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Abstract

In drug discovery, the characterisation of the precise modes of action (MoA) and of unwanted off-target effects of novel
molecularly targeted compounds is of highest relevance. Recent approaches for identification of MoA have employed
various techniques for modeling of well defined signaling pathways including structural information, changes in phenotypic
behavior of cells and gene expression patterns after drug treatment. However, efficient approaches focusing on proteome
wide data for the identification of MoA including interference with mutations are underrepresented. As mutations are key
drivers of drug resistance in molecularly targeted tumor therapies, efficient analysis and modeling of downstream effects of
mutations on drug MoA is a key to efficient development of improved targeted anti-cancer drugs. Here we present a
combination of a global proteome analysis, reengineering of network models and integration of apoptosis data used to
infer the mode-of-action of various tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML) cell lines expressing
wild type as well as TKI resistance conferring mutants of BCR-ABL. The inferred network models provide a tool to predict the
main MoA of drugs as well as to grouping of drugs with known similar kinase inhibitory activity patterns in comparison to
drugs with an additional MoA. We believe that our direct network reconstruction approach, demonstrated on proteomics
data, can provide a complementary method to the established network reconstruction approaches for the preclinical
modeling of the MoA of various types of targeted drugs in cancer treatment. Hence it may contribute to the more precise
prediction of clinically relevant on- and off-target effects of TKIs.
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Introduction

Tyrosine kinase inhibitors (TKIs) are nowadays frequently used

for treatment of defined solid and hematological cancer entities.

Although these drugs are typically developed for the targeting of

single kinases which are specifically overexpressed in cancer cells

[1,2,3], in reality they usually inhibit a multitude of kinases and

nonkinase targets [4,5,6,7] resulting in a heterogeneous activity

profile which is poorly predictable. Based on this off-target activity

most of the clinically used TKIs exert relevant side effects which

can interfere with the efficacy of the treatment regime [8,9,10]

leading to unfavorable therapeutic windows. Therefore, the

prediction of drug action profile as early as possible in the drug

research and discovery process is of eminent importance to avoid

clinical trials using compounds with unforeseen unfavorable

efficacy – risk profiles. The realization of the ‘‘fail early principle’’,

however, requires methods to extract drug action from drug

response profiles based on high throughput testing in well defined

cell culture systems. Moreover, identification of the full set of

modes-of-action (MoA) of drugs and the assessment of their
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respective impact on secondary drug action are of utmost

importance both for optimal selection of targets or alternatively,

combinations of targets for optimization of future drug discovery

as well as for the optimal administration of already existing

compounds. Due to the molecular complexity of the various

cancer entities, network reconstruction of MoA from combinato-

rial drug experimentation will be of special relevance for cancer

therapies [11]. Several methods for identification of MoA, side

effects and drug efficacy from cellular drug responses have been

described. Prediction of drug efficacy as well as potential adverse

side effects can be performed by chemical structures and

experimental data from cell screening experiments of the

compounds using appropriate similarity scores [12,13,14,15,16].

An alternative approach uses established network information with

respect to known MoA’s and predicts side effects identified by

cooperative pathway analysis [17]. Experimentally derived dose-

response surfaces from combinatorial drug experiments can be

used to identify simplified or detailed models for the respective

MoA’s and their interactions from analysis of the combinatorial

drug response surfaces [18,19,20]. The reconstruction is per-

formed by a systematic fit of models for drug action to the dose-

response surfaces, whereas the underlying models can show a

widely varying degree of detail. The models can be based on the

simplified concepts of Loewe additivity and Bliss independence

and go up to mechanistic systems biology models, where the

respective pathways involved in the MoA are represented in detail

and have to be fit to the data. However, due to the lack of data and

detailed understanding of the MoA, model fitting from dose-

response surfaces may become ill-posed when the grade of details

represented by the model is increased. Hence, model-fitting

approaches tend to result in ambiguous network reconstructions

when the size of the networks becomes large. The ill-posedness can

be reduced by reduction of complexity either by shrinking the

models to simplified network topology or by reducing the

interaction between involved pathways to simplified mechanisms,

such as boolean networks. In any case there will be payoffs by

loosing biological features which are specific to the model. Hence,

most applications tend to analyse the data using a set of models

and decide according to a ranking of the respective model

accuracies. A more generic drawback of fitting models to drug-

response surfaces arises when the MoA’s are not fully understood.

Then the inherent issue arises that the model structure does not

represent the biological mechanisms, which can lead to systematic

errors in network reconstruction and model predictivity. Another

approach to overcome the ill-posedness of models derived from

combinatorial drug-response surfaces may be a systematic

integration of multiple outputs of drug action into a network

integrating drug descriptors, MoA and pharmacological data [21].

Whereas the abovementioned approaches focus on specific

pharmacological applications, combinatorial network reconstruc-

tion has been used to reconstruct generic signaling networks as

well. Most of these approaches are based on evaluation of drug

treatment on gene expression or protein phosphorylation profiles

and the subsequent development of algorithms for reengineering

of signaling networks [22,23]. Combinatorial optimization algo-

rithms are mostly being used in order to identify the relevant

signaling networks out of a given set of pathway proteins. In

principal, these networks have the potential to enable the

identification of direct and specific drug targets or preferentially

affected signaling pathways [24,25]. Recently efficient, systematic

and direct network reconstructions of induced phosphorylation of

signaling proteins have been reported using combined stimulation

and inhibition of cell cultures [26], where complex interaction

networks have been reconstructed in detail from data describing

combinatorial stimulation and inhibition of cells, using a highly

multi-variate readout (phosphorylation of signaling proteins).

Despite the tremendous improvement of understanding complex

signaling networks and the interaction of the relevant pathways,

drug effects mediated by yet unexpected cellular mechanisms,

potentially as a secondary response on the primary drug action,

may not sufficiently be assessed due to lacks in model structures.

Hence novel unsupervised network reconstruction algorithms

which are based on data obtained from broad-scale transcriptome

and/or proteome profiling are needed as complementary method.

In this paper we use a combinatorial network reengineering

approach which is based on data representing the combinatorial

effect of multiple input data (TKI’s and mutations) on multiple

output data (set of proteins responding on the combinations of

administered drugs and mutations).

The respective analysis is of very high relevance to targeted

therapies, where development and/or selection of mutations in the

targets or in the addressed pathways plays a major role in drug

resistance with high relevance for personalized therapeutic

approaches. In this case the drug-response surface is not

continuous, since the mutations (as a combinatorial input variable)

induce a discrete structure in the inputs, hampering the

application of fitting of models from drug-response surfaces.

Moreover, the screening was performed only for four drugs, which

are known to show specific action against the target, in one

concentration only, so the broad data set required for unsuper-

vised approaches was not available and models based on chemical

structures leading to the prediction of broad side effects will not be

specific enough. In addition, due to the unspecific targeting of

thyrosine kinases by TKI’s we aimed to assess the MoA on a

proteome-wide scale.

Because of the sparse data available, we used a direct network

reconstruction approach which is focused on the identification of

unknown network topologies on a simplified level of details [27].

Similar to the approach used in [17], the model describing the

mechanisms of interaction between the input variables (here drugs

and mutations) and the output variables (here induced protein

expression and apoptosis) is represented by an abstract network. In

contrast to network models representing the detailed mechanisms

(where the nodes may represent explicitly addressed proteins or

genes), our abstract network reconstruction identifies only

(abstract) pathways linking drugs and the readouts (here protein

expression and apoptosis), the overlap of the pathways as well as

the localization of the pathway disruption by mutations

(Figure 1A). The edges represent the induction of a biological

effect (either activation or inhibition) by the drug, whereas the

nodes represent junctions of the pathways or breakpoints where a

pathway can be interrupted by a mutation. For simplicity, the

breakpoints where a pathway can be interrupted by a mutation

can be represented by a node located on an edge, too (red bar).

Although the nodes in the abstract network model do not

represent well identified biological mechanisms, the model

provides an overview about the existence of multiple pathways

controlling the drug action as well as their mutual interactions and

interaction with mutations. As the model can be identified in an

unsupervised manner, it may provide a first stage towards more

detailed modeling helping to avoid a bias due to incomplete a

priori knowledge. Moreover, this concept allows a continuous

transition of model types in terms of the level of details, starting

from very black-box models ending up at fully mechanistic models

[28] and is established in modeling complex chemical processes

[29,30]. Because of the variable level of network details, we call

this type of models meso-scale networks. Recently it has been

shown, that the topology of such meso-scale networks can be

Meso Scale Networks and Drug Mode-of-Action
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reconstructed from data without fitting of models, even if almost

no restriction is assumed for the functional form of the nodes [27].

The drawback is that the method so far requires a feed-forward

structure which can be decomposed into tree structures, so no

feedback loops can be identified. Hence the method is mostly

restricted on network reconstruction on a rough level of details.

Although this approach does not directly specify the role of specific

biological mechanisms in drug response, it allows the assessment of

the number of pathways and their interaction providing hypothesis

for detailed mechanistic follow-up research. It thereby provides a

valuable approach which is complementary to the established

methods providing an unbiased assessment of mechanisms and

their interaction on a proteome-wide scale in a first level analysis.

Chronic myeloid leukemia (CML) represents an excellent model

disease for development of cancer-specific TKIs [31]. Currently,

three different TKIs, Imatinib (IM) [32], Nilotinib (NILO) [33]

and Dasatinib (DASA) [34], are approved for first and second line

treatment and novel drugs such as dual BCR-ABL/src inhibitor

Bosutinib [35,36,37], dual aurora/BCR-ABL inhibitor Danusertib

(DANU) [38] and multi targeted TKI Ponatinib are being

evaluated in clinical trials [39,40,41]. From clinical use and

experimental evidence it is known that the efficacy and side-effect

profile of individual TKIs depends on targeted MoA as well as on

indirect responses based on the unspecific inhibition of various

kinases [1].

In the current study, we aimed to develop a model approach for

the prediction of the MoA of TKIs reengineered from global

proteome data. We describe unraveling of meso scale networks

based on protein expression changes induced by four kinase

inhibitors (IM, DASA, NILO and DANU) in wild type BCR-ABL

positive cells as well as in mutants (i.e. BCR-ABL mutation

M351T and T315I) which confer different degrees of resistance to

the TKIs tested. Furthermore, we present a model for integration

of protein expression data and induction of apoptosis. In

conclusion, we present a promising novel approach which can

be used for prediction of multiple drug MoA in various clinical

settings. We show that screening of protein response on

combinatorial stimulation by drugs as well as inhibition by

mutations can be used for the delineation of the mechanisms of

drug resistance.

Results

Effects of TKIs on the Induction of Apoptosis in BCR-ABL
+ and 2 Cells

For the in vitro screening of TKI-dependent proteome changes,

we used a well-established murine CML model: Ba/F3 cells, an

immortalized murine bone marrow-derived pro-B-cell line, are

retroviraly transfected with either wild type (p210) or mutated

BCR-ABL isoforms (M351T, T315I). In order to compare the

efficacy of the different TKIs, concentrations with similar

Figure 1. Schematic representation of meso network architecture and experimental design. (A) Exemplifies an abstract meso-scale
network representing (abstract) pathways of drug action of drugs A and B on induction of proteins (red, yellow and orange bullets). Drug A uses two
pathways (blue and black), whereas the blue pathway induces expression shifts only on a subset of the proteins (red, yellow), whereas the black
pathway induces expression shifts in all proteins. Drug B acts only via one pathway which joins the black pathway of Drug A in an abstract node
(represented by the green bullet). The mutation inhibits both pathways between the green and blue bullet resulting in an interference with drug
induced expression shift for all proteins. The blue pathway from Drug A to the proteins, however, is not affected by the mutation. Hence the
mutation may have a strong impact on the efficacy of drug B, whereas the profile of action of drug A is only altered by the mutation. (B) Imatinib
sensitive and resistant cells were treated with four tyrosine kinase inhibitor and mesoscale network were reengineered based on specific proteome
expression patterns.
doi:10.1371/journal.pone.0053668.g001
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inhibitory activity (close to the respective IC50s of the TKIs) were

used (Figure 1B). Induction of apoptosis served as an indicator for

efficient inhibition of BCR-ABL activity and was measured by

caspase-3 activity in flow cytometry. Figures 2A–C show a

comparable degree of induction of apoptosis in TKI sensitive

cells indicating a successful inhibition of BCR-ABL. Consequently,

a distinct response pattern was observed by treatment with TKI of

the first (IM), second (NILO, DASA) and third generation

(DANU) in BCR-ABL positive Ba/F3-p210 cells (Figure 2A)

while no apoptosis was observed in BCR-ABL negative Ba/F3

control cells (not shown). Expectedly, in cells harboring the low-

level IM resistance conferring M351T mutation, DASA and

NILO were found to be active (Figure 2B). However, in cells

transfected with the highly resistant T315I mutant, only the third

generation inhibitor DANU, a dual inhibitor of BCR-ABL and

aurora kinases A, B and C, was capable of induction of apoptosis.

As expected the efficacy of DANU was slightly more pronounced

in the T315I mutant as compared to the wild type form of BCR-

ABL (Figure 2C). This effect is based on particular structural

properties of DANU which allows binding to the active center of

the mutant kinase [42].

Identification of Differentially Regulated Proteins in BCR-
ABL+ cells Treated with TKIs

Sets of independent triplicates for each BCR-ABL isoform

treated for 24 hours with the different TKIs were analyzed and

compared to the solvent control (DMSO) by two-dimensional gel

electrophoresis (2D-PAGE) analysis. As expected and in line with

the reported alterations of caspase-3 activity, a wide response to

the TKIs was observed in wt Ba/F3-p210 cells. In total, 68 spots

with a differential expression of at least 2-fold and statistical

significance were identified (Table S1). For each BCR-ABL

isoform a specific drug profile as well as a proteome map with the

individually regulated spots was generated. Thus, in Ba/F3 cells

harboring the wt BCR-ABL, 46 (35 up and 11 down), 24 (20 up

and 4 down), 34 (28 up and 6 down) and 10 (6 up and 4 down)

specific spots were detected secondary to treatment with IM,

NILO, DASA or DANU, respectively.

In Ba/F3 cells harboring the low grade IM resistant mutation

M351T, IM changed the expression of one spot (0 up and 1 down)

while NILO altered the expression of 5 spots (3 up and 2 down),

DASA of 28 spots (28 up and 0 down) and DANU of 8 spots (3 up

and 5 down) (Table S2). As expected, alterations reported in Ba/

F3 cells transfected with the highly resistant T315I mutation were

minor. Thus, only eight altered spots (2 up and 6 down) were

reported in IM, five (2 up and 3 down) in NILO and two (0 up and

2 down) in DASA treated cells. However, in DANU treated cells

Figure 2. A–F: Apotosis induction after treatment with different TKI and hierarchical clustering of differential expressed protein. (A)
Ba/F3-wt. –p210, -M351T und –T315I cells were incubated with Imatinib (IM), Nilotinib (NILO), Dasatinib (DASA) or Danusertib (DANU) for 24 hours.
After 2D-PAGE changes in the protein expression profile was analyzed using Delta-2D software to identify drug-specific. (B–E) Caspase 3 activity in
BCR-ABL negative Ba/F3 cells (B), wildtype IM sensitive BCR-ABL positive Ba/F3-p210 cells (C) and mutated IM resistant BCR-ABL positive Ba/F3-
M351T-(D) and BAF3/2T315I cells. Asterisks indicate significant changes compared to DMSO. Unsupervised clustering (euclidean distance measure
and the ’average’ agglomeration method) was performed using the log transformed expression protein values for (D) Ba/F3-p210, (E) Ba/F3-M351T
and (F) Ba/F3-T351I cells. The samples are shown horizontally, the proteins vertically. The dendrograms represent the distances between the clusters.
In the upper color bar, the upregulated proteins are marked in red, the down regulated are shown in green.
doi:10.1371/journal.pone.0053668.g002
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14 spots (12 up and 2 down) were found to have changed

expression (Table S3). Secondary to the identification of the

quantitatively altered protein spots by Delta-2D software a

characterization by mass spectrometry was performed.

TKI Specific Effects on Protein Expression in IM Sensitive
and IM Resistant Ba/F3 Cell Lines

To analyze a potential correlation between the level of

resistance to the respective TKIs and a similar protein expression

pattern, cluster analyses were performed (Figure 2D–F). Remark-

ably, hierarchical cluster analysis based on these candidate

proteins identified similar protein expression patterns for IM,

NILO and DASA when compared to DANU in Ba/F3-p210 cells

(Figure 2D). However, in TKI resistant cell lines, clustering was

less pronounced (Figure 2E–F). The evaluation of changes of the

protein expression patterns depending on the applied drug and the

BCR-ABL mutation status allows us to describe more closely on

target and off target nature of effects of the respective TKIs.

Furthermore, the comparison of the protein expression patterns of

the different TKIs with known off-target activity (such as the SRC

family of kinases in the case of DASA of the Aurora kinases in the

case of DANU) in wt BCR-ABL positive Ba/F3-p210 cells allows

to characterize protein expression changes observed as a result of

inhibition of BCR-ABL as opposed to changes attributable to

inhibition of off target kinases.

Surprisingly, by analyzing overlapping expression patterns of

candidate proteins induced by the different TKIs in the individual

wild-type and mutant cell lines, we found that in Ba/F3-p210 cells,

only two of 45 proteins revealed consistently altered expression

characteristics secondary to treatment with all four TKIs

(Figure 3A). The highest level of consistency was detected for

IM, NILO and DASA implying a similar efficacy profile.

However, effects that could be assigned to individual cells

specifically were very limited, e.g. secondary to IM only five

proteins were identified, one after treatment with DASA or

DANU and no specific proteins were found in cells treated with

NILO (Figure 3A). No proteins simultaneously regulated by all 4

TKIs were observed in the low-level IM resistant Ba/F3-M351T

mutant (Figure 3B) nor in highly resistant Ba/F3-T315I cells

(Figure 3C). Strongest drug specific effects were detected in DASA

treated Ba/F3-M351T cells with 13 proteins differentially

regulated whereas DANU revealed four and both IM and NILO

only revealed one compound-specific protein each (Figure 3B).

Expectedly, in Ba/F3-T315I cells, DANU revealed the strongest

drug specific effect with four compound-specific proteins showing

altered expression. Surprisingly, a similar degree of compound-

specific effect was observed for IM. However, due to the fact, that

T315I is highly IM resistant, these effects were attributed to off

target effects. NILO induced one specific change while DASA did

not show any specific alterations at all (Figure 3C). In order to

verify changes in the expression or modification pattern of two of

the identified proteins, we performed Western blot analysis for the

eukaryotic initiation factor 5A (eIF5A) and for tissue transgluta-

minase 2 (TGM2). For eIF5A a two-dimensional Western blot

revealed the appearance of one additional spot at a pI of 6.1 after

treatment with 1 mM IM for 24 hours. This finding is consistent

with the Commassie stained large 2D-gels and can be interpreted

as a posttranslational modification of eIF5A, which leads to a shift

of the protein to a more basic pI (Figure 4A–B). For TGM2 the

Western blot analysis confirmed an IM dependent up regulation of

the protein. In the Commassie stained 2D-PAGE (Figure 4C) and

in the one-dimensional Western blot (Figure 4D) TGM2 showed a

clear upregulation.

Meso Scale Network Models for Action of TKIs
Meso scale networks in BCR-ABL wild-type Ba/F3-p210

cells. In wild type Ba/F3-p210 cells, 37 proteins with significant

differential expressions were identified. As depicted in Figure 5A,

for IM, DASA and NILO, the induced expression changes for all

37 proteins show a high mutual correlation, such that the induced

expression for all proteins can be approximated by a joint factor

FA (red stars) identified using standard factor analysis. However

for DANU, a systematic and significant deviation from the joint

expression factor was observed (Figure 5B). This correlated

behavior of the 37 proteins is visualized by Figure 5C depicting

the protein expressions under all four drugs. IM, DASA and

NILO show structurally similar behavior with almost uniform

correlation to the factor FA, whereas the response on DANU can

be separated into at least two protein groups. The first protein

group (group 1, i.e. lower population of red stars, Figure 5C) is

correlated to FA, but shows significantly less sensitivity when

compared to IM, DASA or NILO, whereas the second protein

group (group 2, upper population of red stars, Figure 5C) shows

high correlation to FA with high sensitivity. The separation into

multiple protein groups with heterogeneous activation by the drug

is supported by the analysis of the distribution of the residues of the

protein expressions from the factor model. A Lilliefors-test for

normal distribution of the deviation has been performed for all

four drugs. The respective p-values, depicted in Figure 5D,

indicate that the deviations for IM and NILO are normal

distributions which are due to noise, whereas the very low p-value

for DANU indicates that the respective protein expressions cannot

be explained by one factor FA plus random noise alone. For

DASA, the respective p-value is slightly higher than 5%, such that

a separation into multiple protein groups cannot be excluded. The

protein groups for DANU and DASA have been separated using

regression clustering (Table S4 for DANU, see supplement). These

findings can be interpreted as depicted in Figure 5E. In Ba/F3-

p210 wild type cells, IM, DASA and NILO activate pathways

which join together in a functional node (blue bullet) which

activates all 37 proteins in a coherent manner according to the

stimulation of the joint node. In contrast, DANU stimulates the

joint node with significantly less impact, (protein group 1), whereas

the proteins in group 2 show a similar (or slightly higher) response

to stimulation compared to stimulation with IM, DASA or NILO.

The black block in Figure 5E (as well as in Figure 6D) indicates the

model for induction of the protein expression by the main

pathway, in this paper represented by a linear model. The red

block in Figure 5E (as well as in Figure 6D) indicates the common

inhibition of the drug action for protein group via the main

pathway. Hence we propose (at least one) additional component

for the mechanism of induction of protein expression by DANU

which is depicted in Figure 5E. The findings can be explained if

one assumes that DANU activates the joint mechanism similar to

the other three drugs, but it induces a second MoA as well. This

second MoA reduces the induced expression of the group 1

proteins.

Meso scale networks in BCR-ABL mutated BaF/3-M351T

cells. The induced protein expressions of 17 proteins both in

Ba/F3-M351T cells as well as in Ba/F3-p210 cells are depicted in

Figure 6A. Due to the logarithmic scale, induction is represented

by positive values and suppressions by negatives. The overall

induced protein expressions in BAF/F3-M351T and Ba/F3-p210

cells show a linear correlation on the logarithmic scale, which

differs, however, between the various TKI’s. Figure 6B shows the

slopes of induced protein expression for the individual TKI’s for

Ba/F3-MT351T – cells compared to Ba/F3-p210 wild type cells

as calculated from Figure 6A using linear regression. Low values

Meso Scale Networks and Drug Mode-of-Action
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Figure 3. A–C: Venn diagrams for representation of drug specific protein expression. Venn diagrams illustrated the drug specific effects in
different cell lines: (A) Ba/F3-p210, (B) Ba/F3-M351T and (C) Ba/F3-T351I cells. The numbers inside the circles represent the number of regulated
proteins.
doi:10.1371/journal.pone.0053668.g003

Figure 4. A–D: Western blot analyses revealed posttranslational modification of eIF5A and up regulation of TGM2 after treatment
with IM. (A) Enlarged regions from a coomassie stained 2D-PAGE from Ba/F3-p210 cells after treatment with IM or DMSO as a control. The arrows
indicate two spots for eIF5A, one at pI of 5.2 and the other one at a pI of 6.1. The latter appeared after IM treatment. (B) 2D-WB validated the
appearance of a second spot for eIF5A at a pI of 6.2 after IM treatment. (C) Enlarged regions from a coomassie stained 2D-PAGE from Ba/F3-p210 cells
after treatment with IM or DMSO as a control. One spot for TGM2 (arrow) demonstrated an increased expression after IM treatment. (D) The increased
expression of TGM2 after treatment with rising concentrations of IM could be validated in human Bcr-Abl K562 cells.
doi:10.1371/journal.pone.0053668.g004

Meso Scale Networks and Drug Mode-of-Action
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indicate a strong suppression of drug induced protein expression

by the mutation, whereas a value around one indicates that the

mutation has no significant effect on the MoA’s of the respective

drug. Apparently the induction of protein expression by IM is

significantly suppressed by the M351T-mutation, whereas the

MoA’s of DANU are apparently not effectively inhibited by the

M351T-mutation. The MoA’s of DASA and NILO appear to be

slightly affected by the mutation. Surprisingly all 17 proteins show

a significant, coherent increase of expression in Ba/F3-M351T

cells compared to Ba/F3-p210 wild type under NILO treatment

(Figure 6C). These findings suggest that the protein expression is

controlled by a more detailed mechanism than described above.

The joint node controlling the coherent protein expression, as

observed in Ba/F3-p210 wild type cells, has to be split into at least

two components, one (red bullet) is affected by the M351T-

mutation, the other (blue bullet) is not (Figure 6D). IM interacts

only with a pathway passing the red node, whereas DASA and

NILO affect both nodes. DANU apparently affects only the blue

node. Moreover NILO induces the overall expression level

(indicated by green bar).
Meso scale networks in BCR-ABL mutated BAF/F3-T315I

cells. In Ba/F3-T315I-mutated cells compared to Ba/F3-p210

wild type cells, 11 proteins with significant differential expression

could be identified (data not shown). The mean expressions under

IM and DASA are significantly reduced compared to Ba/F3-p210,

whereas the mean logarithmic expressions of NILO and DANU in

Ba/F3-T315I cells do not significantly differ from the mean

expressions in Ba/F3-p210 wild type. Apparently, in contrast to

M351T-mutated cells, no correlation of the expression under

T315I-mutation and wild type p210 can be found, hence linear

regression analysis is not applicable for analysis of the T315I-

mutation. This finding indicates that the T315I mutation appears

to interrupt the edge between both control nodes to the protein

expression.

Meso Scale Network Models for Apoptosis Induction
For a subset of 10 proteins induced in all cell lines, factor

analysis of the induced expression shifts for all four drugs in all cell

lines shows a significant co-regulation of the proteins. Using factor

analysis the joint induced expression of the proteins was quantified

by the factor FA. The Pearson correlations between the induced

protein expressions and the joint induction FA show heteroge-

neous regulation features (Figure 7A). Five proteins (P63260,

P14733, Q61937, P62962, P60710) show linear correlation r..9,

one protein (Q64674) has r = .78. However, the other 4 proteins

show significantly lower co-regulation between their expression

and FA, indicating that the respective protein expressions are

induced by at least two disjoined functional pathways.

Figure 5. A–E: Meso scale networks Ba/F3-p210 cells. (A) High degree of co-regulation across the protein set for IM, DASA and NILO, which can
effectively represented by the mean component of factor analysis. (B) Significant deviations for a small set of proteins for DANU suggesting the use
of the more stable factor analysis instead of PCA for reduction of dimension. (C) Analysis quantitatively the amount of induction of protein
expression, which is associated with the activation of the dominant mechanisms, quantified by the mean component of factor analysis. Whereas a
good and almost similar behaviour for IM, DASA and NILO is observed, DANU activates the proteins in two clearly separated modes (indicated by the
upper and lower line of red stars). This finding is supported by quantitatively testing the distribution of the residuals of protein expressions with
respect to the linear regression model given by the mean component of factor analysis. (D) Apparently only DANU induces residuals with significant
non-gaussian noise indicating the existence of two separate mechanisms of protein induction. (E) Structure of meso scale pathways for induced
protein expression. Black block represents induction of the protein expression by the main pathway, whereas the red block is indicating an inhibition
via the main pathway.
doi:10.1371/journal.pone.0053668.g005
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In order to identify a differential activation profile of the

functional pathways by one of the four TKIs, we performed the

same analysis omitting the data from each drug individually. Most

significant improvement in co-regulation between FA and the

induced protein expressions was found when DANU was omitted

(Figure 7B) indicating that DANU induces secondary functional

pathways significantly stronger than the other TKIs.

Apparently the expressions of 7 proteins are not affected by

specific mechanisms of the MoA of DANU, whereas 3 proteins

(Q8R4N0, P00493, Q9R0Q7) show a significant increase of co-

regulation with the joint protein expression quantified by FA when

DANU is omitted. This result indicates again the existence of a

functional pathway to protein expression which is only induced by

DANU, but not affected by the other TKIs.

In order to identify co-regulation between induction of

apoptosis and overall protein expression, we analyzed the

correlation between induced apoptosis rate and the mean

component of protein expression discussed above. The results,

depicted in Figure 7C, show a surprisingly good correlation

between the sum of the induced protein expressions and induced

apoptosis. This correlation holds for almost all TKIs and all cell

lines, only two outliers (IM in Ba/F3-p210 cells and DASA in Ba/

F3-M351T cells) have been found. Detailed analysis of the results

depicted in Figure 7C shows that omitting DASA from the analysis

results in a reduction of the mean deviation from the linear

relationship between the protein induction and apoptosis induc-

tion by 18%. We find that the mean protein induction of DASA in

the three cell lines is significantly higher than expected by the

induction of apoptosis. These results suggest that, in contrast to the

other TKI’s, DASA can significantly induce protein expression

aside from induction of apoptosis. However, as indicated in

Figure 7C, the impact of the drugs on protein expression in

relation to induction of apoptosis depends strongly on the type of

mutations in the cell lines. Surprisingly we find no significant

deviation from the mean protein expression – apoptosis model for

DANU, despite, as discussed above, DANU apparently activates a

functional pathway which is not induced by the other TKIs.

In summary, the integrated structural analysis of apoptosis

induction and protein expression leads to the following findings: i)

A group of five proteins (P63260, P14733, Q61937, P62962,

P60710) is induced in a highly coherent manner by all TKI and in

all cell lines and dominate the main expression component. Hence

these proteins may be controlled by secondary response mecha-

nisms which are not specific to the functional pathways of direct

drug action. ii) DANU induces a secondary functional pathway

which has similar impact on induction of apoptosis than the

primary pathway. iii) DASA induces significantly more protein

expression in relation to induction of apoptosis than the other

Figure 6. A–D: Meso scale networks Ba/F3-M351T. (A) Shows the protein expressions for wt and T351 cell type for all drugs. (B) Shows the
sensitivity of protein expression with respect to the dominant activation mechanism, quantified by the mean component of factor analysis. (C)
Shows, that surprisingly the overall level of protein expression induced by NILO increases, although the sensitivity decreases. (D) Shows the
modifications which are induced by the analysis of the M351I mutation to the meso scale pathway network depicted in Figure 5E. Black block
represents induction of the protein expression by the main pathway, whereas the red block is indicating an inhibition via the main pathway. Green
block represents the unique effect of NILO on the overall protein expression level.
doi:10.1371/journal.pone.0053668.g006
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drugs. Hence, DASA may show more unspecific effects at the

same level of apoptosis induction than the other TKIs. These

findings are consistent with a meso scale model for TKI action,

which is depicted in Figure 7D, without claiming quantitative

interpretation.

Discussion

Given the lack of selectivity of most TKIs, unexpected side

effects of this novel class of drugs are common however differing

between compounds. Hence, an easy, high-throughput and

unbiased assessment of drug action using a broad panel of drug-

induced protein expression data would be of high interest for

optimization of drug development. We have developed a modeling

approach for reengineering of meso scale networks for assessment

of drug action based on a broad panel of proteomics data which

are not necessarily involved in the direct mode of action. Although

the meso scale networks do not reflect the detailed information

with respect to the proteins involved in the MoA, they provide a

useful and visual representation of the full systems of pathways

involved in the modes of action with a focus on their cross-talk

[27,43,44]. Our approach does not require a priori information

with respect to the modes of action. Nevertheless, it provides

critical information for assessment of the drug action in clinical

use. Because it is sufficient to unravel the necessary information

from secondary effects, the approach allows an unbiased

assessment of drug activity. Employing clinically used BCR-ABL

inhibitors in different experimental settings, including resistant and

non-resistant cell lines, we have demonstrated here how the

interaction of multiple MoA can be identified and evaluated using

pathway networks on a mesoscopic scale. Furthermore, we show

how protein expression data and data about apoptosis induction

can be integrated for evaluation of target and non-target drug

effects. In contrast to many other studies [45,46] which are based

on gene expression data, our conceptional approach is based on

expression data obtained from a global proteomics approach. In

comparison to gene expression analysis, the evaluation of the

global proteome expression allows for a direct observation of

changes in protein expression and even more so in post

translational modification of proteins [47]. Using this broad

proteomics approach facilitates the identification of unexpected

Figure 7. A–D: Meso scale network models for apoptosis induction. (A) Distribution of the Pearson coefficient between individual protein
expression and the mean component of factor analysis which represents the dominant co-regulation mechanism. (B) Shows that the proteins can be
decomposed into two groups differing with respect to the impact of DANU. Most proteins show no different co-regulation behaviour if DANU is
omitted from the data set, whereas three proteins show a significantly higher degree of co-regulation (increased r value) when DANU is omitted
indicating a second mode of action of DANU. (C) Shows that with exception of two treatments the mean protein expression, represented by the
value of the mean component of the factor analysis (y-axis) is correlated to the observed induction of apoptosis (x-axis) indicating a similar efficacy in
apoptosis induction for most drugs. The exceptions indicate that protein expression is induced which does not contribute to apoptosis induction. (D)
Depicts the meso scale set of pathways, which fits two the observations.
doi:10.1371/journal.pone.0053668.g007
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drug effects (which may remain hidden in analysis restricted to

pre-selected set of proteins) in an unsupervised approach.

The proteome data described here clearly show, that the

different 1st, 2nd and 3rd generation TKIs investigated here induce

a distinct pattern of protein expression changes which correlates

with the drug sensitivity of the individual cell lines studied. These

observations are in agreement with the known differences in the

inhibitory profile of these TKIs [48,49,50,51]. However, as these

studies performed by techinically different chemical or affinitiy

purification proteomics approaches which were conducted to

identify direct TKI- or BCR-ABL-binding targets rather than

effects of TKI inhibition on the protein expression profile of BCR-

ABL positive cells, we could not detect any overlap between the

proteins identified in these studies and in our proteome screen.

For some of the identified proteins, a connection to BCR-ABL

signaling has already been described in previous studies [52]. In

particular, the effects of BCR-ABL on actin (which is differentially

regulated in our proteome screen) have been linked to the

enhanced migration of BCR-ABL positive hematopoietic cells

from the bone marrow to the peripheral blood [53]. Heat shock

protein 70 (Hsp70) and 90 (Hsp90) are other proteins reported in

our proteome analysis that are known targets of BCR-ABL

[54,55]. Interestingly, we identified eIF5A as regulated after

treatment with IM, NILO and DASA in Ba/F3-M351T cells. This

is in agreement with our recent studies in human K562 cells [52].

Although we identified known targets of BCR-ABL, for most of

the described proteins in our proteome screen there are so far no

published evidences for a BCR-ABL dependent regulation.

Therefore, these data can be used as a basis for further

investigation in BCR-ABL signaling. In particular, further

investigations in BCR-ABL dependent regulation of TGM2,

which is supposed to be involved in apoptosis and adhesion,

seems to be worthwhile and are ongoing [56].

In an attempt to demonstrate whether a simplified and coarse-

grained approach would gain insights into the differences in of

MoA patterns between the compounds studied, we employed

meso scale network approach in order to model our protein

expression data.

We further analysed the resulting meso scale networks in order

to identify similarities and differences between TKIs used for the

same clinical indication, i.e. the treatment of Chronic myeloid

leukemia. Existing experimental and clinical data indicate that IM,

NILO and DASA activate a common MoA, i.e. inhibition of

BCR-ABL. In contrast and in addition to inhibition of BCR-ABL,

DANU has been shown to inhibit the Aurora family of kinases

[38,42]. Interestingly this phenomenon is indeed reflected by a

significantly distinct protein induction profile of DANU as

opposed to the other TKIs studied. Even more so, although IM,

NILO and DASA clearly exhibit a common dominant MoA in

wild-type Ba/F3 cells, they differ significantly with respect to their

inhibitory profile when BCR-ABL is mutated in Ba/F3-M351T

and Ba/F3-T315I cell lines. Therefore, the profiles of induction of

protein expression of IM, NILO and DASA show significant

differences, especially if the primary MoA is inhibited by

mutations, such that induction of apoptosis is reduced. Whereas

NILO appears to be rather specific, DASA induces significant

protein expression changes which do not seem to contribute to

apoptosis induction in Ba/F3-M351T cell lines. It can only be

speculated that based on the specific kinase inhibitory spectrum of

DASA, inhibition of members of the SRC-family might contribute

to this phenomenom. Future comparisons using alternative

combined BCR-ABL/SRC family kinase inhibitors such as

Bosutinib might provide additional insight regarding the relevance

of SRC inhibition both for induction of apoptosis in leukemic cells

as well as for the side effect profile of such TKIs [35,36,57]. In

contrast to IM, NILO and DASA, DANU shows a very different

activation profile. Apparently DANU activates a second pathway

which is not affected by the M351T and T315I mutations. This

second MoA most likely representing the inhibition of the Aurora

family of kinases pathway is almost as efficient in induction of

apoptosis as the common primary MoA.

The drawback of the approach in general is the restriction to

experimental settings where a clear feed-forward structure of the

information flow can be guaranteed. Accordingly, the method can

be applied if the MoA of the drug action affects the readout data,

here protein expression, but the induced protein expression does

not affect the structure of the MoA. If the latter case happens, then

validity of the underlying mathematical approach cannot be

guaranteed to date. As a consequence, the extension of the method

to other drugs than TKI’s can be expected if the drugs act

primarily via a well defined set of MoA’s which are not structurally

disturbed by the cellular response on the drug itself. Hence,

extension to classes of drugs acting by very broad range of targets

or inducing a very strong stress response has to be evaluated in

future. As unraveling of recursive networks remains an instrinsic

challenge for any method explored so far, we see no signficant

restriction of the value of the described method as a complemen-

tary approach.

Preliminary results indicate that the method can be extended to

data sets representing short term drug action, such as phospho-

proteomic data [manuscript in preparation]. Future research has

to evaluate it̀s applicability to data sets reflecting long-term

response, such as transcriptomics or epigenetics data. However,

more advanced mathematical methods may be able to overcome

the abovementioned limitations of the meso-scale approach.

Earlier results [Schuppert A, et al.: Method for identifying

predictive biomarkers from patient data. Patent WO/2007/07/

9875 (2006)] indicate options for extension towards heterogeneous

data sets.

In conclusion, our approach led to the identification of direct

and indirect drug effects in a well-defined model system and

should be amendable to various new drugs. Therefore, combina-

tion of broad proteome profiling and meso scale network

reengineering provides a versatile tool to map a drug’s direct

and indirect target pathways in a single set of experiments.

Because of it̀s adaptability to other model senarios, this approach

should prove valuable at various stages of drug discovery as well as

in translational studies of drug action in patient tissues. It

represents a powerful method allowing the identification and

assessment of multiple MoA using only unbiased protein

expression data. Therefore it could contribute significantly to the

drug discovery process of compounds acting via complex

biological mechanisms.

Materials and Methods

Reagents
IM (kindly provided by E. Buchdunger, Novartis, Basel,

Switzerland), DANU (kindly provided by Nerviano Medical

Sciences, Milan, Italy), NILO (kindly provided by Novartis

Pharma, Basel, Switzerland) and DASA (kindly provided by

Bristol-Meyers Squibb, New York, NY) were applied according to

the different experimental protocols. All tyrosine kinase inhibitors

were stored at –20uC as stock solutions (NILO 883mM, DASA

19.76 mM, DANU 10 mM) in DMSO or 50% DMSO (Imatinib

1.7 mM, [DMSO]/H2O [1:1]). Fresh dilutions in complete media

were prepared prior to the experiments. The highest concentration
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of DMSO in cell culture medium was less than or equal to 0.1%

and did not have any effect on cell growth.

Cell Culture Techniques
Ba/F3 and K562 cells were obtained from DSMZ (Bielefeld,

Germany). Ba/F3-p210, -T315I and -M351T, and cells were

kindly provided by C.L. Sawyers (University of California at Los

Angeles) [58,59]. All cell lines were cultured in RPMI 1640

medium (Gibco-BRL, Invitrogen, Paisley, United Kingdom)

containing 10% fetal calf serum (FCS) (Biochrom KG, Berlin,

Germany) and for Ba/F3 cells 1 ng/mL recombinant murine

interleukin-3 (IL-3) was added. Cells were incubated at 37uC in a

humidified atmosphere with 5% CO2.

TKI Treatment for Proteome Analysis
Ba/F3-p210, -T315I and -M351T cells were treated with TKIs

(IM 1 mM, NILO 50 nM, DASA 5 nM, DANU 0.4 mM),

harvested and washed three times with PBS after 24 h.

Protein Preparation, Two-dimensional Gel
Electrophoresis (2D-PAGE) and Image Analysis

Protein preparation and 2D-PAGE were performed as de-

scribed previously [52,60]. In brief, cells were lysed in sample

buffer (9 M urea, 4% CHAPS, 0.5% Pharmalyte 3–10 IEF

(Amersham Biosciences), 10 mg/mL bromophenol blue) followed

by centrifugation at 12 000 g for 5 minutes. Samples were applied

to linear gradient Immobiline Dry Strip (IPG Strip pH 4–7,

24 cm, Amersham Biosciences, Uppsala, Sweden) by in-gel

rehydration. After isoelectric focusing using the Protean IEF cell

(Bio-Rad, Hercules, CA) at 10 000 V for approximately 80 kVh,

IPG strips were equilibrated for 2615 minutes in 6 M urea, 4%

SDS, 50 mM Tris-HCl, pH 8.8, containing 1% DTT for the first

or 4.8% iodoacetamide for the second period of equilibration.

Strips were placed on vertical SDS-PAGE gels and overlaid with

0.6% agarose. SDS-PAGE was carried out with the Protean Plus

Dodeca Cell (Bio-Rad, Hercules, CA) using 15% SDS-polyacryl-

amide gels (27 cm621 cm61.5 mm). Two-dimensional gels were

stained overnight with colloidal Coomassie (0.2% Coomassie

Brilliant Blue R250), followed by destaining for 1 day. All

experiments were performed in triplicates, revealing comparable

results. The 2D-gels were scanned with a GS-800 Calibrated

Densitometer (Bio-Rad, Hercules, CA). Images were warped

group-wise using Delta2D 3.6 software (Decodon GmbH,

Greifswald, Germany). Spot patterns were detected on fused

images (gained from all gels) using the average intensity algorithm

and retransferred to the original images for 100% matching

efficiency. Spot quantification was based on normalized relative

spot volume (% volume) as exported from the statistics table of the

Delta2D software.

Protein Identification by Mass Spectrometry
Protein identification was performed as described recently

[60,61]. In brief, trypsin digestion and spotting onto the

MALDI-targets were performed in the Ettan Spot Handling

Workstation (Amersham-Biosciences, Uppsala, Sweden). The

MALDI-TOF measurement of spotted peptide solutions was

carried out on a 4800 MALDI TOF/TOFTM Analyzer (Applied

Biosystems, Foster City, USA). For protein identification peptide

lists were compared with the SwissProt rel.56.1 restricted to

murine taxonomy using the Mascot search engine 2.2 (Matrix

Science Ltd, London, UK). Peptide mixtures that yielded a

mowse score of not less than 55 for SwissProt results were

regarded as positive identifications. Additionally to improve

probability at least one peptide was sequenced with a significant

ion score of above 27.

Cluster Analysis and Generation of Venn Diagrams
Cluster analysis and the generation of venn diagrams were

performed with the statistical language R (http://www.R-project.

org). The heat maps from the hierarchical cluster analysis were

generated using as a metric Pearson’s correlation and the ’average’

agglomeration method. For the venn diagrams only proteins were

selected showing a p-value. = 95% (from the Lilliefors-test) and a

relative expression value over 1.

Western Blot Analysis
For protein extraction, K562 cells were homogenized on ice in

lysis buffer containing 50 mM Tris-HCl, pH 7.5, 150 mM NaCl,

1% NP-40, 0.25% Na-desoxycholate, 5 mM EDTA, 1 mM NaF,

25 mM Na3VO4, and 0.1 mM PMSF. Lysates were left on ice for

10 minutes, and cellular debris was pelleted at 20 000 g for 20

minutes at 4uC. The supernatant was frozen at –80uC. The

protein concentration of the lysate was determined with the BCA

Protein Assay Kit (Pierce, Rockford, IL). Proteins (20 mg) were

separated by 12% SDS-PAGE and transferred onto PVDF

membranes with the Bio-Rad Transblot system. After blocking

in PBS-Tween/3% wt/vol BSA for 30 minutes, membranes were

incubated in primary antibody diluted in PBS-Tween/3% wt/vol

BSA. The following primary antisera were used: rabbit anti-

Transglutaminase 2 (Abcam, ab421) (1/1000,), mouse monoclonal

anti-TGM2 (1/250 ) (Santa Cruz, sc-48387), anti- GAPDH (1/10

000). After washing, membranes were incubated for 1 hour with

HRP-conjugated rabbit anti–goat immunoglobulin (1/10 000) or

with rabbit anti–mouse immunoglobulin (1/10 000) (both from

Amersham Pharmacia Biotech UK, Little Chalfont, Buckingham-

shire, United Kingdom), diluted in PBS-Tween/3% wt/vol BSA.

After washing, the Pierce ECL Western Blotting Substrate

(Thermo Fisher Scientific, Rockford) was used to visualize the

secondary antibody.

Mini-2D Western Blotting Analysis (2D-WB)
2D-WB analysis was performed as previously described [62,63].

In brief, protein samples were prepared as described for 2D-

PAGE. 125 ml solution containing 30 mg of protein were loaded on

a linear gradient Immobiline Dry Strip (IPG Strip pH 4–7, 7 cm

Amersham Biosciences), followed by rehydration of strips and

isoelectric focusing (IEF) using the Protean IEF cell. After

equilibration strips were directly loaded onto 15% SDS-polyacryl-

amide gels, overlayed with 0.6% [w/v] agarose in dH2O, and run

3 h at 65 V. Consecutive transfer, blocking, incubation with

antibodies and detection steps were carried out as described for the

Western blotting experiments, see above.

Reengineering Meso Scale Models for the MoA of TKIs
In order to unravel insight into the mechanisms of protein

expression and induction of apoptosis by TKIs in cells with

heterogeneous mutation profiles, we aimed first to establish a meso

scale network model for the interaction between the TKIs and

mutations. In the second step we developed a model to assess the

efficacy of the TKIs, quantified by the induction of apoptosis, in

relation to their overall protein induction profile. As outlined

above, meso-scale network reconstruction aims to identify the

network topology of the relevant pathways as well as their

interaction without explicit use of a priori information. In contrast

to network reengineering approaches fitting more or less detailed

mechanistic models to the data, we intend to provide a proteome-
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wide, unbiased assessment on the rough structure of the drug

induced mechanisms as well as their interaction. Here we are

interested in the proteome-scale structure of interactions of the

MoA’s of the drugs with the mutations as well as the existence of

multiple, drug induced effects. We do not intend to identify the

detailed biological mechanisms behind the identified MoA’s and

their interaction, which must be done in a complementary follow-

up analysis. The mathematical concept has been described

recently [41] and is based on the identification of intrinsic

correlation structures in the multivariate data sets which are

assessed from combinatorial experiments, in contrast to model

fitting. In order to exploit the multiple readouts (induced protein

expressions and apoptosis), we extended the methods described in

[41] by the analysis of the behavior of correlations in wild type and

mutated cells. As depicted in Figure S1A–B, the localization of the

mutation-induced breakpoint of drug action pathways may be

reconstructed by analysis of the correlations of multiple drug-

induced readouts between wildtype and mutated cells. Identifica-

tion of correlation structures means the identification of sets of

input variables (TKI’s and mutations) and output variables

(protein expression and apoptosis induction) which show a

significant degree of correlation in specific sets of the combina-

torial inputs. The required decomposition of data with respect to

mutual correlations in input and output variables can be

performed by clustering. However, due to the small set of

combinatorial data, clustering may result in a high degree of

instability. However, preliminary analysis showed that the

correlations sets showed a hierarchical order of size and

correlation. Hence we used the more robust factor analysis (as

implemented in Matlab) in an iterative approach, in each step

identifying the ‘‘leading’’correlation sets and analyzing the

apparent ‘‘outliers’’ in the following step.

The method as described in [41] [27] allows the identification of

non-linear mechanisms, however the identification of the related

non-linear correlations using Spearman or Kendall tau instead of

Pearson coefficient require large data sets which are not available

here. As all correlations appeared to be almost linear, the

substitution of non-linear correlation methods by linear correlation

analysis was applied significantly improving the stability of the

procedure. Combining the multiple linear correlations allowed the

identification of the required information with respect to the

network topology even from relatively small data sets. So this

analysis shows the feasibility proteome wide network reengineering

allowing an unbiased assessment of drug induced mechanisms

which would not be accessible using detailed network reengineer-

ing.

The modeling approach used the combinatorial information

with respect to mutation profile and stimulation by TKIs as input

variables and the protein expression data as well as the induction

of apoptosis as multiple and heterogeneous readouts of the cellular

system.

In a first step we identified a model for the pathways and their

interaction with mutations describing the induction of protein

expression by the TKIs. The analysis was performed using the

expression data of all proteins with significant effect of the drugs

(inhibition or induction of expression), proteins without significant

effect were neglected. If multiple spots were available for one

protein, the mean of all spots encoding the protein was used as the

effective protein expression. The analysis was performed using

Matlab, Statistics toolbox (version R2010b, The Mathworks Inc.).

The protein expressions xi(uj, m1) for all available proteins i,

induced by one of the four kinase inhibitors uj = [0,1], j = 1…4,

and the mutations ml l = 1…3 (wt, T351 and T310), were

correlated with each other. As described in [41], the meso scale

network structure for the mechanism acting between kinase

inhibition and protein expression can be established by joint

analysis of all pairwise correlations of the protein expressions. If no

correlations can be found, the function describing the protein

expression in terms of kinase inhibition has to be described using a

black-box model as indicated in Figure S2A. However, often factor

analysis shows correlations between the protein expressions. Then

all protein expressions under all kinase inhibitions can be

expressed by a linear factor-model using m (m small) factors ck

depending on the kinase inhibitions u1,…,u4 and mutations m1,.m3

xi(u1,:::,u4,m1,:::,m3)~
X

k~1:::m

ck(u1,:::,u4,m1,:::,m3)jk,izei

where xi(u1,…,u4, m1,..m3) describes the expression of protein i

depending on the combination of administration of the four kinase

inhibitors and mutations. The term ei represents the deviation of

the measured protein expression xi in each experiment (not

explicitly annotated) from the value which is predicted by the

factor model. As u1..u4, m1,..m3 are binary variables (kinase

inhibitor is administered in the experiment or not), both xi and

ck are functions mapping [0,1]7 = .R1 for each i and k,

respectively. Because of the small size of the data set, which is

limited by the set of experiments, identifiability of the number of

factors m has been limited. Hence correlations between the

protein expressions in all experiments have been analyzed only in

2 and 3 dimensions restricting m to 3. As we found no significant

increase of model quality at m = 3 compared to m = 2 we did not

analyse higher values of m. Moreover, in order to reduce the

dimensionality, the combinations of wt and T351 mutations with

IM, DASA and NILO have been analyzed separately from the

respective combinations with DANU, as we found a high degree of

multi-variate correlations among the proteins in these combina-

tions. Then, in a second step, the deviations induced by T315

mutation and DANU from the model have been analyzed

separately. Although this decomposition of the workflow is not

necessary, it helped to reduce the effective dimensionality and

improving the stability of the respective multivariate correlations

and the respective networks.

The factor model indicates that the network representing the

mechanism contains m critical nodes (the minimal cut of the

network), such that the knock out of these m nodes will be the final

blow for the network (Figure S2B). If the factor-model is correct up

to random noise for all proteins, then the deviations ei will show a

normal distribution. Alternatively, if the MoA involves two (or

more) functional pathways inducing different protein sets each, the

kinase inhibitors can each involve either all the functional

pathways or a set of pathways specific for each drug (Figure

S2C). In the latter case factor analysis will indicate the existence of

at least two independent factors as the distribution of the

deviations ei, will show a non-normal distribution. Hence the

non-normality of the model deviations ei provides a mean for

discrimination between models of type 1b) and 1c). In the latter

case the protein groups have to be classified using regression

clustering methods.

Integration of Protein Expression Data and Apoptosis
Induction

In the second step we assessed the efficiency of the drugs

induced apoptosis compared to the drug induced protein

expression. We aimed to develop a meso scale model describing

only the dominant routes from drug action to both induction of

apoptosis and protein expression as well as their interaction with

mutations. In contrast to the analysis described above, we had to
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integrate heterogeneous readouts, namely apoptosis and protein

expressions into a meso scale model.

To identify the meso scale network which represents the drug

induced protein expressions as well as induction of apoptosis in

Ba/F3-p210-, M351T and -T315I cell lines, we focused the

analysis on the subset of 10 proteins showing differential

expression in all three cell lines.

To establish the model for apoptosis induction, the multi-variate

correlations between the protein expressions have been assessed

using factor analysis, combined with the analysis of the distribu-

tions of the residues. The mechanism of induction of protein

expression and apoptosis by TKIs may differ in detail between the

drugs, although the principal MoA, namely the inhibition of BCR-

ABL, is the same. Hence the data represent a convolution of the

main, common MoA and drug specific mechanisms, which are

hard to reconstruct in a direct, one step approach. Hence we

choose a two-step modeling workflow. In a first step of

approximation, factor analysis was used for the characterization

of the common, dominant mechanism of induction of protein

expression together with apoptosis for all TKIs. As factor analysis

tends to neglect apparent ‘‘outliers’’ in the data, it is superior to

linear models like PLS in order to quantify the main contributions

of the TKIs and the mutations to the dominant mechanism

without mixing drug-specific mechanisms with the common

mechanism.

In a second step the specific properties of the TKIs have been

assessed by analysis of the TKI- and mutation specific deviations

from the dominant factor model identified in the first step. In this

approach the deviations from the model describing the dominant

mechanism are not interpreted as noise. They serve as a filter

which allows to decompose the data with respect to information

induced by an overall dominant mechanism (which is not specific

to the TKI’s) and the information which is induced by

mechanisms specific to the respective TKI.

Supporting Information

Figure S1 A–B: These figures show the concept of
analysis of correlations of drug-induced expression
shifts for large protein sets between wildtype and
mutated cells in order to identify the localisation of the
mutation-induced breakpoint. In (A) the mutation affects the

pathways towards all proteins equally by breaking the pathway

upstream of the first bifurcation node (blue bullet). In contrast, (B)
shows that a breakpoint downstream the first bifurcation node

affects the structure of the correlations of the drug-induced

expression among the set of proteins. Hence analysis of the

structure of correlations reveals infromation with respect to the

localisation of the mutation-induced breakpoint.

(TIF)

Figure S2 A–C: Schematic representation of meso scale
pathways structure. (A) Network structure if no correlations

between the 4 drugs can be found, (B) if critical meso scale nodes

can be described and (C) if different drugs acted on different

nodes.

(TIF)

Table S1 Proteins significantly regulated in Ba/F3-p210
cells. Lists of Proteins that were significantly regulated in each of

the subsets (IM, NILO, DASA and DANU). The relative

expression values compared to the average expression values of

control samples (DMSO) are presented.

(DOC)

Table S2 Proteins significantly regulated in Ba/F3-
M351T cells. Lists of Proteins that were significantly regulated

in each of the subsets (IM, NILO, DASA and DANU). The

relative expression values compared to the average expression

values of control samples (DMSO) are presented.

(DOC)

Table S3 Proteins significantly regulated in Ba/F3-
T315I cells. Lists of Proteins that were significantly regulated

in each of the subsets (IM, NILO, DASA and DANU). The

relative expression values compared to the average expression

values of control samples (DMSO) are presented.

(DOC)

Table S4 Proteins affected by DANU in Ba/F3-p210
cells analyzed by regression clustering.

(DOC)
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