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Autophagy and cancer: Modulation of cell death
pathways and cancer cell adaptations
Christina G. Towers, Darya Wodetzki, and Andrew Thorburn

Autophagy is intricately linked with many intracellular signaling pathways, particularly nutrient-sensing mechanisms and cell
death signaling cascades. In cancer, the roles of autophagy are context dependent. Tumor cell–intrinsic effects of autophagy
can be both tumor suppressive and tumor promotional. Autophagy can therefore not only activate and inhibit cell death, but
also facilitate the switch between cell death mechanisms. Moreover, autophagy can play opposing roles in the tumor
microenvironment via non–cell-autonomous mechanisms. Preclinical data support a tumor-promotional role of autophagy in
established tumors and during cancer therapy; this has led to the launch of dozens of clinical trials targeting autophagy in
multiple cancer types. However, many questions remain: which tumors and genetic backgrounds are the most sensitive to
autophagy inhibition, and which therapies should be combined with autophagy inhibitors? Additionally, since cancer cells are
under selective pressure and are prone to adaptation, particularly after treatment, it is unclear if and how cells adapt to
autophagy inhibition. Here we review recent literature addressing these issues.

Introduction
Macro-autophagy is a complex multistep process that facili-
tates the degradation of damaged and excess proteins and
organelles to generate macromolecular building blocks and
fuel metabolic pathways (Dikic and Elazar, 2018). The au-
tophagy pathway has critical roles in core biological processes
such as mitochondrial function, cell death, immune surveil-
lance, protein homeostasis, stress response, and metabolism.
Accordingly, abnormalities in these processes and the disease-
associated pathologies have been linked to aberrant auto-
phagic degradation, most notably in aging, neurodegenerative
diseases, and multiple forms of cancer. In this review, we
focus on the protumorigenic role of autophagy in cancer,
highlighting recent insights linking autophagy and apoptosis
and other death pathways. With over 60 active clinical trials
targeting autophagy in a variety of tumor types, it is critical
to understand how the molecular mechanisms that connect
these processes can be leveraged to enhance the benefit to
patients and prevent relapse. The history of cancer therapy
has proven that adaptation and acquired resistance to anti-
cancer therapies represent perhaps the largest obstacle to
overcome. Therefore, a critical, as yet incompletely under-
stood, issue is whether autophagy inhibitors will be plagued
by these same hurdles. Here we address this and other
questions regarding autophagy inhibition as a cancer
therapy.

Macro-autophagy
The evolutionarily conserved recycling processes that deliver
surplus or damaged cytoplasmic material to lysosomes for
degradation can be subdivided into three related processes:
micro-autophagy, chaperone-mediated autophagy, and macro-
autophagy. Micro-autophagy and chaperone-mediated au-
tophagy involve direct delivery mechanisms to the lysosome,
both of which can also be important in cancer; for a detailed
discussion, readers are referred to an excellent recent review
(Kaushik and Cuervo, 2018).

Macroautophagy (hereafter autophagy) is a multistep process
involving >20 core autophagy proteins, called ATGs, that func-
tion to envelop cytoplasmic cargo within a double-membrane
vesicle structure. These autophagosomes can subsequently
fuse with acidic lysosomes, where pH-sensitive enzymes medi-
ate the degradation of the cytoplasmic material (Dikic and
Elazar, 2018; Fig. 1). The pathway is initiated by the Unc-
51–like kinase (ULK) complex, which phosphorylates a phos-
phatidylinositol 3-kinase (VPS34), part of the Beclin1 complex
necessary for initiation of the phagophore (Mizushima et al.,
2011; Russell et al., 2013; He and Levine, 2010). Extension of
the elongating phagophore membrane relies on two ubiquitin-
like conjugation systems. The E1- and E2-like enzymes ATG7 and
ATG10 conjugate ATG5 and ATG12. The resulting ATG5–12
conjugate binds to ATG16L1, and this complex acts as a E3-like
enzyme in coordination with ATG7 as E1 and ATG3 as E2 to
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conjugate phosphatidylethanolamine (PE) to the GABARAP/light
chain 3 (LC3) family of proteins, the most well characterized
being LC3B (Shpilka et al., 2011; Dikic and Elazar, 2018). The
ATG4 family of cysteine proteases cleave the LC3 family mem-
bers to create LC3-I, which is conjugated to PE to generate LC3-II
(Li et al., 2011; Kirisako et al., 2000). Membrane-associated LC3-
II associates with the autophagosome membrane and is critical
as a target for recognition by adaptor proteins that bring specific
substrates into the autophagosome for selective degradation. A
handful of adaptor proteins have been identified, including the
most well characterized, SQSTM1/p62, but also BNIP3, TAX1BP1,
Optineurin, and NIX/BNIP3L, to name a few (Anding and
Baehrecke, 2017). While LC3-II is dispensable for autophago-
some formation, it is important for efficient autophagosome
closure and fusion with lysosomes (Nguyen et al., 2016). Con-
sequently, delayed closure and formation of inefficient auto-
phagosomes can still occur in the absence of the conjugation

machinery and LC3-II (Tsuboyama et al., 2016). Once closure is
complete, the double-membrane autophagosome fuses with ly-
sosomes using SNARE proteins, as well as the small GTPases,
such as Rab7 (Yu et al., 2018; Hamasaki et al., 2013; Kirisako
et al., 1999; Bento et al., 2013; Zhao and Zhang, 2019). Lyso-
somal enzymes then break down the cytoplasmic contents into
amino acids and other macromolecular building blocks that are
recycled into newmacromolecules and fuel metabolic pathways.

Nutrient-sensing pathways tightly regulate autophagy in-
duction, most notably by the mammalian targets of rapamycin
complexes, mTORC1 and mTORC2 (Saxton and Sabatini, 2017).
In the case of amino acid deprivation, the inhibitory mTORC
complexes can no longer phosphorylate and inhibit the ULK
complex, triggering autophagosome membrane nucleation
(Hosokawa et al., 2009). Decreased energy availability and ATP:
AMP ratios in the absence of sufficient glucose triggers the 59
AMP-activated protein kinase, which can inhibit mTORC

Figure 1. Macro-autophagy. Macro-autophagy involves core autophagy proteins or ATGs and is subdivided into different stages, including phagophore
initiation, vesicle nucleation, vesicle elongation, and autophagosome fusion with lysosomes. The ULK complex involves Unc-51–like autophagy activating
kinases 1 and 2 (ULK1 and ULK2), ATG13, ATG101, and FAK family kinase interacting protein of 200 kD (FIP200). This complex can be regulated by nutrient
availability via mTOR regulation as well as other signaling pathways to induce phagophore initiation. The Beclin complex is activated downstream of the ULK
complex and is also necessary for phagophore initiation. The Beclin complex includes coiled-coil, moesin-like, BCL2 interacting protein (Beclin-1), activating
molecule in Beclin-1 regulated autophagy (AMBRA-1), phosphatidylinositol 3-kinase catalytic subunit type 3 and regulatory subunit 4 (VPS34 and VPS15,
respectively), and ATG14. Vesicle elongation depends on two ubiquitin-like conjugation systems. ATG5 is conjugated to ATG12 with the help of the E1-like
enzyme, ATG7, and the E2-like enzyme, ATG10. The ATG5–ATG12 conjugate binds to ATG16L1, and together they act as a E3-like enzyme to facilitate the
conjugation of microtubule-associated protein 1A/1B LC3 to PE. This second conjugation is also aided by ATG7 as well as the E1-like enzyme, ATG3. Prior to
LC3-PE conjugation, LC3 is cleaved by the cysteine protease ATG4B. LC3-PE is incorporated into the autophagosome membrane. SNARE proteins including
syntaxin-17 (STX17), synaptosome-associated protein 29 (SNAP29), and vesicle-associated membrane protein 8 (VAMP8) facilitate fusion between fully formed
autophagosomes and lysosomes. The GTPase Rab7 is also important during fusion. After fusion occurs, the cytoplasmic material within the autolysosome as
well as the intravesicular LC3-II is degraded by pH-sensitive enzymes found within the acidic compartments. Pharmacological agents that are currently used to
inhibit autophagy in preclinical models are annotated.
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signaling and also directly activate the ULK complex (Kim et al.,
2011). Another major mechanism of autophagy regulation is
transcriptional and mediated by master transcriptional reg-
ulators that activate expression of the core ATGs. These in-
clude the transcription factor EB (TFEB; Palmieri et al., 2011;
Settembre et al., 2011), microphthalmia-associated transcrip-
tion factor (Ploper et al., 2015; Perera et al., 2015), and
the forkhead family of transcription factors (FOXO1 and
FOXO3; Audesse et al., 2019; Zhao et al., 2007; Mammucari
et al., 2007; Sengupta et al., 2009). Recently, the epigenetic
regulator bromodomain-containing protein 4 was identified
as a transcriptional repressor of autophagy and lysosomal
genes (Sakamaki et al., 2017).

Transcriptional regulation of autophagy is thought to regu-
late the overall basal level of the process, and variations in
transcriptional control may explain differences in basal au-
tophagy between different cells/tissues (Perera et al., 2015). On
the other hand, posttranslational regulation through kinases
controlled by stress and nutrient-sensing pathways such as
mTOR largely explain acute changes in autophagy. Additional
cellular stressors, including hypoxia, metabolic stress, and ER
stress, among others, can induce autophagy through mecha-
nisms that usually converge on these major nutrient-sensing
pathways. Moreover, these pathways interact with each other
for more coordinated and intricate regulation mediated by
feedback loops (Dikic and Elazar, 2018). For example, TFEB is
negatively regulated by mTORC1 and the Ras-related GTP-
binding protein D, which is an mTOR-activating Rag GTPase, a
transcriptional TFEB target (Di Malta et al., 2017). Importantly,
autophagy can participate in bulk degradation of cytoplasmic
material, but there are also selective forms of autophagy that
rely on intricate signaling cascades to target specific proteins or
organelles including mitochondria, ribosomes, bacteria, ferritin,
ER, and peroxisomes: mitophagy, ribophagy, xenophagy, ferri-
tinophagy, ERphagy, and pexophagy, to name just a few. Details
regarding selective autophagy processes have recently been re-
viewed (Anding and Baehrecke, 2017).

Autophagy and cancer
Tumor-cell intrinsic roles of autophagy in tumor growth
Autophagy plays a complex role in tumor development and
progression. Autophagy was first suggested to function as a
tumor-suppressive process, with the discovery of Beclin1 dele-
tions across multiple tumor types and the ability of Beclin1 to
function as a haplo-insufficient tumor suppressor in mice (Yue
et al., 2003; Qu et al., 2003; Liang et al., 1999). Loss of other
Beclin1 interacting proteins including endophilin B1 and UV
radiation resistance-associated gene protein can also cause an
increase in spontaneous tumors in mice and are mutated in
human tumors, further supporting the Beclin complex as a tu-
mor suppressor (Liang et al., 2006; Takahashi et al., 2007). It
was reported, however, that in human tumors there is no sig-
nificant loss of BECN1 independent of the adjacent potent tumor
suppressor BRCA1 (Laddha et al., 2014). Additional tumor-
suppressive functions of autophagy have emerged, including
removal of damaged reactive oxygen species (ROS)–inducing
mitochondria, maintenance of genomic stability, and a role in

oncogene-induced senescence via degradation of the nuclear
lamina (Levine and Kroemer, 2019; Wang et al., 2016; Belaid
et al., 2013; Dou et al., 2015). Together, these studies suggest
that autophagy prevents tumor initiation and early steps in tu-
mor progression. Consistent with this, genetic inhibition of
other core genes that are themselves only very rarely mutated in
cancer, including Atg5 and/or Atg7, confirmed that deletion of
autophagy in tumor-prone mouse models following RAS path-
way activation or TP53 deletion caused an increase in preneo-
plastic lesions and even tumor incidence (Rosenfeldt et al., 2013;
Strohecker et al., 2013; Rao et al., 2014; Yang et al., 2014).

However, these studies also showed that after a tumor is fully
established, autophagy inhibition often results in less aggressive
cancers. Successful tumor cells have to cope with harsh envi-
ronments characterized by nutrient depletion, hypoxia, and
other stresses. Autophagy is able to help cells cope with many of
these stressors; thus although autophagy may serve to prevent
tumor initiation, it often promotes tumor cell survival in more
advanced cancers. Many studies have confirmed that genetic
deletion of autophagy regulators (often Atg7 or Atg5) in estab-
lished tumors from a variety of tissue types causes a dramatic
reduction in tumor growth and a corresponding increase in
survival of the animal. These effects have been attributed to
blocked tumor growth and increased tumor cell death mediated
by an accumulation of dysfunctional mitochondria, reduced
fatty acid oxidation, reduced glycolytic capacity, elevated DNA
damage, and impaired tumor cell metabolism (Guo et al., 2011,
2013, 2016; Karsli-Uzunbas et al., 2014; Yang et al., 2011, 2018;
Poillet-Perez et al., 2018; Degenhardt et al., 2006; Strohecker
et al., 2013; Xie et al., 2015).

Cancer cells vary in their dependence on autophagy. Some
cancer cell lines are acutely sensitive to genetic inhibition of
autophagy, while others show very little change in viability in
the absence of autophagy. While little is known about what
drives autophagy dependence in cancer, tumors with RAS-RAF-
MEK-ERK pathway activation are often more sensitive to au-
tophagy inhibition. Pancreatic ductal carcinomas (PDACs) for
example, where RAS mutations are very common, are exqui-
sitely sensitive to autophagy inhibition (Yang et al., 2011, 2014;
Perera et al., 2015). TP53 status may also affect autophagy de-
pendence, and loss of p53 in a humanized PDAC mouse model
with KRAS activation eliminated the antitumor effects of au-
tophagy inhibition (Rosenfeldt et al., 2013). Additional studies
showed that these effects may apply only to germline deletion of
TP53, as somatic loss of heterozygosity of TP53, i.e., the more
common form of p53 deletion in human tumors, did not have the
same effect (Yang et al., 2014). Pediatric brain cancer cells with a
constitutively active BRAF(V600E) mutation are more sensitive
to both genetic and pharmacological autophagy inhibition (Levy
et al., 2014). Additionally, a variety of cancer cells without RAS
pathway mutations have also been identified as extremely au-
tophagy dependent in vitro (Maycotte et al., 2014; Towers et al.,
2019).

Many general cytotoxic chemotherapy drugs as well as
multiple targeted therapies such as kinase inhibitors have been
proposed to induce autophagy as a cytoprotective measure in
cancer cells. For example, inhibitors of the MAP kinase pathway
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can induce autophagy in pancreas cancer, and combinations of
these kinase inhibitors with autophagy inhibition can enhance
tumor cell killing (Bryant et al., 2019; Kinsey et al., 2019). These
effects can even extend to overcoming acquired resistance to
specific drugs. For example, patients with BRAF(V600E)-driven
brain tumors that had become resistant to the BRAF inhibitor
vemurafenib could be resensitized to the kinase inhibitor by
addition of an autophagy inhibitor (Mulcahy Levy et al., 2017;
Levy et al., 2014).

Autophagy also promotes a stemness phenotype, not only in
normal stem cells (Warr et al., 2013; Vázquez et al., 2012; Garćıa-
Prat et al., 2016), but also in “cancer stem cells” that can main-
tain a quiescent or dormant state, self-renew, and regenerate an
entire tumor at limiting dilutions (Meacham and Morrison,
2013; Smith and Macleod, 2019). In breast cancer models, ge-
netic manipulation of core autophagy proteins can diminish the
tumor-initiating properties of specific cancer stem cell pop-
ulations in mice (Yeo et al., 2016). Similarly, in chronic myeloid
leukemia (CML), the addition of autophagy inhibition to kinase
inhibitors led to the complete elimination of functionally defined
CML stem cells (Bellodi et al., 2009). These effects may be due to
autophagy-regulated metabolic changes in the stem cells (Kuntz
et al., 2017). Together, these basic cell biology, preclinical, and
clinical studies support a cell-autonomous, tumor-suppressive
role for autophagy at early stages in oncogenesis and a tumor-
promotional and therapy-resistance role in more established
tumors.

Non–cell-autonomous roles of autophagy in tumor growth
The tumor-promotional roles of autophagy are both cell auton-
omous and nonautonomous (Yang et al., 2018) and are becoming
increasingly recognized as important in controlling how the
tumor microenvironment (TME) affects tumor growth (Fig. 2).
However, as with the tumor cell-autonomous functions,
non–cell-autonomous effects can be both pro- and antitumor.
For example, autophagy in the tumor cells can affect whether
immune cells in the TME recognize the tumor to either enhance
or inhibit the antitumor immune response. Autophagy in the
tumor cells was shown to be necessary for immunogenic cell
killing following chemotherapy treatment to allow efficient tu-
mor infiltration by antitumor dendritic cells and T-lymphocytes
(Michaud et al., 2011). Moreover, autophagy induction by caloric
restriction mimetics before treatment with anticancer drugs
could improve anticancer immunosurveillance and decrease
tumor burden (Pietrocola et al., 2016). These studies have been
interpreted as meaning that tumor cell autophagy should be
maintained or even enhanced to elicit a productive antitumor
immune response.

Several other studies, however, have demonstrated the op-
posite effect, i.e., tumor cell autophagy may reduce antitumor
immune responses, for example, by showing that inhibition of
autophagy in the tumor cells can enhance natural killer (NK) cell
infiltration and reduce tumor growth (Baginska et al., 2013;
Mgrditchian et al., 2017). Genetic or pharmacological au-
tophagy inhibition caused an increase in the transcript levels
of the cytokine CCL5, mediated by decreased PP2A phos-
phatase activity and subsequent activation of JNK- and

c-Jun–mediated transcription of CCL5 to attract NK cells into
the TME (Mgrditchian et al., 2017).

It has also become clear that autophagy in the immune cells
themselves is important. Pharmacological inhibition of autoph-
agy with chloroquine (CQ) in tumor-associated macrophages
causes a switch from the tumor-promotional M2 phenotype to
an M1, tumor-killing, phenotype. CQ-reset macrophages de-
creased the immunosuppressive T cell populations and en-
hanced antitumor T cell immunity in mouse models (Chen et al.,
2018a). Inhibition of autophagy in CD8+ T cells can also promote
tumor rejection in mice by shifting T cell biology to a more ef-
fector memory phenotype and producing more cytokines, in-
cluding IFNγ and TNFα. These effects were linked to enhanced
glucose metabolism and altered epigenetic regulation in the
T cells (Devorkin et al., 2019).

Processes that use components of the autophagy machinery
but are independent of the degradative process of autophagy
itself also affect tumor cell growth. Core autophagy proteins
have been implicated in nonconventional secretory pathways
(Dupont et al., 2011), host–pathogen interactions during in-
fections, immune signaling, and inflammation (Cadwell and
Debnath, 2018; Galluzzi and Green, 2019). LC3-associated
phagocytosis (LAP) utilizes a subset of core ATGs, in addition
to the LAP-specific protein Rubicon, which enhances LAP but
inhibits autophagy, to facilitate the conjugation of LC3 to
phagosomal membranes. Inhibition of LAP, but not canonical
autophagy, in tumor-associated macrophages causes an M1
(antitumor) phenotype that induces a STING-dependent type
1 IFN and antitumor T cell response (Cunha et al., 2018). Inter-
estingly, the core LC3 conjugation machinery, including ATG5
and ATG7, is shared between autophagy and LAP; therefore the
majority of studies conducted in mice to date using genetic
knockout (KO) of these proteins cannot differentiate between
LAP and canonical autophagy (Heckmann and Green, 2019).

Beyond immune cell–mediated effects, autophagy in other
nontumor cells within the TME can increase growth-promoting
stimuli. For example, inhibition of autophagy in stroma-
associated pancreatic stellate cells causes a decrease in secreted
alanine, which is critical for PDAC cell growth. This mechanism
involves a significant amount of cross-talk between the different
cell types within the TME. The PDAC cells induce autophagy
in the stellate cells to increase secretion of nonessential amino
acids, which are then used by the PDAC cells to fuel the tricar-
boxylic acid cycle (Sousa et al., 2016). Recently, it was also
shown that deletion of host autophagy causes a decrease in cir-
culating arginine, and since many tumor cells are arginine
auxotrophs, this can cause a corresponding decrease in tumor
growth (Poillet-Perez et al., 2018). Another study showed that
transplantation of autophagy-deficient, dormant tumors into
autophagy-proficient hosts caused a reactivation of tumor
growth mediated by TNF and IL-6–like signaling in a Drosophila
melanogaster model (Katheder et al., 2017). Importantly, the
dormant tumors remained small when they were transplanted
into an autophagy-deficient host. These studies suggest that
multiple mechanistically distinct mechanisms contribute to
autophagy-dependent promotion of tumor growth from the
microenvironment (Fig. 2).
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Autophagy and metastasis
Metastasis is a multistep process in which cancer cells acquire
invasive phenotypes such as motility, the ability to survive
under detached conditions, and stem cell–like properties in-
cluding a more mesenchymal morphology by way of epithelial-
to-mesenchymal transition (EMT; Massagué and Obenauf,
2016). Pathology studies in breast cancer and melanoma

patients identified a correlation between elevated LC3B puncta
staining and poorer outcomes and detected especially high LC3
expression in the metastatic lesions (Lazova et al., 2010, 2012;
Zhao et al., 2013; Han et al., 2011). In addition to these correl-
ative studies, autophagy has been shown to play a causative
role in metastasis. Both genetic and pharmacological inhibition
of autophagy eliminated lung metastasis in a syngeneic breast

Figure 2. Non–tumor cell-autonomous roles of autophagy in cancer. The red dotted lines indicate pathways that have been implicated in the tumor-
suppressive roles of autophagy in cancer. These mechanisms include how autophagy in the tumor cells can increase the presence of infiltrating antitumor
T-lymphocytes and decrease protumor regulatory T cells in the TME. Green lines indicate pathways that have been implicated in the tumor-promotional roles
of autophagy in cancer. Autophagy in the tumor cells can inhibit the antitumorigenic NK cells via inhibition of the cytokine, CCL5. Autophagy in nontumor cells
within the TME can also affect the tumor growth. Autophagy in the supporting fibroblast-like cells and surrounding epithelial cells can support metabolism and
tumor cell proliferation. Autophagy in macrophages can increase protumor regulatory T cells and decrease infiltrating tumor-suppressive T cells. In CD8+

T cells, loss of autophagy increases the memory effector phenotype and also increases the antitumor cytokine IFNγ. Circulating arginine supplied from the
kidneys and diet can also support tumor cell proliferation. Autophagy in hepatocytes is important for regulating the arginine-degrading enzyme arginase-1
(ARG1).
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cancer mouse model after orthotopic injection of the mouse
mammary carcinoma 4T1 cell line (Sharifi et al., 2016). Au-
tophagy has also been associated with EMT, a particular hall-
mark of metastatic dissemination that is linked to increased
invasiveness as well as cancer stem cell phenotypes (Li et al.,
2013; Kim et al., 2016). Inhibition of autophagy-mediated deg-
radation of RNA processing bodies, or p-bodies, mitigates a
mesenchymal-to-epithelial transition, ultimately reducing
metastatic outgrowth (Shinde et al., 2019). An additional
mechanism bywhich autophagy can regulate cell migration and
metastasis is dependent on autophagy-mediated regulation of
focal adhesion dynamics. Autophagosomes interact with and
turn over focal adhesion complexes to destabilize the cell-
matrix contact sites, allowing for increased cell motility. This
involves the autophagy cargo receptor NBR1 as well as direct
interactions between LC3B and the focal adhesion protein,
paxillin (Sharifi et al., 2016; Kenific et al., 2016).

In line with the competing pro- and antitumorigenic roles of
autophagy at the primary tumor site, there have also been
studies showing that autophagy can both promote and inhibit
metastatic outgrowth at secondary sites. Metastatic cancer cells
can bemaintained in a dormant state for long periods of time at a
secondary site only to initiate growth at a later time, resulting in
appearance of metastatic tumors (Sosa et al., 2014). Tran-
scriptomic analysis of surviving pancreatic cancer cells after
oncogene ablation identified elevated expression of autophagy
and lysosome-regulating genes, suggesting a role for these pro-
cesses in the survival of subpopulations of dormant cells (Viale
et al., 2014). Similarly, in breast and ovarian cancer models,
autophagy has been shown to promote the survival and out-
growth of dormant cell populations (Lu et al., 2008; Vera-
Ramirez et al., 2018). Specifically, in D2.0 mouse mammary
carcinoma cells (derived from murine mammary hyperplastic
alveolar nodules) that can remain dormant in the lung for
months before outgrowth, pharmacological autophagy inhibi-
tion caused a drastic reduction in metastatic outgrowth in the
lung, suggesting that autophagy is critical for survival of the
dormant cells (Vera-Ramirez et al., 2018). However, using the
same D2.0 model, a recent study confirmed elevated autophagic
flux in the dormant cells, but in contrast concluded that inhi-
bition of autophagy did not eliminate the dormant cells but in-
stead caused them to emerge from the dormant state to reinitiate
proliferation, causing an increase in metastatic outgrowth (La
Belle Flynn et al., 2019). The discrepancy between these two
studies could depend on differential host immunity (i.e., athy-
mic mice vs. intact mice), different experimental procedures
(i.e., time frame for quantification and imaging), or different
means used to inhibit autophagy (i.e., pharmacological or ge-
netic). Other mechanisms can also provide competing pro- and
antimetastatic signals, even though the same autophagy-related
proteins were manipulated. For example, in melanoma, the
autophagy cargo receptor SQSTM1/p62, which is reduced in cells
where autophagy is active, can interact with select RNA-binding
proteins to stabilize specific prometastatic mRNAs (Karras et al.,
2019). After autophagy inhibition, the resulting accumulation of
p62 can interact with and stabilize the pro-EMT and prometa-
static protein, Twist1 (Qiang et al., 2014; Bertrand et al., 2015).

Conversely, p62 can also target prometastatic proteins for au-
tophagic degradation, leading to a decrease in metastatic po-
tential (Tan et al., 2018).

Targeting autophagy in cancer patients
While additional studies are necessary to fully understand the
mechanisms of the tumor-suppressive and tumor-promotional
roles of autophagy, both cell autonomously and nonautonomously,
pharmacological and therefore systemic inhibition of au-
tophagy is already moving forward in the clinic. A variety of
pharmacological autophagy inhibitors and inducers are in
development, and it is known that many approved drugs can
affect autophagy (Rubinsztein et al., 2012; Kaizuka et al., 2016).
However, the lysosomal inhibitor CQ and its derivative hy-
droxychloroquine (HCQ) are the only drugs that are currently
used in patients with the deliberate goal of targeting autophagy
(Towers and Thorburn, 2016). The first wave of clinical trials
with CQ/HCQ in combination with other therapies showed
promising results, indicating that target doses of the autophagy-
inhibitor drugs could be reached with minimal toxicity (Levy
et al., 2017). Some antitumor effects were also observed. Glio-
blastoma patients treated with CQ combined with radiation and
the alkylating agent, temozolomide (TZD), tripled their median
survival over control patients (33 mo compared with 11 mo;
Briceño et al., 2003). In melanoma, 41% of patients treated with
CQ and TZD showed a partial response or stable disease, and 84%
of patients with brain metastasis derived from a variety of solid
tumors treated with CQ and radiation reported a 1-yr survival
rate compared with 55% of patients treated with radiation alone
(Rangwala et al., 2014; Rojas-Puentes et al., 2013). BRAF(V600E)
mutant brain cancers are particularly dependent on autophagy
for survival, and combined therapies with the BRAF-targeted
therapy vemurafenib and CQ synergistically reduces cancer
cell viability (Levy et al., 2014). These results led to the clinical
use of CQ in vemurafenib-resistant brain cancer patients who
showed favorable results when treated with a CQ/vemurafenib
combination (Mulcahy Levy et al., 2017). Despite these initially
promising studies, recent clinical trials have provided lack-
luster results. This is likely due to a variety of factors, in-
cluding almost no biomarkers to identify the correct patients
ideal for treatment, a need for more specific and potent au-
tophagy inhibitors, and a lack in understanding of potential
mechanisms of resistance.

Novel autophagy inhibitors
While only CQ and HCQ have been approved for use in patients,
other potent autophagy inhibitors are working their way
through the pipeline. These include upstream inhibitors that
target VPS34, including VPS34-IN1 (Bago et al., 2014), PIK-III
(Dowdle et al., 2014), and SAR405 (Ronan et al., 2014). Other
agents are in development that target the ULK1 kinase such as
SBI-0206965 (Egan et al., 2015), MRT67307, and MRT68921
(Petherick et al., 2015). Pharmacological inhibitors of the cys-
teine protease ATG4B are also being optimized to block LC3
conjugation (Akin et al., 2014). The targets of these agents are
annotated in Fig. 1, but the exact mechanism of action is de-
scribed in detail elsewhere (Chude and Amaravadi, 2017).
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The pharmacological reagents with arguably the most clinical
potential are CQ and quinacrine derivatives such as Lys05 and
DQ661. Lys05, similar to CQ/HCQ, de-acidifies the lysosome and
is thought to have increased antitumor potential over CQ or HCQ
(Chude and Amaravadi, 2017). Up until recently, the exact target
of CQ, HCQ, and Lys05 was unknown; however, due to the in-
creased lysosomal specificity and potency of DQ661, an in situ
photoaffinity pull-down assay could be used. While palmitoyl-
protein thioesterase 1 was identified as the direct target of all the
CQ and quinacrine derivatives, DQ661 appears to be the most
specific and have the most potent antitumor activity in pre-
clinical models (Rebecca et al., 2017, 2019).

Cooperation between autophagy, apoptosis, and necroptosis
Mechanisms of cell death
Cell death is a highly regulated and programmed process and has
recently been subdivided into 12 interconnected subclasses
based on distinct signaling pathways and has been extensively
reviewed elsewhere (Galluzzi et al., 2018). The 12 subroutines
have been historically grouped into threemajor categories based
on cell morphology, including apoptosis, necrosis, and auto-
phagic cell death (Green and Llambi, 2015; Kerr et al., 1972;
Galluzzi et al., 2018). Apoptosis can be initiated either by ex-
ternal stimuli reliant on membrane-bound death receptor sig-
naling or via the intrinsic pathway that is dependent on
mitochondrial signaling and is stimulated by internal cues such
as DNA damage or ER stress. Both forms of apoptosis share a
dependence on caspase cascades converging on cleavage of the
executioner caspases 3 and 7, resulting in an orderly cell death
process characterized by plasmamembrane blebbing, chromatin
condensation, cell shrinkage, and nuclear fragmentation. In
contrast, necrosis is morphologically distinct and is accompa-
nied by cell swelling and lysis without nuclear condensation.
While necrosis can occur after an overwhelming insult lacking
controllable signaling cascades, it has become clear in recent
years that it can also be programmed and driven by distinct
signaling pathways. For example, necroptosis involves activa-
tion of receptor-activating protein kinase 3 (RIPK3), which then
activates mixed-lineage kinase domain-like pseudokinase
(MLKL) that serves as the mediator of cell lysis and death
(Galluzzi et al., 2018).

The third major form of cell death, autophagic cell death, is
the most controversial; it involves the appearance of large va-
cuoles and is reliant on the core autophagy machinery (Green
and Llambi, 2015). There are distinct contexts where autophagy
appears to be necessary for physiological cell death, particularly
during Drosophila development (Berry and Baehrecke, 2007;
Denton et al., 2009). Autophagic cell death has been reported in
cancer cells as a potential safeguard to prevent RAS-induced
oncogenic transformation (Elgendy et al., 2011). ATG5 was re-
ported to be necessary for apoptosis-independent death ob-
served in epithelial cell lines transformed with either HRAS or
KRAS (Byun et al., 2009). ROS-inducing agents also stimulate
autophagic cell death that cannot be attenuated with caspase
inhibitors in different cancer cell lines (Chen et al., 2008). While
these initial studies may have reported autophagic cell death, all
other forms of cell death were often not properly ruled out.

Generally, autophagy is a prosurvival and cytoprotective
mechanism, and failed attempts at survival mediated by au-
tophagy often accompany cell death morphologies (Shen et al.,
2012). Thus, it is often difficult to exclude the possibility that
activation of autophagy in a dying cell was not in fact contrib-
uting to the death but was instead an effort by the cell to avoid
dying. The current recommendation (Galluzzi et al., 2018) is that
the term “autophagic cell death” should refer only to a death
process that requires the autophagy machinery but does not
involve the other major death mechanisms such as apoptosis or
necroptosis.

Recently, autophagic cell death was shown to be important in
epithelial cells during crisis after telomere dysfunction, imply-
ing that activation of an autophagy-dependent form of death acts
as a principal tumor-suppressive barrier (Nassour et al., 2019).
The debate of prosurvival versus prodeath autophagy in cancer
cells is, of course, relevant to the tumor-suppressive versus
tumor-promotional roles of the process, as well as how cancer
cells respond to therapy. Defining stimuli that induce autophagic
cell death while identifying strategies that inhibit the cytopro-
tective functions of autophagy will be critical to optimize the
therapeutic use of autophagy inhibitors in the clinic. Additional
complications may arise when a single stimulus can induce
autophagic cell death but only under some contexts. For exam-
ple, Azad et al. (2008) showed that the DNA damaging agent
etoposide can induce apoptotic cell death in normal oxygen
conditions; however, the mechanism of cell death switched to
autophagic cell death in hypoxia. Interestingly, while it is clear
that some cancer cells are prone to die after autophagy inhibi-
tion, either genetic or pharmacological, it is unclear exactly how
these cells are dying. Caspase activation has been noted in these
instances, but any nonapoptotic contributions to the death such
as different types of programmed necrosis have not been
ruled out.

Autophagy promotion of other forms of cell death
Beyond autophagic cell death, it is clear that the autophagic
machinery can be intertwined with the apoptotic pathways, and
the two can either cooperate or inhibit each other depending on
the context and inducing stimuli (Doherty and Baehrecke, 2018).
While the above experiments suggest that autophagy plays a
direct role in cell death, there are a number of experiments
indicating a more indirect role where autophagy affects apo-
ptosis. Different anti-apoptotic proteins have been identified as
autophagy substrates. For example, some cells with elevated
autophagic flux are more sensitive to FAS-induced apoptosis due
to selective autophagic degradation of the tyrosine phosphatase,
FAP-1/PTPN13. Interestingly, these results were stimulus spe-
cific, as FAP-1 specifically modulates FAS-induced apoptosis;
accordingly, elevated autophagy in the exact same cells does not
sensitize cancer cells to a very similar apoptotic stimulus, such
as TNF-related apoptosis-inducing ligand (TRAIL)–induced ap-
optosis (Gump et al., 2014). In hippocampal astrocytes, auto-
phagic degradation of the anti-apoptotic protein, Cav-1, was
shown to be important for autophagy-induced apoptosis in the
presence of palmitic acid (Chen et al., 2018b). Additionally, in
mouse embryonic fibroblasts, caspase-8 can complex with Atg5
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and interact with LC3 and p62 on the autophagosome mem-
brane. The intracellular death-inducing signaling complex, in-
cluding Fas-associated death domain (FADD), a necessary
adaptor protein for caspase-8 activation, is also recruited to the
complex and interacts with ATG5 on ATG16L- and LC3-positive
autophagosomes. These interactions promote caspase-8 self-
processing to propagate the caspase signaling cascade and
cause cell death (Young et al., 2012; Tang et al., 2017).

Autophagy inhibition of cell death
Although the above examples show that under certain circum-
stances autophagy can promote apoptosis, autophagy more
commonly affects cell death by reducing apoptosis. Genetic in-
hibition of core ATGs causes an increase in the pro-apoptotic
protein, PUMA (p53 up-regulated modulator of apoptosis) and a
corresponding increase in complete mitochondrial outer mem-
brane permeabilization, usually the point of no return in apo-
ptosis (Thorburn et al., 2014). Interestingly, PUMA is not a direct
autophagic substrate but instead is transcriptionally regulated
by the pro-apoptotic transcription factor, FOXO3a (Warr et al.,
2013). The autophagic turnover of FOXO3a mediates changes in
PUMA mRNA levels, and deletion of a single intronic FOXO3
binding forkhead response element (FHRE) in the endogenous
PUMA gene eliminated both pharmacological and genetic au-
tophagy inhibition-induced PUMA expression (Fitzwalter et al.,
2018). Consequently, the PUMA FHRE was shown to be critical
for synergistic induction of apoptosis when pharmacological
autophagy inhibition with CQ was combined with other cyto-
toxic agents including etoposide, doxorubicin, and the p53-
targed therapy, Nutlin-3a. Interestingly, these experiments
were conducted in a cell model characterized as autophagy in-
dependent, where treatment with CQ alone did not cause cell
death. Instead, autophagy inhibition pushed the cells closer to
their apoptotic threshold, allowing addition of the other drug to
more easily induce apoptosis. Other molecularly distinct mech-
anisms by which autophagic turnover of a protein can reduce
apoptosis sensitivity have also been identified. For example, the
initiator caspase and pro-apoptotic protein caspase-8 has also
been identified as an autophagic substrate to coordinate cross-
talk mechanisms between autophagy and apoptosis after treat-
ment with TRAIL (Hou et al., 2010).

Autophagic degradation can also inhibit necroptosis. Proteins
critical for necroptosis, including RIPK1, RIPK3, TBP1, and TRIF,
all of which contain RIP homotypic interaction motifs, are au-
tophagy substrates. Inhibition of autophagy leads to accumula-
tion of these proteins and subsequent activation of TNF- and
Toll-like receptor–mediated necroptosis (Lim et al., 2019).

Autophagy regulation of switching between forms of cell death
The autophagosome can also act as a scaffolding complex to
mediate switching between apoptosis and necroptosis. In mouse
prostate cells with loss of the tumor suppressor MAP3K7, RIPK1
and the necrosome are recruited to the autophagosome mem-
brane in a p62-dependent manner to facilitate TRAIL-induced
necroptosis. Interference with RIPK1, RIPK3, or MLKL or re-
cruitment of the complex by knocking down p62 caused the
mode of death to switch from necroptosis to apoptosis after

treatment with TRAIL (Goodall et al., 2016). A similar model of
drug-induced necroptosis was described in rhabdomyosarcoma
cells, in which treatment with the small-molecule BCL-2 inhibi-
tor obatoclax induced formation of the necrosome, including
FADD, RIPK1, and RIPK3, on the outer membrane of autopha-
gosomes via interactions with ATG5 (Basit et al., 2013). Higher
ratios of necroptosis compared with apoptosis in dying cancer
cells can elicit a greater antitumor immune response and acti-
vation of CD8+ T cells (Yatim et al., 2015; Snyder et al., 2019),
suggesting that the autophagy machinery through this scaf-
folding function may play an integral role in immunogenic cell
death. These results show that the formation of the autopha-
gosome membrane is a critical event in mediating cell death,
suggesting that autophagy inhibition at earlier stages that block
autophagosome formation may have opposing effects compared
with later-stage autophagy inhibitors that affect autophagic
turnover. More work is needed to fully understand the stimuli,
cellular contexts, and necessary interacting proteins to fully
elucidate the interplay between autophagy, apoptosis, and
necroptosis.

Autophagy as a mechanism to evade apoptosis in cancer and
its treatment
One of the key hallmarks of cancer is “evading cell death,”
particularly evading programmed cell death pathways such as
apoptosis. There have been a number of mechanisms to describe
how cancer cells can evade apoptosis: loss of the classic death
receptors, inactivation of different caspases, and aberrant ex-
pression of the BH3 proteins that regulate mitochondrial-
mediated intrinsic death pathways. Many of these mechanisms
have been reviewed elsewhere (Fulda, 2009). Up-regulation of
autophagy as a prosurvival mechanism has also been implicated
as a mechanism for cancer cells to evade apoptosis. Autophagy
deficiency increases attachment-induced apoptosis (anoikis)
classified by elevated cleaved caspase-3 expression inHRAS(V12)-
transformed mouse embryonic fibroblasts (Lock et al., 2011). In
addition, immunohistochemistry staining in tumors derived
from HRAS(V12)-transformed cells grown in nude mice showed
a dramatic increase in active caspase-3 staining when core au-
tophagy genes Atg5 or Atg7 were also knocked out (Guo et al.,
2011). In both cell lines and primary cells isolated from glioblas-
toma patients harboring a BRAF(V600E) mutation, pharmaco-
logical autophagy inhibition with CQ induced apoptosis (Levy
et al., 2014; Mulcahy Levy et al., 2017). Cells without RAS path-
way mutations are also particularly dependent on autophagy to
evade apoptosis, and shRNA and CRISPR-mediated screens have
shown that some human cancer cell lines undergo programmed
cell death when core autophagy genes are knocked down/
knocked out or after pharmacological autophagy inhibition
with CQ (Maycotte et al., 2014; Towers et al., 2019).

A large body of literature indicates that cancer cells can up-
regulate autophagy to evade chemotherapy-induced apoptosis,
resulting in chemoresistance (Mohammad et al., 2015). Pre-
clinical cell culture and animal studies showed that pharmaco-
logically targeting autophagy increases cell killing when
combined with other chemotherapeutic agents such as cis-
platin in esophageal squamous cell carcinoma, the histone
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deacetylase inhibitor suberoylanilide hydroxamic acid in CML
(Carew et al., 2007; Liu et al., 2011), and BRAF inhibitors in brain
and pancreatic cancer (Mulcahy Levy et al., 2017; Bryant et al.,
2019; Kinsey et al., 2019). These studies and others have provided
the rationale to launch dozens of clinical trials combining au-
tophagy inhibition with a variety of different chemotherapies
(Levy et al., 2017).

While there is little doubt that autophagy inhibition can in-
crease cell killing with other agents, the hypothesized mecha-
nism for why this works is based on the idea that the
accompanying chemotherapy induces a protective prosurvival
form of autophagy that, upon inhibition, leads to cell death. This
hypothesis implies that the increased protective autophagy is
downstream of the chemotherapy target, whether that be gen-
eral DNA damage or specific tumor-driving kinases. An alter-
nate hypothesis based on the mechanistic understanding of how
autophagy inhibition enhances drug-induced apoptosis via the
FOXO3/PUMA mechanism described above proposes that au-
tophagy may be the upstream mediator and may instead affect
how “primed” a cell is to die (Fitzwalter and Thorburn, 2018).
Importantly, these two hypotheses (autophagy inhibition works
to enhance cancer therapy because it is blocking cancer drug-
induced autophagy that counteracts the death signal; and au-
tophagy inhibition works because it pushes cancer cells closer to
their apoptotic threshold) are likely not mutually exclusive. It is
important to tease apart the exact mechanisms that link these
processes to better leverage autophagy inhibition as a cancer
therapy.

Adaptation to autophagy inhibition
Can cancer cells evade autophagy inhibition? To date there have
been few, if any, studies to directly address this question. There
have yet to be clinical trials conducted that empirically test for
resistance to pharmacological autophagy inhibition in patients.
However, previously published trials already show hints of ac-
quired resistance. Most of the trials with published results have
been phase I or II, focused on safety and pharmacokinetics-
pharmacodynamics, and were not designed for this type of
analysis. Nonetheless, in the phase I clinical trial with CQ and
TZD, Rangwala et al. (2014) described a patient who initially
responded to the therapy but eventually succumbed to a brain
metastasis with persistent growth after 4 mo on therapy. Two
canine patients in a phase I trial with HCQ and doxorubicin in
dogs showed complete initial responses but eventually were
removed from the study due to subsequent progressive disease
(Barnard et al., 2014). In the phase I trial combining the pro-
teasome inhibitor bortezomib with HCQ, 45% of the patients
achieved stable disease that eventually progressed after 9–14 wk
(Vogl et al., 2014).

Such results suggest it is plausible that tumors can adapt to
autophagy inhibition (Fig. 3). Purely pharmacological mecha-
nisms of resistance to autophagy-inhibiting drugs such as CQ
have been identified. The extracellular pH of the TME can
prevent drug uptake (Collins et al., 2018), and cancer cell lines
grown in acidic media are resistant to CQ-induced toxicity.
Moreover, in tumors grown in mice, normoxic regions with
physiological pH showed an expected increase in LC3 expression

indicative of a CQ-induced block of autophagy, whereas the
hypoxic regions with a more acidic pH were significantly less
responsive to CQ (Pellegrini et al., 2014).

In addition to pharmacological mechanisms of resistance,
there are also likely to be genetic mechanisms of resistance;
however, very little work has been done to address this question.
A recent study used a rapid CRISPR/Cas9 assay to analyze how
KO of 12 different core autophagy genes affects cancer cell via-
bility and growth during the first 7 d after gene loss (Towers
et al., 2019). By comparing each gene to loss of known essential
and nonessential genes, cell lines where multiple autophagy
genes behaved like essential genes could be identified. But, even
in autophagy-dependent cell lines where CRISPR-mediated KO
of ATG7 caused the majority of the cells to die within 48 h after
editing, at much later time points ATG7-deficient clones could be
isolated. Intriguingly, the selected ATG7−/− clones that were de-
rived from autophagy-dependent cells grew at equal rates
compared to theWT cells fromwhich they were derived, even in
autophagy-inducing conditions such as nutrient starvation or
hypoxia (Towers et al., 2019). These adapted cells were also
resistant to pharmacological inhibitors of autophagy such as CQ.
These results indicate that under enough selective pressure,
autophagy-dependent cancer cells can adapt to circumvent au-
tophagy inhibition. ATG7−/− clones derived from originally
autophagy-dependent cells acquired an increased dependence
on the master antioxidant transcriptional regulator, nuclear
factor erythroid 2-related factor 2 (NRF2), and this was critical
to maintain protein homeostasis (Fig. 3). NRF2 has previously
been linked to autophagy, and p62 sequesters and inhibits the
NRF2-negative regulator, KEAP1 (Komatsu et al., 2010). More-
over, a recent genome-wide CRISPR screen showed that KO of a
large subset of autophagy genes results in up-regulation of the
NRF2 signaling pathway (Kerins et al., 2019). As a consequence
of NRF2 up-regulation, the autophagy-deficient cells developed
an increased sensitivity to pharmacological proteasome in-
hibitors, a phenotype that was exacerbated with NRF2 knock-
down (Towers et al., 2019). These results suggest that tumors
that originally start off sensitive to pharmacological autophagy
inhibition may be able to adapt and acquire mechanisms of re-
sistance to these therapies. More studies investigating this
phenomenon are needed to understand the underlying molec-
ular mechanisms that might provide insight into the correct
combinatory therapies to prevent resistance to autophagy in-
hibition. It will be important to incorporate analysis of these
mechanisms into clinical trials, e.g., to investigate if NRF2 ex-
pression correlates with clinical response to autophagy
inhibition.

Conclusions
Together, the preclinical and clinical studies suggest that au-
tophagy inhibition may be a viable cancer therapy (Levy et al.,
2017). However, these initial studies also indicate that both in-
herent and acquired mechanisms of resistance may be a sig-
nificant hurdle to overcome before autophagy inhibition can be
a truly effective therapy in cancer patients. Additional studies
are needed to better identify which patient populations are best
suited for autophagy inhibition, and the initial studies in RAS
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pathway mutated tumors may provide a framework for such
studies. It is also unlikely that autophagy is consistently in-
hibited in cancer patients treated with HCQ (Rosenfeld et al.,
2014; Wolpin et al., 2014; Boone et al., 2015). Better pharmaco-
logical autophagy inhibitors are needed, such as the dimeric
quinacrines, which are more potent and selective autophagy
inhibitors (Rebecca et al., 2017).

Additional basic cell biology studies are needed to better
understand autophagy’s various functions in cancer cell biology
and to understand the compensatory mechanisms that are up-
regulated when autophagy is inhibited. For example, it is un-
clear how cells that survive loss of autophagy can maintain
mitochondrial homeostasis and turn over ER or ribosomes, all of
which use LC3-conjugated autophagosomes. But even larger
questions still remain, such as what expression and/or muta-
tional landscape dictates autophagy dependence in the first
place? When autophagy is inhibited in autophagy-dependent
cancer cells, what is the mechanism of subsequent death? Are
there specific therapies that work better in autophagy-
independent tumors? Lastly, based on the changes in cell bi-
ology that occur in the context of autophagy inhibition and

the complex interactions with the TME, what combination
therapies will lead to the most robust patient responses? Ul-
timately, the goal is to have a rational mechanistic basis with
which to target autophagy manipulations in tumors to maxi-
mize beneficial effects, by, for example, increasing the tumor
cell killing capacity of other agents while at the same time
circumventing the mechanisms by which cancer cells will
adapt to the autophagy manipulation. Achieving this goal may
allow long-lasting benefits from autophagy-targeted therapies
in patients but will require much deeper understanding of
how autophagy controls the cell biological processes that drive
cancer cell behavior.
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Figure 3. Cancer cells can adapt to autophagy inhibition. There are still a number of “black boxes” when it comes to targeting autophagy as a cancer
therapeutic. While we know that some cancers are particularly sensitive to autophagy inhibition, the exact biomarkers that dictate autophagy dependence
remain at large. It is also unclear if autophagy-independent cells may be exquisitely sensitive to other targeted agents. Recently, it was shown that in
autophagy-dependent cancer cell lines that die after acute autophagy inhibition, rare clones can survive by up-regulating NRF2 to maintain protein ho-
meostasis. Consequently, the cells with acquired autophagy independence gained new targetable susceptibilities, i.e., proteasome inhibitors. There are likely
additional mechanisms cells can use to circumvent autophagy inhibition and corresponding novel susceptibilities that have yet to be discovered.
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