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Asymptomatic COVID-19 has become one of the biggest challenges for controlling the
spread of the SARS-CoV-2. Diagnosis of asymptomatic COVID-19 mainly depends on
quantitative reverse transcription PCR (qRT-PCR), which is typically time-consuming and
requires expensive reagents. The application is limited in countries that lack sufficient
resources to handle large-scale assay during the COVID-19 outbreak. Here, we
demonstrated a new approach to detect the asymptomatic SARS-CoV-2 infection
using serum metabolic patterns combined with ensemble learning. The direct patterns
of metabolites and lipids were extracted by matrix-assisted laser desorption/ionization
mass spectrometry (MALDI-MS) within 1 s with simple sample preparation. A new
ensemble learning model was developed using stacking strategy with a new voting
algorithm. This approach was validated in a large cohort of 274 samples (92
asymptomatic COVID-19 and 182 healthy control), and provided the high accuracy of
93.4%, with only 5% false negative and 7% false positive rates. We also identified a
biomarker panel of ten metabolites and lipids, as well as the altered metabolic pathways
during asymptomatic SARS-CoV-2 Infection. The proposed rapid and low-cost approach
holds promise to apply in the large-scale asymptomatic COVID-19 screening.
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INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) presents an unprecedented threat to global public health
(Wu et al., 2020; Zhou et al., 2020). As of 29th April 2021, the SARS-CoV-2 has infected 148,999,876
people around the world, and the death toll has risen to 3,140,115. Although vaccination is in

Edited by:
Anna Napoli,

University of Calabria, Italy

Reviewed by:
Yunping Qiu,

Albert Einstein College of Medicine,
United States

Di Jiang,
Biogen Idec, United States

*Correspondence:
Suming Chen

sm.chen@whu.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Analytical Chemistry,
a section of the journal
Frontiers in Chemistry

Received: 23 July 2021
Accepted: 06 September 2021

Published: 01 October 2021

Citation:
Wan Q, Chen M, Zhang Z, Yuan Y,
Wang H, Hao Y, Nie W, Wu L and
Chen S (2021) Machine Learning of
Serum Metabolic Patterns Encodes

Asymptomatic SARS-CoV-2 Infection.
Front. Chem. 9:746134.

doi: 10.3389/fchem.2021.746134

Abbreviations: RT-PCR, reverse transcription polymerase chain reaction; RT-qPCR, reverse transcription quantitative po-
lymerase chain reaction; MALDI-MS, matrix-assisted laser desorption/ionizationmass spectrometry; LDIMS, laser desorption/
ionization mass spectrometry; COVID-19, coronavirus disease 2019; SARS-CoV-2, severe acute respiratory syndrome
coronavirus 2; TIC, total ion current; PCA, Principal Component Analysis; UMAP, Uniform Manifold Approximation and
Projection; SVM, Support Vector Machine; KNN, K-Nearest Neighbor; RF, Random Forest; MLP, Multi-Layer Perceptron;
XGB, XGBoost; AUC, average under curve; ROC curve, receiver operating characteristic curve; PR curve, precision-recall curve;
TPR, true positive rate; FPR, false positive rate; NEDC, N-(1-naphthyl) ethylenediamine dihydrochloride; PCA, principal
component analysis.

Frontiers in Chemistry | www.frontiersin.org October 2021 | Volume 9 | Article 7461341

ORIGINAL RESEARCH
published: 01 October 2021

doi: 10.3389/fchem.2021.746134

http://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2021.746134&domain=pdf&date_stamp=2021-10-01
https://www.frontiersin.org/articles/10.3389/fchem.2021.746134/full
https://www.frontiersin.org/articles/10.3389/fchem.2021.746134/full
https://www.frontiersin.org/articles/10.3389/fchem.2021.746134/full
http://creativecommons.org/licenses/by/4.0/
mailto:sm.chen@whu.edu.cn
https://doi.org/10.3389/fchem.2021.746134
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2021.746134


progress, the shortage of vaccines and SARS-CoV-2 variants will
make this disease threatening over a considerable period of time.
The daily new cases is still more than 669 thousands. Most
patients with SARS-CoV-2 infection were reported to have
mild to severe respiratory illness with symptoms such as fever,
cough and shortness of breath (Huang C. et al., 2020; Chan et al.,
2020; Guan et al., 2020; Hu et al., 2020). However, there are a large
special group of patients who are diagnosed by a positive RT-PCR
test but are asymptomatic (Moghadas et al., 2020; Nishiura et al.,
2020). It has shown that transmission via people with no
symptoms could be a primary driver of COVID-19 spread
(Bai et al., 2020; Moghadas et al., 2020), because the viral load
in asymptomatic patients appeared to be similar to that in
patients showing symptoms (Lee et al., 2020). The neglected
silent spreaders have caused significant difficulties in the control
of this pandemic (Moghadas et al., 2020).

Diagnosis of asymptomatic SARS-CoV-2 infection in patient
is critical for controlling the spread of the disease, guiding the
policies of public health, and providing therapeutic decisions.
Detection assays of SARS-CoV-2 in nasal swab based on RT-PCR
are the most effective method for diagnosis of COVID-19
(Bonetta, 2005). Nevertheless, the relative long detection time
(typically 3–4 h) and expensive reagents compromise its
advantages especially in the large-scale COVID-19 testing
(Bonetta, 2005). In addition, the false negative rate of RT-PCR
for COVID-19 cases is still not satisfied enough (Ai et al., 2020;
Falaschi et al., 2020). Therefore, alternative reliable diagnostic
techniques which could provide speedy analytical result for
COVID-19 especially its asymptomatic type are quite necessary.

Matrix-assisted laser desorption/ionizationmass spectrometry
(MALDI-MS) have been equipped in many diagnostic
laboratories around the globe (Patel, 2015). Its application to
microbial identification revolutionized clinical microbiology by
providing rapid identification with minimal sample preparation
at a potential savings in costs. MALDI-MS enables high-
throughput and ultrafast (<1 s/sample) analysis of clinical
samples, and the obtained fingerprint mass spectra containing
abundant information could be used to discriminate species

(Patel, 2015; Wu et al., 2019; Huang L. et al., 2020). This
approach is well established and accepted in the diagnostics of
many important diseases. However, the applicability of MALDI-
MS in the diagnosis of asymptomatic COVID-19 has not been
reported. Very recently, the feasibility of MALDI-MS-based
approach for the diagnosis of symptomatic COVID-19 by
detecting protein components of SARX-CoV-2 in nasal swabs
or peptides in serum was demonstrated (Nachtigall et al., 2020;
Yan et al., 2021). We reasoned that the finer metabolic pattern of
MALDI-MS in low-mass-range will be a more efficient way to
identify the more challengeable asymptomatic SARS-CoV-2
infection.

Besides the direct pathogen detection, serum profiling holds
promise for the early diagnosis of many diseases because of its
abundant metabolic and proteomic information (Cohen et al.,
2018; Huang L. et al., 2020; Shen et al., 2020; Song et al., 2020).
The metabolic serum analysis, including the metabolites and
lipids, is more distal over genomic and proteomic approaches
for precision diagnostics (Mayers et al., 2014; Song et al., 2020).
Metabolites and lipids dysregulations have recently been
observed in the serum of symptomatic COVID-19 patients
(Shen et al., 2020; Song et al., 2020; Delafiori et al., 2021).

In this study, we hypothesized that SARS-CoV-2 would induce
characteristic metabolic alterations in the serum of asymptomatic
patients that can be detected by MALDI-MS, which may
contribute to the diagnosis of this special infection. To test
this hypothesis, we recruited a large cohort containing 92 of
asymptomatic SARS-CoV-2 infected individuals and 182 of
matched healthy controls in Wuhan, China. The serum
samples from the individuals were collected and tested by
MALDI-MS, which provided the information of both the
metabolites and lipids. We also recognized the need to adopt
the machine learning methods to process MS big data to obtain
necessary accuracy (Huang L. et al., 2020). By applying the
developed ensemble model of machine learning to the
metabolic MALDI mass spectra, asymptomatic SARS-CoV-2
infection was distinguished with a high sensitivity of 0.946 and
specificity of 0.929. To the best of our knowledge, this is the first

FIGURE 1 | Schematics of the MALDI-MS and machine learning-based diagnosis of asymptomatic COVID-19 patients.
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example to demonstrate the MALDI-MS combined with machine
learning analysis can be used to detect asymptomatic SARS-CoV-
2 infection.

RESULTS

Study Design of the MALDI-MS and
Machine Learning-Based Diagnosis of
Asymptomatic COVID-19 Patients
The hypothesis of this study is the alteration of the serum
metabolic pattern caused by SARS-CoV-2 infection in
asymptomatic patients could be distinguished from healthy
controls by using MALDI-MS analysis and machine learning,
and the extracted features would enable the accurate diagnosis
(Figure 1). To identify asymptomatic individuals, the extensive
screening was conducted for thousands of close contacts under
quarantine in Wuhan. Individuals with positive RT-PCR results

then were screened by point prevalence surveys and symptoms
assessments. 92 of asymptomatic cases, defined as individuals
with a positive nucleic acid test but without any relevant clinical
symptoms in the preceding 14 days and during subsequent
hospitalization, were included in this study (Table 1). To
minimize the influence of age and gender, the stringent
healthy controls (n � 182) were selected with exactly matched
ages and similar gender ratios.

To acquire the metabolic MALDI mass spectra of serum, the
metabolites were first extracted by ethanol solution, and then
subjected to MALDI-MS analysis in negative ion mode. Here,
NEDC was used as the matrix, because of its relatively clean
background in the low mass range and its ability to analyze
metabolites and lipids simultaneously (Chen et al., 2012; Wang
et al., 2015). Fifty of quality control (QC) samples prepared by
pooled serum extracts were added in between cohort samples to
examine the reproducibility of this MALDI MS method and
check the experimental stability during the MS acquisition.
The m/z features with S/N > 3 were extracted and 238 of
common features were obtained in these samples. To
compensate the signal variability among samples, the intensity
of eachm/z feature was normalized to the total ion current of each
mass spectrum. We plotted the heat map of all the 50
independent metabolic patterns from QC samples, showing
that the feature signals were distributed vertically and
uniformly (Supplementary Figure S1A). In addition, the
relative standard deviation (RSD) of these features were
calculated using their normalized intensities in 50 QC samples,
and over 87% (208/238) of m/z features show RSD less than 30%
(Figure S1b). These results demonstrate the good reproducibility
of this MALDI MS method, and also indicate the validity of the
normalization strategy. Subsequently, theMALDImass spectra of
all the 274 cohort samples were preprocessed (Figure 2). The
peaks were also extracted with S/N > 3, and only those which were
present in more than 80% spectra of all samples were retained.
The final intensity matrix was obtained with 219 features
(Supplementary Datasheet 1), by estimating the threshold

TABLE 1 | Characteristics of sub-groups of enrolled subjects.

Variables Groups p value

Control (n = 182) COVID-19 (n = 92)

Age–year 0.966
Mean ± SD 45.0 ± 13.1 45.0 ± 13.2 -
Median (IQR) 43.0 (35, 52) 42.5 (36, 53) -

Gender, n (%) 0.996
Male 97 (53.3) 49 (53.3) -
Female 85 (46.7) 43 (46.7) -

IgG level
Mean ± SD N/A 12.8 ± 11.7 -
Median (IQR) N/A 9.0 (3.5, 20.0) -

IgM level
Mean ± SD N/A 0.7 ± 1.0 -
Median (IQR) N/A 0.4 (0.3, 0.6) -
RT-PCR Positive, n (%) 0 (0%) 92 (100%) -

FIGURE 2 | MALDI MS metabolic patterns of control and asymptomatic COVID-19 patient samples. (A,B) Mean MALDI mass spectra and the respective
interquartile range (IQR) obtained from healthy control and asymptomatic COVID-19 groups in the mass range of (A) 100–450 Da and (B) 450–1,000 Da, respectively.
The IQR were denoted by blue and green for the healthy control and patient groups, respectively.
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and deciding the background noise on the maximum interclass
variance and excluding random background peaks according to
the threshold, including the species located in the mass ranges of
metabolites (Figure 2A) and lipids (Figure 2B). These 219 of m/z
features were considered as the preliminary MS output
(metabolic pattern) for the COVID-19 classifier. The heat map
of all the 274 independent metabolic patterns from control and
asymptomatic COVID-19 patients shows that the metabolite
signals were distributed uniformly in the given m/z range
(Supplementary Figure S1). This result indicates the
reliability of the serum metabolic patterns obtained with
NEDC-assisted laser desorption/ionization mass spectrometry
(LDI MS).

Diagnosis of Asymptomatic COVID-19 by
Machine Learning
To evaluate the possibility for diagnosis with MALDI MS-based
serum metabolic patterns, we examined different algorithms for
the discrimination of asymptomatic COVID-19 from healthy
controls. First, we used unsupervised learning methods principal
component analysis (PCA) and uniformmanifold approximation
and projection (UMAP) to reduce dimensions of the intensity
matrix and compare the two groups of samples in a
multidimensional space using all 219 peaks. As shown in
(Supplementary Figures 2A,B), the control and patient
samples could not be well separated, which may imply the
subtle differences between asymptomatic and healthy groups.
Therefore, more advanced methods are required to
discriminate them.

We then try to apply five different machine learning
algorithms to classify the control (n � 182) and asymptomatic
COVID-19 (n � 92) samples: SVM, KNN, RF, MLP, and XGB.
Fivefold (outer) nested repeated (ten times) tenfold (inner) cross-
validation was used for hyperparameters optimization and
performance evaluation (Supplementary Table S1) (Krstajic
et al., 2014). The hyperparameters of each model were
optimized through repeated tenfold cross-validation in inner
loop. The performance of each model was comprehensively
evaluated by several indicators calculated in outer loop,
namely receiver operating characteristic (ROC) curve,
precision-recall (PR) curve, accuracy, sensitivity, and
specificity. The comparison between true positive rate (TPR)
and false positive rate (FPR) at various thresholds were
performed through ROC curve (Supplementary Figure S2C)
and the comparison between precision and recall were measured
through PR curve (Supplementary Figure S2D). Accuracy,
sensitivity, and specificity respectively measures the proportion
of all samples, positive samples and negative samples that were
correctly predicted (Supplementary Figure S2E and Table S2)
using all the 219 features. The results of the machine learning
models show significant improvement over PCA and UMAP,
however, the accuracies (≤0.891) and sensitivities (≤0.740) still
need to be improved.

To obtain better classification, we did a feature selection before
the machine learning. Model-based ranking was used due to its
compatibility with MALDI data compare with information gain

and correlation-based methods (Nachtigall et al., 2020). A new
intensity matrix was generated containing 97 features
(Supplementary Datasheet 2), which importance ranked high
in both RF and XGB models (Figure 3A), and was put into
classifiers (Supplementary Table S3). The models with selected
features show better performance in accuracy, sensitivity, and
specificity than that with unselected features (Figures 3B–D and
Supplementary Table S4).

By comparing the metrics among five machine learning
models, we found that SVM, XGB and MLP achieved higher
performance than RF and KNN (Figures 3C–E). The area under
curve (AUC) could reach to 0.97, 0.94, and 0.95 for the models
SVM, XGB and MLP, respectively (Figure 3C). Accordingly, the
accuracy rate could reach 91.6% in the SVM model. For the
models SVM, XGB, and MLP, we also noted that the specificities
of are very high (0.950–0.962), whereas the sensitivities are
relatively low (0.760–0.827). Given the much high infectivity
of COVID-19, it is critical to discriminate the virus-carrying
asymptomatic patients in the first test. Therefore, sensitivity is a
very important indicator of our classifiers in this MALDI-MS-
based pre-diagnosis of COVID-19.

To address this issue, an ensemble learning scheme named
stacking (Li et al., 2019) was tried to combine multiple machine
learning models, aiming at improving sensitivity while
maintaining accuracy (Figure 4A). Stacking is a general two-
level framework that uses a learning algorithm as a specific
combination method (Li et al., 2019). The first level is
consisted of multiple machine learning models. In the second
level, a meta-learner takes the output of classifiers in first level as
input to generate the final output of whole model. Due to the
lower performance of RF and KNN in this case, at least two of
SVM, XGB and MLP were randomly selected to form the first
layer of the stacking model. When the first level contained SVM,
XGB, and MLP, the stacking model with RF as the meta-learner
could reach 0.931 ± 0.033 accuracy and 0.891 ± 0.069 sensitivity
(Supplementary Table S5). The AUC of ROC curve and AUC of
PR curve of the stacking model could achieve 0.96 and 0.91,
respectively (Figures 4D,E), and 82/92 asymptomatic COVID-19
samples and 173/182 healthy controls were correctly diagnosed
(Figure 4F). Although the accuracy and sensitivity of the stacking
model were slightly improved compared to individual models, the
sensitivity was still relatively lower than the accuracy and
specificity.

Therefore, we finally proposed a novel voting algorithm to
replace the meta-learner in the second level, making the model
focus more on the classification of asymptomatic samples
(Figure 4B). In the voting algorithm, a sample will be
predicted as healthy only when the outputs of all classifiers in
first level are healthy. This model exhibited highest performance
when SVM, XGB, and MLP were contained in the first level
(Figure 4C and Supplementary Table S6). The ensemble model
with the new voting algorithm reached accuracy of 0.934 ± 0.029
and sensitivity of 0.946 ± 0.033. The AUC of ROC curve and PR
curve could achieve 0.97 and 0.95 (Figures 4G,H). Obviously, the
overall performance of the ensemble model with new voting
algorithm was not only much better than that of separate models,
but also better than that of the stacking models. Based on this
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algorithm, 87/92 asymptomatic COVID-19 samples and 169/182
healthy controls were correctly diagnosed (Figure 4I).

Construction of the Metabolic Biomarker
Panel
We further endeavor to find metabolic biomarkers in patterns to
characterize relevant pathways and potential therapeutic targets.
We confirmed a biomarker panel containing ten metabolites and
lipids based on the performance to distinguish the asymptomatic
COVID-19 from controls with machine learning models
(Figure 5A, Supplementary Tables S7–9). The structural
identification of these compounds was based on accurate mass
measurement and tandem MS (Supplementary Figures S3, 4).
This panel consists of phospholipids and amino acids, purine, and
nucleoside, including PE 34:1 (16:0/18:1), PE 34:2 (16:0/18:2), PI
36:4 (16:0/20:4), PA 34:2 (16:0/18:2), LPA 18:1, glutamic acid,
tyrosine, taurine, xanthine, and uridine (Figure 5A and Table S7).
Notably, we found that glutamic acid was the most down-
regulated (p � 7.66E-6) species, while PE 34:2 was the most
up-regulated (p � 4.28E-6) species (Supplementary Figures 5, 6).
Three individual machine learning models including SVM, XGB,
and MLP, and the proposed ensemble machine learning model,
were applied to classify all the 274 control and asymptomatic
COVID-19 samples with the ten biomarkers. For each model,
fivefold (outer) nested repeated (ten times) tenfold (inner) cross-

validation (with randomized stratified splitting) was used for
hyperparameters optimization and performance evaluation
(Supplementary Table S8). The results showed that one single
model cannot be very efficient in discriminating COVID-19 from
controls (AUC ≤0.834, Sensitivity ≤0.642, Supplementary Table
S9). However, the ensemble model containing SVM, XGB and
MLP in the first level accounted for an enhanced AUC of 0.850
with the sensitivity of 0.837, which indicated the ability to
distinguish asymptomatic COVID-19 from noninfected ones.
The construction of the biomarker panel could simplify the
analysis and facilitate the large-scale clinical use of this approach.

To interrogate the potential metabolic pathway alteration
contributed by these metabolites, pathway analysis (Figure 5B)
was conducted in MetaboAnalyst (https://www.metaboanalyst.ca/).
A total of five pathways were considered as altered (p < 0.05, pathway
impact value >0.1): (Zhou et al., 2020) Glutamine and glutamate
metabolism; (Wu et al., 2020) Glycerophospholipid metabolism
(Supplementary Figure S7); (Huang C. et al., 2020) Taurine and
hypotaurine metabolism; (Guan et al., 2020) Alanine, aspartate, and
glutamate metabolism; (Chan et al., 2020) Arginine biosynthesis.
These results are consistent with the known fact that viral infection
rewires host cell metabolism to facilitate optimal viral replication
(Thaker et al., 2019; Xiao et al., 2020). The significant decrease of the
glutamic acid in the serum of asymptomatic COVID-19 patients
indicated the dysregulation of glutamine and glutamate
metabolism during the viral infection cycle (Bharadwaj et al.,

FIGURE 3 | Results of preliminary classification andmachine learning analysis with 97 features. (A) Venn diagram of the feature selection. 97 common features with
high importance in both RF and XGB models were selected from 219 m/z features. Then, 10 of biomarkers were found from these 97 features. (B) Performance
indicators of five separate machine learning models. (C) ROC curves of five separate machine learning models. (D) PR curves of five separate machine learning models.
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2020), as well as the alteration of taurine and hypotaurinemetabolism
implied by the decrease of the concentration of taurine (Figure 5A
and Supplementary Figure S6). These findings are consistent with
the recent studies that the suppression of amino acidmetabolism was
observed in COVID-19 patients (Shen et al., 2020; Bruzzone et al.,
2020; Thomas et al., 2020), which might be related to the
dysregulation of hepatic metabolism (Shen et al., 2020; Bruzzone
et al., 2020). Besides, the metabolic pathway of glycerophospholipid
was also significantly influenced in asymptomatic COVID-19
(Figure 5B). Viruses are known to induce profound changes in
host cell lipidomes and usurp key energy pathways in their
exploitation of host metabolic resources for fueling the different
stages of viral infection (Kyle et al., 2019; Bruzzone et al., 2020; Song
et al., 2020). We found the increase of glycerophospholipids
including PE 34:1, PE 34:2, PI 36:4, and PA 34:2 in
asymptomatic COVID-19, whereas the lysophospholipid LPA 18:1
was reduced. The increase of PE and PI was reported in
symptomatic COVID-19 (Song et al., 2020), and corroborated a

previous study on plasma lipid alterations in Ebola virus disease
survivors compared to healthy controls (Kyle et al., 2019).
Phospholipids are the major components of plasma membrane
and circulating lipoproteins (Dashti et al., 2011). Increases of these
lipids were possibly reflecting the augmented secretion of them into
the circulation (Song et al., 2020). Notably, the opposite changes of
increased PA and decreased LPAmight suggest the disruption of the
balance between them. This distinct metabolic and lipid
dysregulation of asymptomatic COVID-19 provided new insight
for understanding its unique mechanism.

DISCUSSION

The asymptomatic COVID-19 patients are silent spreaders who
make it more difficult for the prevention and control of the
epidemic. Thus, the rapid identification of asymptomatic
COVID-19 is an urgent need. Current diagnosis of

FIGURE 4 | Results of stacking and ensemble learning methods. (A) Schematic workflow of the stacking model with five-fold nested cross-validation, including the
inner loop to tune the optimized hyperparameters of each separate classifier and the outer loop to evaluate the performance of the stacking model. (B) Schematic
workflow of the new ensemble model with five-fold nested cross-validation, including the inner loop to tune the optimized hyperparameters of each separate classifier
and the outer loop to evaluate the performance of this ensemblemodel. (C) Performance indicators of four new ensemblemodels with novel voting algorithm. (D,E),
(D) ROC and (E) PR curves of the stacking model containing SVM, XGB and MLP in the first level. (F)Confusion matrix of the stacking model. (G,H), (G) ROC and (H) PR
curve of the new ensemble model containing SVM, XGB and MLP in the first level. (I) Confusion matrix of the ensemble model.
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asymptomatic COVID-19 mainly depends on RT-PCR, which is
time-consuming and compromised by the moderate sensitivity
(Bonetta, 2005; Ai et al., 2020; Falaschi et al., 2020). In addition, the
lack of clinical oversight of asymptomatic COVID-19 make the
recruitment of large clinical cohort quite difficult. So far, we still
know very little about the asymptomatic COVID-19 infection. In
this study, we compared the metabolic profile between the healthy
control and asymptomatic COVID-19, and found theMALDIMS-
based serum metabolic profiling combined with machine learning
could be an alternativemethod to discriminate the infected patients
from controls with high accuracy. These preliminary results
indicated the great potential of this new approach for the
development of a meaningful diagnostic method. Although RT-
PCR are undoubtedly useful for COVID-19 diagnosis, this
MALDI-MS-based serum metabolic approach was validated as a
promising alternative given its speed, simplicity, high-throughput,
and the availability of equipment and expertise in many core
facilities in developing countries. The serum samples were
simply extracted with common solvents, and no other expensive
reagent was needed for MALDI MS analysis. The high-throughput
enabled the analysis of 384 samples in one MALDI target plate
within 10min (∼seconds/sample). So, the average cost for one
sample would be lower than RT-PCR especially in the large-scale
analysis.

This study may also have some limitations. Firstly, while
gender and age were matched between asymptomatic patients
and healthy controls in this cohort, the information of BMI was
not included due to the constraints in collecting these medical
records during the outbreak, which might be potential
confounders in this study. In addition, restricted by the
controlled healthcare resource during the pandemic, collection
of symptomatic COVID-19 patients andmulticenter cohorts with
stringently matched demographics were not available. However,
to minimize the overfitting of our machine learning models,
fivefold (outer) nested repeated (ten times) tenfold (inner) cross-
validation (with randomized stratified splitting) was used for each

model, for hyperparameters optimization and performance
evaluation.

CONCLUSIONS

This work validated the hypothesis that the rapid diagnosis of
asymptomatic COVID-19 could be achieved by serum metabolic
analysis combined with developed machine learningmethod. The
distinct metabolic pattern with a panel of biomarkers may
provide clues for deep understanding the unique mechanism
of asymptomatic SARS-CoV-2 infection. This approach would
play an important role in the large-scale screening assay of SARS-
CoV-2 in regions that lack of adequate resource of RT-PCR assay.
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