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BOG (Bacterium and virus analysis of Orthologous Groups) is a package for identifying groups of differentially reg-
ulated genes in the light of gene functions for various virus and bacteria genomes. It is designed to identify Clusters
of Orthologous Groups (COGs) that are enriched among genes that have gone through significant changes under
different conditions. This would contribute to the detection of pathogens, an important scientific research area
of relevance in uncovering bioterrorism, among others. Particular statistical analyses include hypergeometric,
Mann–Whitney rank sum, and gene set enrichment. Results from the analyses are organized and presented in
tabular and graphical forms for ease of understanding and dissemination of results. BOG is implemented as an
R-package, which is available from CRAN or can be downloaded from http://www.stat.osu.edu/~statgen/
SOFTWARE/BOG/.
© 2015 Park et al. Published by Elsevier B.V. on behalf of the Research Network of Computational and Structural
Biotechnology. This is an open access article under the CCBY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

BOG (Bacterium and virus analysis of Orthologous Groups) is an
R-package for identifying groups of differentially regulated genes in
the light of gene functions for various virus and bacteria genomes.
BOG can be useful in transcriptional profiling of virulent pathogens
taking into account of functional categories, an important scientific
research area of relevance to detection of bioterrorism. For example,
in human host, the concentration of free iron available to bacterium
controls the pathogen growth. Effective strategies for adaptation to this
altered environmental conditions and, subsequently, the acquisition of
iron, are vital to the survival of most bacterial pathogens. Many patho-
gens undergo significant changes in their gene and protein expression
to adapt to growth in iron limiting conditions, including Bacillus anthracis,
the causative agent of anthrax, a highly virulent pathogen that has been
used in recent history as a biological weapon [3]. BOGmay also be appli-
cable to studies of marine ecosystems. An example is the study of how
hydrostatic pressure may impact the transcriptome of a deep-sea indige-
nous organism, Desulfovibrio hydrothermalis [1]. Such a study is critical in
understanding the marine ecosystems, especially those of the deep sea,
which represent a major volume of the biosphere. Other examples
include bacterial biofilms, important for the study of resistance to
antibiotics [6], and Brassica napus, an important oil crop [4].
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For the type of studies discussed above, the typicalfirst step is to pro-
file the entire transcriptome to identify genes that are differentially
expressed (DE) under different conditions (e.g. iron depleted vs. iron
replenished in B. anthracis, or in situ hydrostatic pressure vs. atmo-
spheric pressure in D. hydrothermalis). For this task, many software
packages are available, including DEseq [2], EdgeR [8], Cufflinks [14],
and DIME [5]. However, finding the set of DE genes is typically not the
end goal. Rather, the interest is to find Clusters of Orthologous Groups
(COGs) that are enriched (i.e. over-represented) among the DE genes
identified in the first step. This, the second, step is essential for provid-
ing new insights into the underlying molecular mechanisms linked to
the adaptation of a bacterium or a virus from a native to a perturbed
condition. Despite the critical importance of this task, studies of this na-
ture are largely descriptive rather than inferential. Pie charts and bar
graphs are often the only tools used to visually depict COGs having a
larger share of the DE genes, which are then interpreted as indication
of enrichment [3,1,4,6]. However, this does not take into account the
sizes of COGs, which can be problematic as a larger share of the DE
genes may not be that unusual if the corresponding COG also contains
more genes. Further, the descriptive nature of the methods does not
lead to conclusions that are based on proper evaluation of scientific ev-
idence. Despite an abundance of software for finding DE genes, to the
best of our knowledge, there is no computational tool/software current-
ly available for identifying COGs that are significantly enriched with DE
genes. Although such an analysis is similar to finding gene ontology
(GO) functional categories that are significantly enriched, a software
package for such a purpose, such asGOTM [15], is not directly applicable
to finding COGs that are over represented among DE genes. Hence, we
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believe that it is of value for a software package like BOG that is capable
of quick and accurate identification of COGs that are over-represented
among differentially expressed genes through rigorous statistical tests.

BOG consists of threemodules: (optional) DIMEprocessing, analysis,
and outputmodules (Fig. 1(a)). More specifically, after reading in a raw
input data set, BOG performs a differential analysis through a mixture
ensemble procedure and computes local fdr as a differential score for
each gene using the DIME software (http://cran.r-project.org/web/
packages/DIME/) [11,12]. If the input data are already (adjusted)
p-values rather than raw data, then BOGwill skip the DIME preprocess-
ing step. The scores (either calculated or as input) are delivered to the
analysis module, which performs three alternative statistical tests to
identify COGs that are over represented among the differentially
expressed genes: hypergeometric,Mann–Whitney, and gene set enrich-
ment analysis. The analysis results will then be delivered to the output
module for tabular and graphical presentation for ease of understanding
and dissemination of results.
2. Statistical tests in the analysis module

Suppose we have a list of genes G ¼ g1;…; gNf g in an experiment;
their associated memberships with a set of known orthologous groups
(M) are denoted byℳ={m(g1),…,m(gN) :m(gi) ∈M}. We also attach
to each gene a differential score s(gi) (local fdr or p-values): S ¼
Fig. 1. Flowchart and sample outputs. (a) The flowchart depicts the three sequential modules t
each COG (P, F and E), the left bar represents the observed number of differentially expressed g
COG. The p-values indicated are adjusted p-value taking into account of multiple testing. (c) Ta
while the last column provides adjusted p-values taking multiple testing into consideration. (d
reached at 358 genes, with themajority of the genes in the top 358 coming from the “P” categor
to color in this figure legend, the reader is referred to the web version of this article.)
s g1ð Þ;…; s gnð Þf g, which are either obtained directly from user's input
or computed by DIME. For each orthologous groupm ∈Mwith the cor-
responding gene set Gm ¼ gi : m gið Þ ¼ mf g, we denote its size by nm ¼
jjGmjj. In the following, we describe each of the three analysis methods.

2.1. Hypegeometric (HG)

We let K be the number of genes that are deemed to be differentially
expressed under two conditions, that is, K=∑i

NI{s(gi) b s*}, where s* is
a preset threshold (default is set to be 0.05 on BOG but can be changed
by user) and I{⋅} is the usual indicator function taking the value of 1 or 0.
For each orthologous group m ∈ M, under the null hypothesis that this
group is not over-represented among the set of differentially expressed
genes, the test statistic THG ¼ ∑gi∈Gm

I s gið Þ b s�f g follows the HG
distribution H(K, N, nm). The null hypothesis is rejected if the associated
p-value is small, that is, T is much larger than what one would expect
under the HG distribution.

2.2. Mann–Whitney Rank Sum (RANK)

To avoid the need to preset a “significance” threshold (which is
somewhat arbitrary), we consider all genes by using their rankings
based on their differential scores. Specifically, for each gene gi∈G; i ¼
1;…;N , we assign it a ranking r(gi)≡r{s(gi)} such that a gene with a
hat made up BOG. (b) COGs with adjusted p-value b 0.1 from the hypergeometric test. For
enes identified, while the right bar is for the expected number according to the size of the
bular outcome from theMann–Whitney rank test. The middle column gives raw p-values,
) An example GSEA scoring path for the “P” category. One can see the maximum score is
y (in red). The p-value is adjusted for multiple testing. (For interpretation of the references
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smaller score will be assigned a higher rank (large number). For
each orthologous group m ∈ M, we compute the test statistic TRANK ¼
∑gi∈Gm

r gið Þ . Under the null hypothesis that this group is not over-
represented among the set of differentially expressed genes, the expected
value of TRANK is nm(N+1)/2. If the observed statistic is significantly larg-
er than this expected value, then this orthologous group is deemed over-
represented.

2.3. Gene set enrichment analysis (GSEA)

Instead of basing on correlations as in the original GSEA [9], the
modified GSEA in this paper uses rankings of the scores for all genes,
like the RANK test. As such, there is no need to preset a threshold of
significance. However, unlike the RANK test, evidence of over represen-
tation of a COG is evaluated in a sequential manner. More specifically,
let ~G ¼ ~g1;…; ~gN : ~gi∈Gf g be the ordered set of genes such that
r ~g1ð Þ≥…≥r ~gNð Þ. Recall that a smaller score will receive a higher ranking
value. For each orthologous groupm ∈M, we evaluate the sequences of
the Pi

+ and Pi
− values, i = 1,⋯ N:

Pþ
i Gmð Þ ¼

X

k∈Km ið Þ

r ~gkð Þ
rm

; P−
i Gmð Þ ¼

X

k∉Km ið Þ;k≤ i

1
N−nm

; ð1Þ

where Km ið Þ ¼ k≤ i : ~gk∈Gmf g, rm ¼ ∑~gk∈Gmr ~gkð Þ. We define the GSEA
statistic as TGSEA ¼ maxi Pþ

i Gmð Þ−P−
i Gmð Þ� �

. Its associated p-value for
evaluating evidence of over representation of differential expression of
genes inm is determined by a permutation test by randomly permuting
the N gene labels.

3. BOG software package

We briefly describe themain functions and data input. More details,
especially on control parameters of functions, are available in the docu-
mentation of the BOG package. The package can be downloaded from
CRAN or from http://www.stat.osu.edu/ statgen/SOFTWARE/BOG/.
BOG is the flagship function that performs the HG, RANK, and GSEA
tests. It takes two primary arguments:

• data: BOG accepts a data file (R dataframe) of two columns. The first
column is the geneIDs (characters) and the second is numerical
measures for the corresponding genes, which has two possible op-
tions controlled by the data. type argument: (1) “data”, normalized
“differences” of gene expressions between two comparison groups,
(2) “pval”, (adjusted) p-values for each gene if differential analysis is
carried out beforehand. Under option (1), BOG assumes that the
data are already normalized. Further, “difference” is in a broad sense,
which can either be log-difference or just difference without
performing log-transformation first, depending on the preference of
the user and the context of the problem [10].

• cog_file: This can either be a user specified input file (R dataframe) or
simply the specification of the name of one of the built-in COGs:
anthracis, brucella, coxiella, difficile, ecoli, or francisella [13]. More
specifically, if the virus/bacterium being analyzed is not one of the
six build-in varieties, then a file with two columns is required: the
first column provides gene IDs as in the input data file; the second
column specifies the Clusters of Orthologous Groups to which each
gene belongs.

The output module receives results from the analysis module and
summarizes them in a tabular format with three columns: COG,
p-value, and adjusted p-value, for each of the tests performed. A user
can display the table by running the command printHG, printRANK,
or printGSEA. Further, BOG provides several graphical functions for
visualizing the results, including hgplot and gseaplot.
4. Example

To demonstrate the use of BOG, we analyze a set of gene expression
levels of B. anthracis grown in iron depletedmedia (0μMiron concentra-
tion) and iron replenished media (30μM iron concentration) at the four
hour time point after treatment [3].

To identify geneswhose expressions are alteredwhen iron is deplet-
ed, we took the average difference of normalized gene expression
values at 0 μM vs. 30 μM after 4 h of treatment (each with four repli-
cates). We first ran DIME to analyze the data and obtain the local fdr
value for each of the genes. This list of fdr value was then saved as
input to BOG and made available in the BOG package as input file
anthracis_iron. We chose to demonstrate our example in a “piecemeal”
fashion to facilitate greater understanding. We ran the following
command with the BOG main function to analyze over representation:

bog b ‐ BOGðdata ¼ “anthracis iron”; data:type ¼ “pval”;
cog:file ¼ “anthracis”; hg:thresh ¼ 0:01; gsea ¼ TRUEÞ:

The output in bog is then processed using various function in the
Output model and the results are presented in Fig. 1(b–d). Output
from the HG test, summarized using hgplot(bog), is visualized in
Fig. 1(b) for COGs with (adjusted) p-value b 0.1. From the results, we
can see that “P” (inorganic ion transport and metabolism) is the most
significant COG. The results from the RANK test are being summarized
in a tabular form (Fig. 1(c)) using the command printRANK(bog),
which shows that COG “P” is also returned as the most significant.
Finally, we demonstrate the GSEA-path for category “P” in Fig. 1(d) by
using the command gseaplot(bog, “ P ”), from which one can see
that this category is being selected as over-represented among genes
that are differentially expressed in iron depleted condition against
iron repleted one. The consistent results from all three tests are
reassuring. More importantly, this finding is also consistent with
current understanding of the science, as the significant increase in ion
transport mechanism and some aspects of matabolism is a clear indica-
tion of adaptation to growth under iron depleted condition [3].

5. Discussion

We develop an R package (BOG) for identification of Clusters of
Orthologous Groups in bacteria and viruses that are enriched among
genes that have gone through significant changes under different condi-
tions. Three tests are available to provide user with greater choices.
Hypergeometric and Mann–Whitney rank tests are computationally
efficient, although note that the hypergeometic test requires the speci-
fication of a “significance” threshold. On the other hand, the gene set
enrichment analysis based on fdr instead of correlation as in [9] does
not need the specification of a threshold, but it is computationally inten-
sive. Therefore, thepackage provides userwith theflexibility ofwhether
to run the GSEA option. As we demonstrated through application to the
B. anthracis example, all three tests consistently identified the same
category as the most enriched gene set. For convenience, we use gene
expression as our example data type, although BOG is also applicable
to other high-throughput data, including DNA-protein binding and
methylation data. For the initial step of finding DE genes, we use DIME
as the default in BOG, although this can be replaced by any other pack-
age including those mentioned in Section 1. The software is written in
such a way that the step for finding DE genes can be performed using
a user-desired software before calling BOG to identify COGs that are
enriched among the set of DE genes. As such, BOG is directly applicable
to all examples discussed in Section 1; the set of DE genes or the rank-
ings can be used as input to BOG to formally test which BOGs are
enriched in addition to simple descriptive statistics/graphs used therein.
In addition to its intended use in detection of pathogens, BOGmight also
find applications in analyzing gut microbiota community compositions,
a subject with recent surge of interests, as such compositions may be
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related to obesity and other health conditions [7]. For instance, in an
analysis of 16S rRNA gene from a study of obese and lean individuals,
one may first detect taxa, at a particular taxonomic rank (e.g. species),
that have significantly different proportions among these two groups
of individuals. Then BOG can be called to identify categories at a higher
taxonomic rank (e.g. family) that are significantly enriched.
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