational cost of the SAGA algorithm and can improve

the data’s statistical properties.

6. The analyst may binarize numeric signal data into presence/absence values (potentially pro-

ducing a browser extensible data (BED) [41] file) [2,15,26,50,51]. Binarizing signal simpli-

fies analysis by avoiding issues related to the choice of units but eliminates all but one bit of

information about signal intensity per bin.

Missing data

Genomic assays usually cannot produce signal for every region of the whole genome. Regions

where an assay cannot provide reliable information about the interrogated property constitute

“missing data” for that assay. Missing data in sequencing assays may arise due to unmappable

sequences, which occur when repetitive reads do not uniquely map to a region [52,53]. Missing

data in microarray assays come from regions covered by no microarray probes. There are 3

main ways to treat regions of missing data: (1) by treating missing data as 0-valued data; (2) by

decreasing the model resolution, averaging over available data so that the missing data has lim-

ited impact; or (3) statistical marginalization over the missing data [12,15,54].

When analyzing coordinated assays across multiple cell types, researchers may have to con-

tend with having no data on some properties within a subset of cell types. This represents

another kind of missing data: one with an entire dataset missing rather than only data at spe-

cific positions. Researchers can impute [26] entire missing datasets through tools such as

ChromImpute [55], PREDICTD [56], or Avocado [57]. Alternatively, IDEAS [23] uses an

expectation–maximization (EM) approach to perform imputation and annotation

simultaneously.

Hidden Markov model (HMM) formulation

Many SAGA methods rely on an HMM, a probabilistic model of the relationships between

sequences of observed events and the unobservable hidden states, which generate the observed

events. The structure of HMMs, and similar models such as DBNs [58], naturally reflect the

SAGA task of clustering observed data generated by processes that act on sequences of geno-

mic positions.

Simple HMM example

As an illustration of a simple HMM, consider a dog, Rover, and his owner, Thomas. Thomas is

5 years old and too short to see out of the windows in his home. Rover can leave the house

through his dog door and loves taking walks, playing indoors, and napping. Every morning, he

will either wait by the door for Thomas, play with his squeaky toys, or sleep in. Whichever

action he takes depends on the weather he sees outdoors. For example, on rainy days Rover

will more likely nap or play with his toys indoors.

Thomas must infer the state of the weather outside, hidden to him, based on the behavior

he observes from Rover. Thomas knows the weather patterns near his home. In particular,

Thomas knows that rainy weather likely continues across multiple days, so his inference must

take into account the whole sequence of Rover’s behavior.
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This scenario fits well into the HMM framework. It has a sequence of observations (Rover’s

behavior) generated by hidden, nonindependent unobservables (the weather outside). One

would like to infer the sequence of hidden unobservables based on the sequence of

observations.

Mathematical formulation

Formally, we can define an HMM over time t2{1,. . .,T} as follows [59,60]. Let the sequence of

observed events X ¼ fXtg
T
t¼1

consist of each observed event Xt at every time t. Let the sequence

of hidden states Q ¼ fQtg
T
t¼1

consist of each hidden state Qt at every time t. Each Qt takes on a

value qt from a set of m possible hidden state values (Fig 2A).

Under the Markov assumption, the probability of realizing state value qt+1 at the next time

step t+1 depends only on the current state value qt:

PðQtþ1 ¼ qtþ1jQt ¼ qt;Qt� 1 ¼ qt� 1; . . . ;Q1 ¼ q1Þ ¼ PðQtþ1 ¼ qtþ1jQt ¼ qtÞ:

We define the transition probability A(qt+1|qt) = P(Qt+1 = qt+1|Qt = qt), which reflects the

frequency of moving from state qt to state qt+1.

We define the emission probability B(xt|qt) = P(Xt = xt|Qt = qt) as the probability that the

observable Xt is xt if the present hidden state Qt = qt. Specifically, we assume that B(xt|qt)
depends only on Qt = qt, such that

PðXt ¼ xtjQt ¼ qt;Qt� 1 ¼ qt� 1; . . . ;Q1 ¼ q1Þ ¼ PðXt ¼ xtjQt ¼ qtÞ:

Fig 2. Two representations of an HMM. (A) Conditional dependence diagram representation of an unrolled HMM

with sequence of hidden states fQtg
T
t¼1 and sequence of observations fXtg

T
t¼1. In this representation, each node

represents a hidden discrete (white rectangle) or observed continuous (gray circle) random variable. For every index t,
each hidden random variable Qt takes on some value qt; similarly, each observed variable Xt takes on some value xt. Xt
may represent either scalar or vector observations. Solid arcs represent conditional dependence relationships between

random variables. (B) State transition diagram representation of Rover and Thomas’s weather example. In this

representation, each node represents a potential value of the hidden variable Qt. The hidden variable takes on values r

(rainy) or ¬r (not rainy) on any given day t. Solid arcs represent transitions between hidden states, which have

transition probabilities A. HMM, hidden Markov model.

https://doi.org/10.1371/journal.pcbi.1009423.g002
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Finally, we define the hidden state probability at the first time step as π0(q0) = P(Q0 = q0).

We can fully define an HMM M = (A, B, π0) by specifying all of A, B and, π0.

In the case of Rover and Thomas, we have m = 2 possible hidden states (rainy, not-rainy)

and 3 possible observations (Rover is napping, playing indoors, or waiting by the door). To

Thomas, the hidden variable Qt captures the weather outside, while the observed variable X
captures Rover’s behavior. The probability of the state of the weather outside changing on a

day-to-day basis is defined by the transition probabilities A (Fig 2B). The probability of Rover’s

behavior, given the weather, is defined by the emission probabilities B.

Algorithms for inference, decoding, and training

Inference. The main task one uses HMMs for is to quantify how well some predicted

sequence of hidden states fits the observed data. Other common tasks like decoding or training

serve as variations of, or build on, this inference task.

In HMMs inference, we can compute the likelihood of any sequence of hidden states Q. We

use the sequence of observed events X and the model probabilities M to compute the likelihood

function P(X|Q, M). The likelihood function is the probability that our predicted sequence of

hidden states produced our observed sequence of observed states. We often compute the likeli-

hood function using the forward–backward algorithm [61,62].

Viterbi decoding. Given a sequence of observed events X, we often wish to know the max-

imum likelihood sequence of corresponding hidden states Q. For example, if Thomas observes

that in the past 3 mornings, Rover slept, played, and then slept again, what weather sequence

outside is most likely?

To answer this question, we decode the optimal sequence of hidden states q� such that q� =

arg maxQ P(Q|X, M). The Viterbi algorithm [63] provides an efficient solution for this prob-

lem, making it unnecessary to compare the likelihood for every possible sequence of hidden

states.

Training. Usually, we do not know the model parameters (A, B, π0) and must learn them

from data. We define training as the process of learning these parameters, and training data as

the sequence of observations upon which we learn. An efficient algorithm that finds the global

optimum parameter values for some training data does not exist. Instead, researchers com-

monly train HMMs using EM [64] algorithms such as the Baum–Welch algorithm [65], which

find a local optimum. Other reviews [59] describe inference and training methods in more

detail.

HMMs for SAGA

We can readily apply the HMM formalization to genomic data for use in SAGA methods.

Instead of time, we define the dynamic axis t in terms of physical position along a chromo-

some. Each position t refers to a single base pair or, in the case of lower-resolution models, a

fixed-size region (see “Spatial resolution”). The observation at each genomic position usually

represents genomic signal (see “Input data”). Each position’s hidden state represents its label

(see “Understanding labels”). As a result, decoding the most probable sequence of hidden

states reveals the most probable sequence of labels across the genome. We call this resulting

sequence of labels an annotation.

Many SAGA methods use an HMM structure [2,5,12,15,19,26,44,47], or generalizations

thereof. For example, DBNs are generalizations of HMMs that can model connections between

variables over adjacent time steps. Methods such as Segway [12] use a DBN model in their

approach to the SAGA problem. This can make it easier to extend the model to tasks such as

semi-supervised, instead of unsupervised, annotation [66].
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Spatial resolution

Baroque music often employs a musical architecture known as “ternary form.” Specifically,

pieces of this structure follow a general “ABA” pattern, whereupon the second “A” section

recapitulates the first with some variation. Each section contains multiple musical “sentences,”

which may repeat or vary. Just like linguistic sentences, each musical sentence contains clusters

of notes, or motifs, between “breaths” in the musical articulation. Finer examination of the

motifs shows that they contain a few notes and chords each. Finer examination of the notes

themselves shows that they behave just like isolated phonemes in speech, with little meaning

on their own.

The genome resembles a musical composition in that one observes different behaviors at

different scales. The scale of genomic behavior one wishes to observe influences the choice of

SAGA method and parameters chosen for the method. To observe nucleosome-scale behavior

such as genes, promoters, and enhancers, one desires about 103 bp segments. To describe

behavior on the scale of topological domains [67], one desires segments of length approxi-

mately 105 to 106 bp [1,3,20].

The most important parameter influencing segment length is the underlying resolution of

the SAGA method. As noted above (see “Input data”), most SAGA methods downsample data

into bins. To observe nucleosome-scale segment lengths (about 103 bp), one should use 100 bp

to 200 bp resolution [2,12,21]. To observe domain-scale segment lengths (about 105 bp), one

should use approximately 104 bp resolution [3,7,30]. Segway [12] and RoboCOP [68] provide

some of few SAGA methods optimized for single-base resolution inference and can identify

behavior on a 1-bp scale. While most existing SAGA methods handle data at just one genomic

scale, there exist methods capable of learning from data at multiple genomic scales [26].

Limitations of the experimental data itself influence the choice of SAGA model resolution.

Spatial imprecision in ChIP-seq data gives it an inherent resolution of about 10 bp. More pre-

cise assays such as ChIP-exo [69] and ChIP-nexus [70] can approach 1 bp resolution. Con-

versely, assays like DNA adenine methyltransferase identification (DamID) and Repli-seq have

a coarser resolution of�100 bp.

The desired scale may also influence the choice of input data. When aiming to annotate at

the domain scale, one should include data with activity at this scale, such as replication time

data and Hi-C data [3,5,7,30]. The inclusion of long-range contact information from Hi-C

data poses a challenge because standard algorithms for HMMs cannot be used for a probabilis-

tic model that includes long-range dependencies. Therefore, one must instead use alternative

approaches such as graph-based regularization [3] or approximate inference [30].

SAGA methods model segment length through their transition parameters. HMM models

assume a geometric distribution in determination of a segment’s length [71]. Related DBN

methods can include constraints to tune segment length further. Constraints include the

enforcement of a minimum or maximum segment length [12]. Enforcement of a minimum

segment length ensures that one does not obtain segments shorter than the effective resolution

of the underlying data or biological phenomena. Probabilistic models often additionally use a

prior distribution on the transition parameters during training to encourage them to produce

shorter or longer segment lengths.

Choosing the number of labels

Most SAGA methods require the user to define the number of labels. Using more labels

increases the granularity of the resulting annotation at the cost of added complexity. Typically,

the number of labels ranges from 5 to 20, with more recent work favoring 10 to 15 labels.
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One might think to make the choice of number of labels automatically with a statistical

approach. The Akaike information criterion (AIC), Bayes information criterion (BIC), and

factorized information criterion (FIC) [72] measure the statistical support a particular number

of labels has. Instead of a fixed number of labels, one may give the model flexibility to choose

the number of labels during training and include a hyperparameter that encourages it to

choose a higher or lower number [17]. Or one might define labels according to local minima

in an optimization based on a network model of assays [51]. One could even exhaustively

assign a separate label to every observed presence/absence pattern in binary data [48].

In practice, however, researchers rarely use these statistical approaches for determining the

number of labels. Optimizing an information criterion does not necessarily yield the most

interpretable annotation. Interpretability reigns supreme in most SAGA applications. End

users find annotations most useful when they have about 5 to 20 labels for 2 reasons. First,

most can only articulate that many known distinctions between classes of genomic elements.

Second, even if one could find meaningful distinctions between a large number of labels, few

using the resulting annotations could keep fine distinctions between such a large number of

patterns in their working memory [73]. Even if a statistical approach supported the use of 50

labels, the complexity of such an annotation would make it impractical for most users.

Understanding labels

SAGA methods are unsupervised. The labels they produce usually begin with integer designa-

tions without any essential meaning. Ideally, each label corresponds to a particular category of

genomic element. To make this correspondence explicit, we must assign a biological interpre-

tation, such as “Enhancer” or “Transcribed gene,” to each label.

Usually, one makes assignments of labels to biological interpretations in a postprocessing

step. In postprocessing, a researcher compares each label to known biological phenomena and

assigns an interpretation that matches the researcher’s understanding of molecular biology.

For example, a label characterized by the histone modification H3K36me3 (associated with

transcription) and enriched in annotated gene bodies might have the interpretation “Tran-

scribed.” A label characterized by H3K27ac and H3K4me1, both histone modifications canoni-

cally associated with active enhancers, might have the interpretation “Enhancer” [31].

The interpretation process provides an opportunity to discover new categories of genomic

elements. For example, one SAGA study found that their model consistently produces a label

corresponding to transcription termination sites. Previously, none had described a distinctive

epigenetic signature for transcription termination [9].

Manual interpretation proves time-consuming for human analysis. Applying SAGA to mul-

tiple cell types independently exacerbates this problem (see “Annotating multiple cell types”).

Two existing methods automate the label interpretation process: expert rules and machine

learning. In both cases, an interpretation program considers the information that a researcher

would use for interpretation. This includes examining the relationship between labels and

individual input data properties. It also includes reviewing colocalization of labels with features

in previously created annotations. These annotations may have come from SAGA approaches

or other manual or automated methods.

In the expert rule approach, an analyst designs rules about what properties a given label

must have to receive a particular interpretation. The analyst then applies these rules to assign

interpretations to labels from all models [18].

In the machine learning approach, one trains a classifier on previous manual annotations.

The classifier then learns a model that assigns interpretations to labels given their properties
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[14]. One analysis [14] found that automatic interpretation agreed with manual for 77% of

labels, compared to 19% expected by chance.

Annotating multiple cell types

There now exist epigenomics datasets describing hundreds of biological samples (Fig 3A).

Researchers have correspondingly adapted SAGA methods to work with many samples

simultaneously.

We use the term “sample” to refer to some population of cells on which one can perform an

epigenomic assay. A sample could correspond to a primary tissue sample, a cell line, cells

affected by some perturbation such as drug or disease, or even cells from different species.

The simplest approach for annotating multiple samples involves simply training a separate

model on each sample [14] (Fig 3B).

The large number of models produced by this approach necessitates using an automated

label interpretation process (see “Label interpretation”).

Two categories of approaches aim to share information across samples. The first, “horizon-

tal sharing” or “concatenated” approaches, share information between samples to inform the

label-training process. The second, “vertical sharing” or “stacked” approaches, share position-

specific information to inform the label assignment of each position.

Horizontal sharing: Emphasizing similarities across samples for learning

labels

The simplest way to remove the need for interpreting multiple models is to apply a single

model across many samples. To do this, one can treat each sample as referring to separate

Fig 3. Annotating multiple cell types. (A) Datasets generated by the ENCODE and Roadmap Epigenomicsconsortia

as of 2019. The black cells represent the datasets actually generated out of a larger number of potential combinations of

cell type and assay type. (B) Annotating 6 datasets from 3 different samples: 3 from cell type A, 2 from cell type B, and 1

from cell type C. Colored letters over signal data indicate data associated with those samples. One can use 3 different

SAGA strategies with this collection of datasets: Independent: performing training and inference completely

independently on each sample. This yields a different annotation for each sample. Concatenated (horizontal sharing):

training a single model across all cell types. This yields 1 annotation per sample with a shared label set. Each sample

must have the same datasets, necessitating imputation of any missing datasets. Stacked (vertical sharing): performing

training and inference on datasets from all samples. This yields a single pan–cell-type annotation. ChIP-seq, chromatin

immunoprecipitation-followed by sequencing; DNase-seq, sequencing DNase I hypersensitive sites sequencing;

ENCODE, Encyclopedia of DNA Elements; SAGA, segmentation and genome annotation.

https://doi.org/10.1371/journal.pcbi.1009423.g003
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copies of a longer genome added horizontally after the first one in a “concatenated” approach

(Fig 3B). One performs concatenated training and inference little differently than if the data

from different samples pertained to different chromosomes in the same genome. Because all

samples share a single concatenated model, researchers need only perform postprocessing

interpretation once.

The concatenated approach has wide usage [9,10,74] but has 2 downsides. First,

concatenated SAGA requires that every sample has data from the same assays. In practice, this

criterion often does not hold true. This means that—unless these assays are imputed or treated

as missing (see “Vertical sharing: emphasizing similarities across samples in positional infor-

mation”)—one must exclude data for an assay conducted in even all but one samples. In a sim-

ple concatenated approach, one cannot annotate a sample that lacks even 1 dataset present in

the others.

Second, data from different samples can have artifactual differences or batch effects. Apply-

ing the same model across multiple cell types assumes that all datasets from the same assay

type have similar statistical properties. This can result in label distributions that vary wildly

across samples and biologically implausible sample-specific labels. Data normalization can

help abate the problem of different statistical properties between samples but usually does so

incompletely. This problem is particularly significant when using continuous signal. In con-

trast, binarizing the data (see “Input data”) can cover up some experimental biases.

One might expect that concatenated annotation would benefit training by increasing the

amount of training data. As it turns out, multiplying the amount of training data does not sig-

nificantly aid the training process, as the types of labels vary little across samples. Most com-

plex eukaryotic organisms studied with SAGA have very large genomes, and just 1 sample

provides plenty of training data. In fact, for computational efficiency, researchers often train

on just a fraction of the available samples [10], a fraction of the genome from a given sample

[12] or both.

Vertical sharing: Emphasizing similarities across samples in positional

information

Another class of multisample SAGA methods shares position-specific information across sam-

ples as part of the annotation process. These methods take advantage of the nonindependence

of biological activity across samples at a genomic position. For example, if a given position has

an active enhancer label in many samples, it is more likely to act as an active enhancer in a new

sample.

The simplest type of vertical sharing approach learns a model on data from all samples

jointly (Fig 3B). One can implement this “stacked” approach by adding datasets from all sam-

ples vertically into a single combined model. A stacked model captures patterns of activity

across multiple cell types. For example, a stacked model, unlike an independent model, can

find a label for an enhancer active in cell type A and cell type B but inactive in cell type C.

Although conceptually simple, the stacked approach tends not to work well for more than

several cell types. Stacking fails with larger number of cell types because each pattern of activity

requires its own label. Therefore, the number of labels must grow exponentially in the number

of samples. A simple stacked model that treats all assays as independent also ignores the rela-

tionship between assays on the same cell type or the same assay type on different cell types.

A second approach uses a concatenated model that additionally learns a position-specific

preference over the labels for each position. Through this preference, data from 1 sample can

influence inference on another. Two implementations have applied variants of this hybrid hor-

izontal–vertical sharing approach. First, TreeHMM [15] uses a cellular lineage tree as part of
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its input. For each genomic position, TreeHMM models statistical dependency between the

label of a parent cell type and that of a child cell type. Second, IDEAS [21] uses a similar

approach to TreeHMM but dynamically identifies groups of related samples rather than using

a fixed developmental structure. The IDEAS model allows these sample groups to vary across

positions, which allows for different relationships between samples in different genomic

regions.

A third approach for vertical sharing uses a pairwise prior to transfer position-specific

information between cell types [3,20]. In other words, if position i and position j received the

same label in many other samples, then they should be more likely to receive the same label in

an additional sample. In contrast to the other methods in this section, the pairwise prior

approach does not require the use of concatenated annotation. Therefore, the pairwise

approach has the advantage of not requiring the same available data in all cell types.

A fourth approach imputes missing datasets in the target cell type, then applies any of the

above annotation methods to the imputed data [55]. Imputation provides 3 advantages. First,

it ensures that all target cell types have the same set of datasets. Second, one can conduct impu-

tation entirely as a preprocessing step, allowing the use of any SAGA method afterward. Third,

the imputation process can normalize some artifactual differences between datasets, making

concatenated annotation more appropriate.

Vertical sharing approaches have the downside that one cannot understand the annotation

of each sample in isolation. This arises from the influence on label assignments in 1 sample by

data from other samples. In particular, vertical sharing tends to mask differences between sam-

ples. For example, if some position has an enhancer label in many samples, vertical sharing

approaches will annotate that position as an enhancer in a target cell type, too, even with no

enhancer-related data in the target cell type.

Evaluating SAGA annotations

Researchers use 2 categories of approaches to evaluate SAGA annotations. The first comprises

qualitative approaches, in which a researcher assesses how well various statistics of an annota-

tion match their expectations. These statistics might include the genomic coverage of each

label, the distribution of segment lengths, the emission and transition parameters of the under-

lying probabilistic model, and the enrichment of each label for previously annotated genomic

elements. Such analysis can show whether an annotation captures the expected parts of

genome biology. Unfortunately, there currently are no generally agreed upon statistics that

must hold for a high-quality annotation.

The second category of evaluation approaches comprises quantitative metrics. These met-

rics usually take the form of a prediction problem. For example, how accurately can one pre-

dict the RNA-seq expression of a gene given just the annotation label at the gene’s promoter?

One might intuit that a high-quality annotation would separate high-expression and low-

expression genes better than a poor annotation. Researchers define similar evaluation metrics

based on enhancer RNA expression or identifying previously annotated elements [14,22]. Pre-

diction performance is usually poor in absolute terms because annotation labels are discrete.

Such prediction tasks are useful for the purpose of comparing different annotations but do not

serve as a realistic application as the annotations.

Several challenges complicate evaluation of SAGA methods. The unsupervised nature of

these methods makes defining a single standard for quality impossible. Moreover, an annota-

tion with more labels and shorter segments than another will have better performance accord-

ing to most quantitative prediction metrics, but the former annotation is more complex and

therefore less understandable. Therefore, there exists a trade-off between some quality metrics
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and interpretability, and better quantitative metrics might mean a less useful annotation. In

part for these reasons, no one has published a comprehensive benchmarking of the relative

performance of different SAGA methods and the effect of the modeling choices described in

this review.

Using and visualizing SAGA annotations

A number of resources can aid in the application of SAGA algorithms and annotations. Refer-

ence annotations exist for many cell types. These obviate the need for a user of the annotation

to actually run a SAGA method. Alternatively, if the user must run a SAGA algorithm on their

own data, standardized protocols describe how to perform this process [11,75].

Most users of SAGA annotations view them through 1 of 3 visualization strategies. The

first, and most common, strategy displays individual annotations as individual rows or

“tracks” on a genome browser (Fig 4A). In each row, the browser displays the segments of that

annotation for a region of 1 chromosome, usually indicating the label by color. Popular

genome browsers for displaying segmentations include the University of California, Santa

Cruz (UCSC) Genome Browser [41], the Washington University in St. Louis (WashU) Epigen-

ome Browser [78], and Ensembl [79].

A second visualization strategy integrates annotations of all samples (Fig 4B). This visualiza-

tion stacks all labels for a given position on top of one another and scales the vertical axis by an

estimate of functional importance of that position. This importance can be estimated using the

CAAS, which measures activity that is correlated with evolutionary conservation [14]. Calcu-

lating CAAS comprises 2 steps. First, for each annotation, one calculates a horizontal label-

wise CAAS, the label’s genome-wide correlation with evolutionary conservation. Second, for

Fig 4. Visualizations of SAGA annotations. (A) Genome browser display showing 164 cell type annotations for a 20-kbp region on human chromosome 15 (GRCh37/

hg19) [76]. Each annotation has 8 labels: Promoter (red), Enhancer (orange), Transcribed (green), Permissive regulatory (yellow), Bivalent (purple), Facultative

heterochromatin (light blue), Constitutive heterochromatin (black), Quiescent (gray), and Low Confidence (light gray). (B) Importance score (CAAS) for the same

region. Total height at each position indicates the position’s estimated importance. Height of a given color band denotes the contribution toward importance of the

associated label. (C) Genome-wide visualization of the SAGA annotation for 164 samples aggregated over GENCODE [77] protein-coding gene components. Rows: the

9 labels of the annotation. Columns: gene components, including 10 kbp flanking regions upstream and downstream. Each cell shows the enrichment of the row’s label

with a position along the column’s component. Figures derived from [14]. CAAS, conservation-associated activity score; SAGA, segmentation and genome annotation.

https://doi.org/10.1371/journal.pcbi.1009423.g004
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each position, one calculates a vertical position-specific CAAS, the average label-wise CAAS

across the label at that position for all annotations.

A third visualization strategy aggregates information about each label across the entire

genome. This shows the enrichment of each label at positions of known significance, such as

gene components (Fig 4C) or curated enhancers. Tools such as Segtools [80] and deepTools

[81] can create these visualizations.

SAGA annotations can provide valuable reference datasets to other analyses and tools. The

assignment of one and only one label from a small set to every mappable part of the genome

greatly eases downstream analyses. SAGA annotations summarize genomic activity in a much

simpler way than the individual input datasets, and even than processed versions of the input

datasets such as peak calls.

Most SAGA annotations are in the tab-delimited BED format, using the “name” column

for the annotation label (https://genome.ucsc.edu/FAQ/FAQformat.html#format1). This

makes it easy to remix SAGA annotations with other datasets using powerful software such as

BEDTools [82]. SAGA annotations form building blocks for methods for integrative analysis

of genomic data such as CADD [83].

Conclusions and outlook for future work

SAGA methods provide a powerful and flexible tool for analyzing genomic datasets. These

methods promise to continue to play an important role as researchers generate more datasets.

Despite the large existing literature, future work could still address many challenges.

Alternate scales and data types

Nucleosome-scale annotations (100 bp to1,000 bp segments) of histone modifications have

wide usage. While annotations of different data types or at different length scales exist, they are

less widely used. Currently, there exist reference domain annotations with segments of length

105 bp to 106 bp for only a small number of samples [3,7,47,84] and few or no annotations at

other scales.

Data preprocessing

Genome annotations would improve with better processing and normalization of input data-

sets. Representations such as fold enrichment used by existing methods seem primitive com-

pared to more rigorous quantification schemes used in RNA-seq analysis such as transcripts

per million (TPM). One could also improve SAGA preprocessing by more frequently incorpo-

rating information from multimapping reads [85].

Confidence estimates

Most methods do not report any measure of confidence in their predictions. Two types of con-

fidence would prove useful. First, one would often like to know the level of confidence that a

position in some sample has label X and not label Y. Second, in many cases, one would like to

have confidence in a differential labeling between 2 samples—that cell type A and cell type B

have different labels. Two methods work toward a solution for the second problem [86,87],

but there remains much room for further work.

Determining the number of labels and discovering new element types

As we discuss, researchers do not agree on a consensus number of labels. While data-driven

methods for making this choice exist, they are not widely used. These methods are seldom
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used in part because they often suggest larger numbers of labels than a human might easily

interpret.

Novel categories of genomic element might be hiding in poorly characterized labels only

visible when using a large number of labels. Investigation of such labels may be a fruitful line

of research. If data-driven methods consistently suggest the same number of labels, this may

provide insight into a true number of biologically distinct recurring epigenetic states.

Continuous representations

Existing SAGA methods output a discrete annotation, assigning a single label to each position.

In this discrete approach, annotations cannot easily represent varying strength in activity of

genomic elements or elements that simultaneously exhibit multiple types of activity. A contin-

uous annotation approach analogous to the topic models used for text document classification

might address this limitation [88].

Single-cell data

Existing SAGA methods use data from bulk samples of cells. Increasing availability of data

from single-cell assays necessitates the development of methods that can leverage this addi-

tional information.

Pan–cell-type annotation

The semantics of genome annotations correspond poorly to the way most molecular biologists

conceptualize genomic elements. Most existing annotations are cell-type-specific—the annota-

tion states that a given locus acts as an active enhancer in cell type A. In contrast, researchers

often state that a given locus “is an enhancer.”

In contrast, other annotations—such of those of protein-coding genes—serve as a pan–cell-

type characterization. Each gene has a fixed location, and only its expression varies across

samples.

There exists a need for pan–cell-type epigenome annotations. Such an annotation would

define fixed intervals for regulatory elements such as promoters, enhancers, and insulators,

and it would specify in which samples each element is active. Specifically targeting this task in

the SAGA model could improve results over pan–cell-type annotations assembled from multi-

ple cell-type-specific SAGA models [14].
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