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Abstract: Background: Although telomerase has potential for age-related disease intervention, the 

overexpression of telomerase in about 90% of cancers, and in HIV virus reservoirs, cautions against 

se in anti-aging telomerase therapeutics. While multiple reviews document the canonical function 

of telomerase for maintenance of telomeres, as well as an increasing numbers of reviews that reveal 

new non-canonical functions of telomerase, there was no systematic review that focuses on the ar-
ray of associates of the subunit of Telomerase Reverse transcriptase protein (TERT) as pieces of 

the puzzle to assemble a picture of the how specific TERT complexes uniquely impact aging and 

age-related diseases and more can be expected. �
Methods: A structured search of bibliographic data on TERT complexes was undertaken using da-

tabases from the National Center for Biotechnology Information Pubmed with extensive access to 

biomedical and genomic information in order to obtain a unique documented and cited overview of 

TERT complexes that may uniquely impact aging and age-related diseases.�
Results: The TERT associations include proper folding, intracellular TERT transport, metabolism, 

mitochondrial ROS (Reactive Oxygen Species) regulation, inflammation, cell division, cell death, 

and gene expression, in addition to the well-known telomere maintenance. While increase of cell 

cycle inhibitors promote aging, in cancer, the cell cycle check-point regulators are ambushed in fa-

vor of cell proliferation, while cytoplasmic TERT protects a cell cycle inhibitor in oxidative stress. 

The oncogene cMyc regulates gene expression for overexpression of TERT, and reduction of cell 

cycle inhibitors-the perfect storm for cancer promotion. TERT binds with the oncogene RMRP 
RNA, and TERT-RMRP function can regulate levels of that oncogene RNA, and TERT in a TBN 

complex can regulate heterochromatin. Telomerase benefit and novel function in neurology and 

cardiology studies open new anti- aging hope. GV1001, a 16 amino acid peptide of TERT that as-

sociates with Heat Shock Proteins (HSP’s), bypasses the cell membrane with remarkable anti dis-

ease potential. �
Conclusions: TERT “associates” are anti-cancer targets for downregulation, but upregulation in 

antiaging therapy. The overview revealed that unique TERT associations that impact all seven pil-

lars of aging identified by the Trans-NIH Geroscience Initiative that influence aging and urge re-

search for appropriate targeted telomerase supplements/ stimulation, and inclusion in National In-

stitute on Aging Intervention Testing Program. The preference for use of available “smart drugs”, 

targeted to only cancer, not off-target anti- aging telomerase is implied by the multiplicity of TERT 

associates functions.  

Keywords: Aging, TERT, associates, cancer, oncogenes, cell cycle, diseases, viral infection. 

1. INTRODUCTION 

 The promoter of the reverse transcription TERT gene, is a 
common non-coding mutation in cancer [1-3] and these mu-
tations in the regulation of TERT expression represent a tu-
morigenic mechanism [2]. Regulation of telomerase by epi-
genetics results in TERT overexpression [4] and TERT func-
tion [5]. The discovery of the role of telomerase as a te-
lomere ribonucleoprotein terminal transferase, i.e., the 
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TERT reverse transcriptase protein with TERC (Telomerase 
RNA component), heralded a new area in telomere biology 
and is considered the canonical role of telomerase [6, 7]. 
Damage to telomeres can trigger DNA damage response, 
apoptosis and aging [8]. The association of telomere-
dysfunction with diseases was recently reviewed [9]. Here, 
the non-canonical telomerase functions include the discovery 
that TERT expression regulates tolerance to oxidative stress 
in mitochondria linking telomerase, mitochondria, oxidative 
stress, aging diseases, and longevity [8-12]. Telomerase’s 
ability to reverse tissue degeneration in aged mice provides 
evidence for the potential for therapeutic TERT intervention 
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in aging [13]. Examples of telomerase benefits emerge in 
immunology [14], cardiology [15], chemotherapy-induced 
damage [16] and neurology [17, 18]. Epigenetics [19, 20] 
and splice variants of TERT RNA can regulate telomerase 
activity in cancer, and in different cells and tissues [21]. The 
recently discovered ability to target telomerase, and thereby 
also selectively target cancer cells selectively, allows the 
elimination of cancer cells without downregulation of the 
positive roles of telomerase in other age-related diseases [22, 
23]. The TERT peptide GV1001, promises to be an interven-
tion drug in multiple diseases [24]. 

 Stress, especially oxidative stress, impacts multiple age-
related diseases (over 15,000 references on aging and oxida-
tive stress are cited in the National library of Medicine Na-
tional Institutes in 2019). Oxidative stress age-related dis-
eases include cancer, cardiac aging, cardiovascular diseases, 
skeletal muscle aging, Alzheimer’s Disease, Parkinson’s 
Disease, Hearing Loss, insulin resistance, diabetes [25], im-
munosenescence [26], frailty [27] and age-related vascular 
dysfunction [28] linked to TERT, since oxidative mitochon-
drial stress is regulated by mitochondrial TERT [8-12]. The 
associations of TERT with chaperones, mitochondrial DNA, 
mTor pathway and brain mitochondria, glucose kinase, anti-
oxidant pathways, inflammatory regulators, glucose and fat 
metabolism, oncogenes, generation of micro and interfering 
RNA gene regulators, cell cycle regulators of cancer, and 
evidence of critical roles in cardiovascular and neurological 
diseases are documented below with the promise of GV1001 
in disease intervention. The extensive non-canonical partici-
pation of Telomerase subunit TERT with associations  

(Table 1) that impact aging and age-related signals the need 
for appropriate telomerase age-related intervention therapy.  

2. TERT CHAPERONES  

 Tert Chaperones: Required For Proper Protein Shapes 
For Telomerase Activity: Proteostasis, Macromolecular 
Functions And Tert-Terc-Telomere Functions [29-31]. 

2.1. TERT-Hsp90- 23-TERT  

 The unique associations between heat-shock protein 90 
chaperones, and stress-inducible HSP23, dictate TERT 
proper assembly with the RNA ligand template TERC. 
Components of the Hsp90 chaperone of telomerase assem-
bly, remain with active enzyme and are required for telom-
erase activity [29].  

2.2. TCAB1-TERT  

 TCAB1-TERT (Telomerase Cajal Body protein 1 RNA 
splicers). Depletion of TRiC (TCP-1 Ring Complex Chaper-
one) is required for TCAB1 folding, or TCAB mutations, 
impair the control of telomerase activity for telomere elonga-
tion [30]. Telomerase depends upon the holoenzyme protein 
TCAB1, a target for cancer therapeutics [31]. 

3. INTRACELLULAR NUCLEAR 

 Intracellular Nuclear- mitochondrial travel. required for 
tert location to mitochondrial for functions in aging [32-35]. 

Table 1. Telomerase, subunits, and associates regulate age-related functions. 

Function Associates Section 

Nuclear telomere biology Mitochondrial Anti-

oxidant Functions 

Chaperones HSP90, TCA 1, 2 

Intracellular transport Motor 90 Dynein, FKB’S 3 

Oxidative stress protection Mitochondrial DNA,  
mTOR, NrF2 

4.2 

Inflammation Nf κB, NrF2 5.1-5.3 

Metabolism NrF2 Glucose  

Fatty acids EZH2 
5.4-5.5 

Gene Regulation RMRP-RdRP, TBN, siRNA, microRNA 6.1-6.2 

7 

Immortality vs. Aging P16 INKA, 8 

Cytoplasmic Antioxidation Cancer P15 RNA, TERT-TIA1 8 

TERT cMyc oncogene 9 

TERC cMyc oncogene 9.1 

Neuronal Health TELOMERASE 10 

Heart Health TELOMERASE 11 

Intervention GV1001 12 

Supplements - 13 
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 TERT requires p90 dynein-dynactin motor (cytoplasmic 
motor for intracellular nuclear-mitochondrial travel to mito-
chondria) and FKBP52 (FKB506-binding protein immuno-
philins) and FKBP52-hTERT-Hsp90-Dynein-dynactin com-
plex provides the motor for cytoplasmic transport of hTERT 
[32]. FKB51and FKB52 proteins stimulate TERT in oxida-
tive stress and thus a target for downregulation of cancer 
cells [32]. Hsp90-binding immunophilin FKBP51 forms 
complexes with hTERT enhancing telomerase activity and 
overexpression of the immunophilin is associated with 
resistance to induce cell death [33]. FK506-Binding Proteins 
(FKBPs) are co-receptors for immunosuppressants, and 
FKBPs inhibitors intervene in antimalarial, antileginonellal, 
and antichlamydial properties [34]. Conversely, approaches 
are necessary to intervene in protein misfolding in neuro-
logical diseases [35]. 

4. MITOCHONDRIAL TERT AND OXIDATIVE 
STRESS  

 Required for tert antioxidant function and macromolecu-
lar protection, and stress resistance [10, 36-48]. 

4.1. TERT- mDNA (Mitochondrial DNA) 

 TERT binds to mDNA and protects mDNA from oxida-
tive damage [10]. Telomerase protects mitochondria under 
oxidative stress [36]. Telomerase affects mitochondria DNA 
replication [37]. Oxidative DNA damage stalls the human 
mitochondrial replisome [38]. Telomerase overexpression 
protects cancer cells from apoptosis [39]. Telomerase affects 
the cellular response to oxidative stress by autophagy [40].  

4.2. mTOR-TERT (Target of Rapamycin, Member of 
Phosphatidylinositol 3 Kinase)  

 Diet Restriction (DR) and rapamycin treatment (inhibitor 
of mTOR) stimulate TERT localization in rodent brain mito-
chondria, reduce Reactive Oxygen Species (ROS) as an anti-
oxidant, and improve mitochondrial function [41, 42]. Sig-
nals from mTOR expression in aging and neuro-regeneration 
affect both metabolism and autophagy [43]. Inhibition of 
mTOR expression with rapamycin in a mouse model of 
Downs’s syndrome intervenes in a cognitive loss by the im-
provement of autophagy and insulin signaling [44]. The 
mTor inhibition modulates Aβ plaques deposition and tau 
tangle aggregation in Alzheimer’s disease [45] and promote 
inhibition in neurological disease and longevity [46] likely 
due to improvement in mitochondrial health [41, 42]. How-
ever, the PI3K/AKT/mTOR AKT kinase is central to glucose 
metabolism signaling pathway, as well as the promotion of 
TERT over expression of stem-like cancer cells suggests 
targeting both in cancer therapy [47]. The presence of TERT 
in the signaling complex implies that mTOR- mediates the 
control of telomerase activity [48]. Telomerase activity is 
inhibited by various phytochemicals such as isoprenoids, 
genistein, curcumin, epigallocatechin-3-gallate, and resvera-
trol [48]. 

5. METABOLISM, INFLAMMATION, IMMUNITY 

 Required for energy, anti inflammatory disease, infection 
resistance, and tumor progression [49-54]. 

5.1. NrF2-TERT 

 NrF2 (nuclear Factor erythroid 2 related factor that con-
trols ARE antioxidant response element). Inhibition of hu-
man TERT reduces NrF2 and induces glioma cell apoptosis, 
while Nrf2 overexpression increases TERT [49]. TERT inhi-
bition results in a reduction in pentose phosphate intermedi-
ates and stimulation of glycogen [49]. In glucose deficit, 
both Nrf2 and autophagy support breast cancer progression 
[50]. In cancer, NrF2 protects against ROS stress, inflamma-
some assembly, and regulates cancer promotion microRNAs 
[51]. While TERT and NrF2 are targets for downregulation 
in cancer, upregulation is desirable for intervention in ROS 
mediated diseases [52]. Nrf2 activating compounds show 
down regulation of inflammasomes and inflammation, in 
non-cancer disease treatments [52]. Nrf2 regulates activation 
of inflammasomes via regulation of the Trx1/TXNIP (thiore-
doxin interacting compound) complex [53] and up regulation 
of TXNIP may be anti-aging and anti-HIV, by down regula-
tion of inflammation found in HIV immune cells [54]. 

5.2. TERT- NF-κB (Nuclear Factor Kappa Light Chain 
Enhancer of Activated B Cells)  

 The ability of NF-κB to alter cell functions reflects mul-
tiple gene activations or repressions [55]. In mice, telom-
erase binds to the NF-κB p65 [56].  

5.3. TERT- NF- κB -STAT3 (Signal Transducer and Ac-
tivator of Transcription) 

 In humans, STAT3- STAT1-NF-κB physically interact 
and stimulate cytokines IL6 (interleukin 6) and TNF α (tu-
mor necrosis factor) inflammatory agents that increase te-
lomerase activity and stem-like cancers [57]. In atherosclero-
sis, inflammation activates TERT [58]. STAT regulates in-
flammation and immunity [59]. The oriental anti-
inflammatory agent, Withania somnifera is a likely drug 
candidate for human clinical trials in cancer [60]. Over- the 
counter anti-inflammatory agents are supplements suggested 
for cancer-induced inflammation treatment [61]. Telomerase 
supplements for arthritis have conflicting responses, likely 
due to the activation of different telomerase-associate path-
ways [15]. 

5.4. Telomerase-Glucose Hexokinase Telomerase  

 Telomerase-Glucose and Hexokinase. Telomerase down-
regulates glycolytic pathway genes, decreases glucose con-
sumption and lactate production. Inhibition of telomerase 
RNA expression reduces metastasis, glucosemetabolism, 
lactate [62]. Hexokinases, also known as glucokinases, cata-
lyze the first step in glucose metabolism [63]. Deletion of 
hexokinase intervenes in cancer [64]. Hexokinase has a role 
in growth or death, via starvation induced autophagy by 
TORC [65]. The TOS binding site for TORC substrates is 
consered in verebrates [66]. Telomerase links cell death, 
hexokinase, and autophagy [67]. The role of telomerase in 
glucose metabolism links telomerase to glucose metabolism 
in innate immunity [68] and immune CD4+ and CD8+ cells 
[69]. Recently, a protein was found to code from the RNA 
ligand of telomerase Tert, called TERP, [70] whose role in 
biology of cancer is unnown. 
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5.5. TERT-EZH2 

 TERT-EZH2 (also known as Zeste homolog 2, histone 
H3K27 methyltransferase) is required for epigenetic methy-
lation control in lipid metabolism. 

 Downregulation of TERT decreases EZH2, and corre-
lates with an excess of lipids, and stimulation of ATM dam-
age response in glioma model [70]. TERT in association 
with EZH2 is a stress responder to DNA damage [71].  

6. TERT-RMRP RMRP  

 (RNA component of mitochondrial RNA Polymerase, 
ligand mitochondrial exonuclease, also known as RNase 
MRP RNA, RNA component of Mitochondrial RNA Proc-
essing RNA required for regulation of gene expression and 
RNA dependent RNA polymerase function.  

6.1. TERT-RMRP 

  TERT-RMRP generates RdRP (RNA dependent RNA 
Polymerase). TERT interacts with the same RNA ligand 
component as RNase MRP (RNA component of the mito-
chondrial RNA endonuclease, RMRP, that self-regulates 
RMRP level by siRNA [72] and generates short RNAs in 
cancer cell lines [73]). Endogenous siRNAs other than 
RMRP are also found with the ability of sequence-specific 
inhibition of micro RNAs [74]. TERT protein levels corre-
late with RdRP activity in cancer and identify RdRP as a 
target for anticancer therapeutics [73-75]. In a study, knock-
down of RMRP by shRNA inhibited mammary cancer cell 
replication [75]. The ability of RdRP to generate siRNA was 
independently confirmed [76] though attempts to generate 
siRNA to control of RNase MRP RNA with siRNA of 
RMRP were unsuccessful or complicated by pleiotropic un-
intended target effects [77]. Using the selective gene scis-
sors, Crisper-Cas9 (Clusters of regularly interspaced palin-
dromic repeats for gene editing) the RMRP locus, results in 
the deadly accumulation of preribosomal RNA in human 
HELA cells [78].  

6.2. RMRP Oncogene 

 RMRP regulation is altered in multiple cancers [79-82]. 
RMRP is known as an oncogene upregulated in lung cancers 
and promotes inhibition of mi RNA-206 [79-80]. MicroRNA 
206 modulates cyclin D2, cell division, and invasion in can-
cers [81-83]. Recent reviews show that RMRP acts as an 
oncogene that regulates glycolysis, ROS, and apoptosis in 
humans, and document that RMRP is a target for anticancer 
therapeutics [84, 85].  

7. TBN COMPLEX  

 TERT-BRG1-Nucleostemin (BRG1- ATPase of the 
SWI/SNF chromatin remodeling complex that remodels 
chromatin to control gene expression and chromosome cen-
tromere) required for regulation of heterochromatin in gene 
regulation and centromeres epigenetics. 

7.1. TERT in TBN 

 TERT is prominent in cancer and cancer initiating cells; 
BRG1 interacts with histone deacetylase 2 and alters telom-

erase activity in cancer cells [86]. Levels of BRG1 correlate 
with cancer cell replication levels [87]. Nucleostemin is as-
sociated with malignancy in cancer cell line [88]. TBN 
(TERT-BRG1-Nucleostemin) is prominent in tumor-
initiating cells [89]. TERT is involved in heterochromatin 
maintenance [90], RNA dependent RNA polymerase siRNA 
production [91], and chromosome segregation [92]. The 
complex of TERT-BRG1-Nucleostemin (TBN) is reminis-
cent of heterochromatin complex control in lower organisms 
and may be potentially useful in targeting cancer [93]. TERT 
also regulates microRNA [94]. Telomerase intervenes in 
telomere aneuploid induced replication stress [95]. In sum-
mary, TBN directs RNA synthesis, heterochromatin, centro-
meres, mitosis, siRNA, miRNA, and cell replication targets 
in cancer therapeutics.  

8. TERT-P16 INKA  

 TERT-P16 INKA aliases CDKN2A, ARF, CDK41, 
CDKN cyclin-dependent kinase inhibitor 2A,P16-INKA4A: 
Regulator of cell cycle: required for cell cycle control, brain 
protection [96-101]. The mammalian INK4a/ARF locus (al-
ternate reading frame) encodes p16INK4a protein and ARF 
regulators of Retinoblastoma (RB) and p53 pathways that 
impact and regulate cancer and aging [96, 97]. The interac-
tion of stimulation or inhibition of cell cycle describes the 
difference in cancer types versus the activation of p16 can 
intervene in cancer [98]. Cells, with activated p16 INK4a 
promoter, accumulate p16 and exhibit inflammation, and 
display senescence [99]. Both TERT and p16 are players in 
glioblastomas; p16 suppresses hTERT in a human mammary 
epithelial cell by p16 activation of methylation that irreversi-
bly blocks the hTERT promoter in normal and human breast 
cancer [100]. Thus, the dual role of p16 includes not only 
inhibition of cell cycle progression, but also the transcrip-
tional suppression of the TERT promoter in mammalian 
cells. Bmi-1 (B-cell specific Moloney murine virus integra-
tion site 1) is a member of the Polycomb Repressor Com-
plex1 that regulates chromatin structure for renewal l of both 
normal and cancer stem cells, and lengthens the potential 
doubling of human cells by inhibition of p16(INK4a [101]. 
Bmi has the potential for antiaging for self-renewal of nor-
mal cells, but, the danger of protection of cancer cells [101]. 

   Modifications of p15, p16 and TERT are inducible; epi-
gallocatechin-3-gallate, found in green tea, inhibits growth 
and induces apoptosis in cancer cells by activation of the cell 
cycle inhibitor p16 and downregulation of telomerase [102, 
103]. TGF β (transforming growth factor) induces a 30X 
increase of p15 in stress [104] and the TGFβ pathway stimu-
lation induces aging in glioblastoma cells [105]. The anti-
apoptotic role of telomerase involves BCl2 (B-cell lym-
phoma 2 family of anti-cell death proteins) the over expres-
sion of which protects cancer cells from apoptosis [106]. The 
drug used to target BCL2, Venetoclax in HIV reservoirs, 
may be effective in cancer to counteract TERT induced anti-
apoptosis [107]. The low dose of the drug RG108 methyla-
tion inhibitor activates TERT and blocks ROS and inflam-
mation, and at high dose, it activates tumor suppressor p16 
INKA [108, 109].  

 In fully differentiated neurons, the largest pool of cyto-
plasmic TERT is in the complex (TERT -TIA1- p15INK4b 
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mRNA) and under oxidative stress, p15INKA4b translation 
occurs and neuronal survival increases [110]. While TERT 
knockdown promotes apoptosis, TERT induced overexpres-
sion reduces apoptosis and TERT exhibits translational con-
trol of p15 messenger RNA cell cycle inhibitor expression in 
oxidative stress and neuronal survival [110]. Studies show 
mammalian brain with TERT specifically in neurons [111-
113]. 

9. TERT-cMyc  

 cMyc is a transcription factor protein and oncogene) Re-
quired for cancer progression [114-118]. Gliomas show in-
creased TERT mRNA, and telomerase activity [114]. TERT 
protects cMyc by after-translational regulation of cMyc 
ubiquitination and thereby protects c Myc from degradation 
in carcinogenesis [114]. A cMyc-MAX dimer binds to pro-
moters of TERT and cyclin DD that enhance their transcrip-
tion for TERT overexpression [115], while cMyc represses 
cyclin-dependent kinase inhibitors p15 and p21 to result in 
inhibition of cell cycle [116-118]. The upregulation of te-
lomerase and downregulation of cell cycle regulation provide 
the perfect environment for cancer promotion in post-mitotic 
cells.  
 TSC-22 (transcription factor) reacts with c-MYC and pre-
vents the suppression of p15 promoters but enhances over-
expression of TERT [119], separating two promoters of can-
cer for anticancer activity. 

9.1. TERC-cMYC  

 Telomerase RNA component epigenetic control of cancer 
[120]. cMyc occupies the TERC locus, and mediates excess 
TERC RNA, while TERC inhibition reduces prostate cancer 
[120], therefore, both TERT and TERC independently inter-
act with cMyc to modulate cancer pathology. Although 
TERC has been considered a non-coding RNA, the protein 
TERP has been found protecting cell viability [70]. 

10. TERT, STEM CELLS, NEURONAL HEALTH, AND 
MTOR 

 Telomerase in neuronal health stem cell neurogenesis. 
Required for antioxidant and stem cells [121-129]. Adult 
human neurogenesis was discovered in the dentate gyrus of 
adult humans throughout life [121]. Retrospective birth dat-
ing is possible to measure human cell turnover from by use 
of the known C14 from nuclear bomb testing generated in 
the atmosphere as the DNA date mark when a cell duplicates 
its chromosomes [122]. New human hippocampal cells using 
14

C, reveal and new neurons are added each day, with mini-
mal aging decline [123] and sparks hope of maintenance of 
brain functions in aged! Ectopic telomerase expression de-
lays amyotrophic lateral sclerosis [124]. Hippocampal neu-
rogenesis has a potential role in memory and spatial learning 
[125]. Telomerase is required for the benefits of neurotropic 
growth factor, Brain-Derived Neurotrophic Factor (BDNF) 
in early hippocampal brain development [126]. The TERT-
mTor association’s role in neuronal mitochondrial health 
provides hope for intervention in neurological disorders [41-
45]. TERT plays a role in the dynamics of neurogenesis, 
regulated by mitochondria throughout the lifespan [127]. 

Neural Stem Cells (NSCs) and Neural Progenitor Cells 
(NPCs), implicate telomerase for an important role in the 
developing and adult brains of humans and rodents. Recent 
studies have demonstrated that telomerase in NSCs/NPCs 
functions in cell proliferation, neuronal differentiation, neu-
ronal survival and neurogenesis [129].  

11. TELOMERASE HEART HEALTH  

Reviews of the role of telomerase as a therapeutic tissue-
specific target relative to cardiovascular health [11] and off- 
target damage by chemotherapy highlight the importance of 
telomerase in heart health and drug induced cardiac damage 
[16]. Telomerase is beneficial in treatment of Coronary Ar-
tery Disease (CAD) via protection from ROS [15, 16]. In 
Ischemia- Reperfusion injury, injury telomerase deficit pre-
disposes heart failure [130]. Telomerase has a critical role in 
microcirculation since decreased telomerase activity promotes 
Nitric oxide conversion to peroxide in Coronary Artery Dis-
ease (CAD), while telomerase increase restores normal func-
tion [131]. Telomerase has potential for intervention in pul-
monary hypertension [132]. Telomere attrition is characteris-
tic of cardiac hypertrophy and cardiomyocyte-specific te-
lomere shortening is a human marker of heart failure, and car-
diomyocytes with the shortest telomeric lengths are typically 
correlated with reduced ejection [133] (Fig. 1).  

12. GV1001  

 Telomerase peptide intervention potential in antiaging 
disease activators -inflammation, oxidative stress related dis-
eases, and amyloid toxicity in neuronal diseases. The16 amino 
acid peptide of telomerase, used as the cancer vaccine, 
GV1001, unexpectedly also shows Cell Penetrating Properties, 
(CPPs), with, ease of cytosolic cargo passage across the 
plasma membrane for delivery of drug macromolecules via 
heat shock proteins HSP90 and HSP70 [20, 133]. GV1001 
functions properties are anti-inflammatory [134, 135], antioxi-
dant [136, 137], antiviral [138] and anti-amyloid toxicity [139]. 

13. TERT SUPPLEMENTS 

 Telomerase supplements were reviewed previously (15). 
The telomerase activator TA-65 supplement extends te-
lomeres and increases disease free longevity in mice, without 
cancer promotion [140], and may have potential in telomere 
attrition found associated with frailty [141]. TA-65 telom-
erase activator does not increase cancer in mice [142]. Dif-
ferent TERT drugs activate different TERT associated func-
tions (11); i.e., the PGC-1α/TERT (peroxisome proliferator-
activated receptor gamma coactivator pathway-1α), activated 
by drug Catalpol, intervenes in atherosclerosis by downregu-
lation of ROS and inflammation [143] and likely would 
benefit multiple age-related diseases aggravated by oxidative 
stress and inflammation. The TERT tissue specific positive 
effects on endothelial, and pathological effect in vascular 
smooth muscle and atherosclerosis, are modulated by differ-
ent supplements yielding conflicting benefit results [15].  

14. ANTI CANCER TERT  

 An unexpected role of telomerase in cancer is impacted 
by biology of TERT and subsequent chemotherapy [144] 
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that challenges the existing paradigm that indicts telomerase 
in carcinogenesis, when associates may be the villains. 

CONCLUSION 

 TERT “associates” are anti-cancer targets for downregu-
lation, but upregulation in antiaging therapy. The role of 
TERT with associates identifies roles for TERT in proteosta-
sis, epigenetics, molecular damage, stress tolerance, metabo-
lism, inflammation, and stem cells, i.e., the seven pillars of 
aging identified by the Trans-NIH Geroscience Initiative that 
influence aging and disease. The emerging appreciation of 
telomerase benefits to health and disease intervention, heart 
diseases, mental health, and anti-malignancy highlight the 
urgency for research for targeted telomerase stimulation for 
improvement of health at any age, delay of age-related pa-
thologies, and encouragement for National Institute on Ag-
ing Intervention Testing Program, to research TERT stimula-
tors for treatment without the risk of cancer.  
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